Belle II Software  light-2403-persian
RecoPhoton.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * External Contributor: Wouter Hulsbergen *
5  * *
6  * See git log for contributors and copyright holders. *
7  * This file is licensed under LGPL-3.0, see LICENSE.md. *
8  **************************************************************************/
9 
10 #include <framework/logging/Logger.h>
11 
12 #include <analysis/dataobjects/Particle.h>
13 #include <mdst/dataobjects/ECLCluster.h>
14 
15 #include <analysis/ClusterUtility/ClusterUtils.h>
16 
17 #include <analysis/VertexFitting/TreeFitter/RecoPhoton.h>
18 #include <analysis/VertexFitting/TreeFitter/FitParams.h>
19 #include <analysis/VertexFitting/TreeFitter/ErrCode.h>
20 
21 #include <framework/gearbox/Const.h>
22 #include <framework/geometry/B2Vector3.h>
23 
24 namespace TreeFitter {
25 
26  RecoPhoton::RecoPhoton(Belle2::Particle* particle, const ParticleBase* mother) : RecoParticle(particle, mother),
27  m_dim(3),
28  m_init(false),
29  m_useEnergy(useEnergy(*particle)),
30  m_clusterPars(),
31  m_covariance(),
32  m_momentumScalingFactor(particle->getEffectiveMomentumScale())
33  {
34  initParams();
35  }
36 
38  {
39  const int posindexmother = mother()->posIndex();
40 
41  Eigen::Matrix<double, 1, 3> vertexToCluster = Eigen::Matrix<double, 1, 3>::Zero(1, 3);
42  for (unsigned int i = 0; i < 3; ++i) {
43  vertexToCluster(i) = m_clusterPars(i) - fitparams.getStateVector()(posindexmother + i);
44  }
45 
46  const double distanceToMother = vertexToCluster.norm();
47  const double energy = m_momentumScalingFactor * m_clusterPars(3); // apply scaling factor to correct energy bias
48  const int momindex = momIndex();
49 
50  for (unsigned int i = 0; i < 3; ++i) {
51  // px = E dx/|dx|
52  fitparams.getStateVector()(momindex + i) = energy * vertexToCluster(i) / distanceToMother;
53  }
54 
55  return ErrCode(ErrCode::Status::success);
56  }
57 
59  {
60  return ErrCode(ErrCode::Status::success);
61  }
62 
64  {
65  bool rc = true;
66  const int pdg = particle.getPDGCode();
67  if (pdg &&
70  rc = false;
71  }
72  return rc;
73  }
74 
76  {
77  const int momindex = momIndex();
78  const int posindex = mother()->posIndex();
79 
80  const double factorE = 1000 * m_covariance(3, 3);
81  const double factorX = 1000; // ~ 10cm error on initial vertex
82 
83  fitparams.getCovariance().block<4, 4>(momindex, momindex) =
84  Eigen::Matrix<double, 4, 4>::Identity(4, 4) * factorE;
85 
86  fitparams.getCovariance().block<3, 3>(posindex, posindex) =
87  Eigen::Matrix<double, 3, 3>::Identity(3, 3) * factorX;
88 
89  return ErrCode(ErrCode::Status::success);
90  }
91 
93  {
94  const Belle2::ECLCluster* cluster = particle()->getECLCluster();
96  const Belle2::B2Vector3D centroid = cluster->getClusterPosition();
97  const double energy = cluster->getEnergy(clusterhypo);
98 
99  m_init = true;
100  m_covariance = Eigen::Matrix<double, 4, 4>::Zero(4, 4);
102 
103  TMatrixDSym cov_EPhiTheta = C.GetCovarianceMatrix3x3FromCluster(cluster);
104 
105  Eigen::Matrix<double, 2, 2> covPhiTheta = Eigen::Matrix<double, 2, 2>::Zero(2, 2);
106 
107  for (int row = 0; row < 2; ++row) {
108  // we go through all elements here instead of selfadjoint view later
109  for (int col = 0; col < 2; ++col) {
110  covPhiTheta(row, col) = cov_EPhiTheta[row + 1][col + 1];
111  }
112  }
113 
114  // the in going x-E correlations are 0 so we don't fill them
115  const double R = cluster->getR();
116  const double theta = cluster->getPhi();
117  const double phi = cluster->getTheta();
118 
119  const double st = std::sin(theta);
120  const double ct = std::cos(theta);
121  const double sp = std::sin(phi);
122  const double cp = std::cos(phi);
123 
124  Eigen::Matrix<double, 2, 3> polarToCartesian = Eigen::Matrix<double, 2, 3>::Zero(2, 3);
125 
126  // polarToCartesian({phi,theta} -> {x,y,z} )
127  polarToCartesian(0, 0) = -1. * R * st * sp; // dx/dphi
128  polarToCartesian(0, 1) = R * st * cp; // dy/dphi
129  polarToCartesian(0, 2) = 0; // dz/dphi
130 
131  polarToCartesian(1, 0) = R * ct * cp; // dx/dtheta
132  polarToCartesian(1, 1) = R * ct * sp; // dy/dtheta
133  polarToCartesian(1, 2) = -1. * R * st; // dz/dtheta
134 
135  m_covariance.block<3, 3>(0, 0) = polarToCartesian.transpose() * covPhiTheta * polarToCartesian;
136 
137  m_covariance(3, 3) = cov_EPhiTheta[0][0];
138  m_clusterPars(0) = centroid.X();
139  m_clusterPars(1) = centroid.Y();
140  m_clusterPars(2) = centroid.Z();
141  m_clusterPars(3) = energy;
142 
143  auto p_vec = particle()->getMomentum();
144  // find highest momentum, eliminate dim with highest mom
145  if ((std::abs(p_vec.X()) >= std::abs(p_vec.Y())) && (std::abs(p_vec.X()) >= std::abs(p_vec.Z()))) {
146  m_i1 = 0;
147  m_i2 = 1;
148  m_i3 = 2;
149  } else if ((std::abs(p_vec.Y()) >= std::abs(p_vec.X())) && (std::abs(p_vec.Y()) >= std::abs(p_vec.Z()))) {
150  m_i1 = 1;
151  m_i2 = 0;
152  m_i3 = 2;
153  } else if ((std::abs(p_vec.Z()) >= std::abs(p_vec.Y())) && (std::abs(p_vec.Z()) >= std::abs(p_vec.X()))) {
154  m_i1 = 2;
155  m_i2 = 1;
156  m_i3 = 0;
157  } else {
158  B2ERROR("Could not estimate highest momentum for photon constraint. Aborting this fit.\n px: "
159  << p_vec.X() << " py: " << p_vec.Y() << " pz: " << p_vec.Z() << " calculated from Ec: " << m_clusterPars(3));
160  return ErrCode(ErrCode::Status::photondimerror);
161  }
162 
163  return ErrCode(ErrCode::Status::success);
164  }
165 
167  {
168  const int momindex = momIndex();
169  const int posindex = mother()->posIndex();
186  const Eigen::Matrix<double, 1, 3> x_vertex = fitparams.getStateVector().segment(posindex, 3);
187  const Eigen::Matrix<double, 1, 3> p_vec = fitparams.getStateVector().segment(momindex, 3);
188 
189  if (0 == p_vec[m_i1]) {
190  return ErrCode(ErrCode::photondimerror);
191  }
192 
193  // p_vec[m_i1] must not be 0
194  const double elim = (m_clusterPars[m_i1] - x_vertex[m_i1]) / p_vec[m_i1];
195  const double mom = p_vec.norm();
196 
197  // r'
198  Eigen::Matrix<double, 3, 1> residual3 = Eigen::Matrix<double, 3, 1>::Zero(3, 1);
199  residual3(0) = m_clusterPars[m_i2] - x_vertex[m_i2] - p_vec[m_i2] * elim;
200  residual3(1) = m_clusterPars[m_i3] - x_vertex[m_i3] - p_vec[m_i3] * elim;
201  residual3(2) = m_momentumScalingFactor * m_clusterPars[3] - mom; // scale measured energy by scaling factor
202 
203  // dr'/dm | m:={xc,yc,zc,Ec} the measured quantities
204  Eigen::Matrix<double, 3, 4> P = Eigen::Matrix<double, 3, 4>::Zero(3, 4);
205  // deriving by the cluster pars
206  P(0, m_i2) = 1;
207  P(0, m_i1) = -p_vec[m_i2] / p_vec[m_i1];
208 
209  P(1, m_i3) = 1;
210  P(1, m_i1) = -p_vec[m_i3] / p_vec[m_i1];
211  P(2, 3) = 1; // dE/dEc
212 
213  p.getResiduals().segment(0, 3) = residual3;
214 
215  p.getV() = P * m_covariance.selfadjointView<Eigen::Lower>() * P.transpose();
216 
217  // dr'/dm | m:={x,y,z,px,py,pz,E}
218  // x := x_vertex (decay vertex of mother)
219  p.getH()(0, posindex + m_i1) = p_vec[m_i2] / p_vec[m_i1];
220  p.getH()(0, posindex + m_i2) = -1.0;
221  p.getH()(0, posindex + m_i3) = 0;
222 
223  p.getH()(1, posindex + m_i1) = p_vec[m_i3] / p_vec[m_i1];
224  p.getH()(1, posindex + m_i2) = 0;
225  p.getH()(1, posindex + m_i3) = -1.0;
226 
227  // elim already divided by p_vec[m_i1]
228  p.getH()(0, momindex + m_i1) = p_vec[m_i2] * elim / p_vec[m_i1];
229  p.getH()(0, momindex + m_i2) = -1. * elim;
230  p.getH()(0, momindex + m_i3) = 0;
231 
232  p.getH()(1, momindex + m_i1) = p_vec[m_i3] * elim / p_vec[m_i1];
233  p.getH()(1, momindex + m_i2) = 0;
234  p.getH()(1, momindex + m_i3) = -1. * elim;
235 
236  p.getH()(2, momindex + m_i1) = -1. * p_vec[m_i1] / mom;
237  p.getH()(2, momindex + m_i2) = -1. * p_vec[m_i2] / mom;
238  p.getH()(2, momindex + m_i3) = -1. * p_vec[m_i3] / mom;
239  // the photon does not store an energy in the state vector
240  // so no p.getH()(2, momindex + 3) here
241 
242  return ErrCode(ErrCode::Status::success);
243  }
244 
245 }
DataType Z() const
access variable Z (= .at(2) without boundary check)
Definition: B2Vector3.h:435
DataType X() const
access variable X (= .at(0) without boundary check)
Definition: B2Vector3.h:431
DataType Y() const
access variable Y (= .at(1) without boundary check)
Definition: B2Vector3.h:433
Class to provide momentum-related information from ECLClusters.
Definition: ClusterUtils.h:36
const TMatrixDSym GetCovarianceMatrix3x3FromCluster(const ECLCluster *cluster)
Returns 3x3 covariance matrix (E, theta, phi)
The ParticleType class for identifying different particle types.
Definition: Const.h:399
static const ParticleType pi0
neutral pion particle
Definition: Const.h:665
static const ParticleType photon
photon particle
Definition: Const.h:664
ECL cluster data.
Definition: ECLCluster.h:27
EHypothesisBit
The hypothesis bits for this ECLCluster (Connected region (CR) is split using this hypothesis.
Definition: ECLCluster.h:31
Class to store reconstructed particles.
Definition: Particle.h:75
const ECLCluster * getECLCluster() const
Returns the pointer to the ECLCluster object that was used to create this Particle (if ParticleType =...
Definition: Particle.cc:891
int getPDGCode(void) const
Returns PDG code.
Definition: Particle.h:454
ROOT::Math::XYZVector getMomentum() const
Returns momentum vector.
Definition: Particle.h:560
ECLCluster::EHypothesisBit getECLClusterEHypothesisBit() const
Returns the ECLCluster EHypothesisBit for this Particle.
Definition: Particle.h:1001
abstract errorocode be aware that the default is success
Definition: ErrCode.h:14
Class to store and manage fitparams (statevector)
Definition: FitParams.h:20
Eigen::Matrix< double, -1, -1, 0, MAX_MATRIX_SIZE, MAX_MATRIX_SIZE > & getCovariance()
getter for the states covariance
Definition: FitParams.h:53
Eigen::Matrix< double, -1, 1, 0, MAX_MATRIX_SIZE, 1 > & getStateVector()
getter for the fit parameters/statevector
Definition: FitParams.h:65
base class for all particles
Definition: ParticleBase.h:25
Belle2::Particle * particle() const
get basf2 particle
Definition: ParticleBase.h:92
virtual int posIndex() const
get vertex index (in statevector!)
Definition: ParticleBase.h:122
const ParticleBase * mother() const
getMother() / hasMother()
Definition: ParticleBase.h:98
class to store the projected residuals and the corresponding jacobian as well as the covariance matri...
Definition: Projection.h:18
base for RecoPhoton RecoTrack
Definition: RecoParticle.h:16
virtual int momIndex() const override
get momentum index
Definition: RecoParticle.h:42
Eigen::Matrix< double, 4, 4 > m_covariance
covariance (x_c,y_c,z_c,E_c) of measured pars
Definition: RecoPhoton.h:76
ErrCode initCovariance(FitParams &fitparams) const override
init covariance
Definition: RecoPhoton.cc:75
RecoPhoton(Belle2::Particle *bc, const ParticleBase *mother)
constructor
Definition: RecoPhoton.cc:26
ErrCode initParams()
update or init params
Definition: RecoPhoton.cc:92
const float m_momentumScalingFactor
scale the momentum / energy by this correction factor
Definition: RecoPhoton.h:86
int m_i3
another random index
Definition: RecoPhoton.h:83
int m_i1
index with the highest momentum.
Definition: RecoPhoton.h:79
virtual ErrCode initParticleWithMother(FitParams &fitparams) override
init particle with mother
Definition: RecoPhoton.cc:37
static bool useEnergy(const Belle2::Particle &cand)
has energy in fit params?
Definition: RecoPhoton.cc:63
int m_i2
random other index
Definition: RecoPhoton.h:81
virtual ErrCode initMotherlessParticle(FitParams &fitparams) override
init particle without mother
Definition: RecoPhoton.cc:58
bool m_init
was initialized*
Definition: RecoPhoton.h:67
ErrCode projectRecoConstraint(const FitParams &fitparams, Projection &p) const override
project photon constraint
Definition: RecoPhoton.cc:166
Eigen::Matrix< double, 1, 4 > m_clusterPars
constrains measured params (x_c, y_c, z_c, E_c)
Definition: RecoPhoton.h:73