Belle II Software light-2406-ragdoll
MCTruthVariables.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9// Own header.
10#include <analysis/variables/MCTruthVariables.h>
11
12// include VariableManager
13#include <analysis/VariableManager/Manager.h>
14
15#include <analysis/dataobjects/Particle.h>
16#include <analysis/dataobjects/TauPairDecay.h>
17#include <analysis/utility/MCMatching.h>
18#include <analysis/utility/ReferenceFrame.h>
19#include <analysis/utility/ValueIndexPairSorting.h>
20
21#include <mdst/dataobjects/MCParticle.h>
22#include <mdst/dataobjects/ECLCluster.h>
23#include <mdst/dataobjects/Track.h>
24
25
26#include <framework/datastore/StoreArray.h>
27#include <framework/datastore/StoreObjPtr.h>
28#include <framework/dataobjects/EventMetaData.h>
29#include <framework/gearbox/Const.h>
30#include <framework/logging/Logger.h>
31#include <framework/database/DBObjPtr.h>
32#include <framework/dbobjects/BeamParameters.h>
33
34#include <queue>
35
36namespace Belle2 {
41 namespace Variable {
42
43 double isSignal(const Particle* part)
44 {
45 const MCParticle* mcparticle = part->getMCParticle();
46 if (!mcparticle) return Const::doubleNaN;
47
48 int status = MCMatching::getMCErrors(part, mcparticle);
49 return (status == MCMatching::c_Correct);
50 }
51
52 double isSignalAcceptWrongFSPs(const Particle* part)
53 {
54 const MCParticle* mcparticle = part->getMCParticle();
55 if (!mcparticle) return Const::doubleNaN;
56
57 int status = MCMatching::getMCErrors(part, mcparticle);
58 //remove the following bits
59 status &= (~MCMatching::c_MisID);
60 status &= (~MCMatching::c_AddedWrongParticle);
61
62 return (status == MCMatching::c_Correct);
63 }
64
65 double isPrimarySignal(const Particle* part)
66 {
67 return (isSignal(part) > 0.5 and particleMCPrimaryParticle(part) > 0.5);
68 }
69
70 double isMisidentified(const Particle* part)
71 {
72 const MCParticle* mcp = part->getMCParticle();
73 if (!mcp) return Const::doubleNaN;
74 int st = MCMatching::getMCErrors(part, mcp);
75 return ((st & MCMatching::c_MisID) != 0);
76 }
77
78 double isWrongCharge(const Particle* part)
79 {
80 const MCParticle* mcp = part->getMCParticle();
81 if (!mcp) return Const::doubleNaN;
82 return (part->getCharge() != mcp->getCharge());
83 }
84
85 double isCloneTrack(const Particle* particle)
86 {
87 // neutrals and composites don't make sense
88 if (!Const::chargedStableSet.contains(Const::ParticleType(abs(particle->getPDGCode()))))
89 return Const::doubleNaN;
90 // get mcparticle weight (mcmatch weight)
91 const auto mcpww = particle->getRelatedToWithWeight<MCParticle>();
92 if (!mcpww.first) return Const::doubleNaN;
93 return (mcpww.second < 0);
94 }
95
96 double isOrHasCloneTrack(const Particle* particle)
97 {
98 // use std::queue to check daughters-- granddaughters etc recursively
99 std::queue<const Particle*> qq;
100 qq.push(particle);
101 while (!qq.empty()) {
102 const auto d = qq.front(); // get daughter
103 qq.pop(); // remove the daughter from the queue
104 if (isCloneTrack(d) == 1.0) return 1.0;
105 size_t nDau = d->getNDaughters(); // number of daughters of daughters
106 for (size_t iDau = 0; iDau < nDau; ++iDau)
107 qq.push(d->getDaughter(iDau));
108 }
109 return 0.0;
110 }
111
112 double genNthMotherPDG(const Particle* part, const std::vector<double>& args)
113 {
114 const MCParticle* mcparticle = part->getMCParticle();
115 if (!mcparticle) return 0.0;
116
117 unsigned int nLevels = args.empty() ? 0 : args[0];
118
119 const MCParticle* curMCParticle = mcparticle;
120 for (unsigned int i = 0; i <= nLevels; ++i) {
121 const MCParticle* curMCMother = curMCParticle->getMother();
122 if (!curMCMother) return 0.0;
123 curMCParticle = curMCMother;
124 }
125 return curMCParticle->getPDG();
126 }
127
128 double genNthMotherIndex(const Particle* part, const std::vector<double>& args)
129 {
130 const MCParticle* mcparticle = part->getMCParticle();
131 if (!mcparticle) return 0.0;
132
133 unsigned int nLevels = args.empty() ? 0 : args[0];
134
135 const MCParticle* curMCParticle = mcparticle;
136 for (unsigned int i = 0; i <= nLevels; ++i) {
137 const MCParticle* curMCMother = curMCParticle->getMother();
138 if (!curMCMother) return 0.0;
139 curMCParticle = curMCMother;
140 }
141 return curMCParticle->getArrayIndex();
142 }
143
144 double genQ2PmPd(const Particle* part, const std::vector<double>& daughter_indices)
145 {
146 const MCParticle* mcparticle = part->getMCParticle();
147 if (!mcparticle) return Const::doubleNaN;
148
149 auto daughters = mcparticle->getDaughters();
150
151 ROOT::Math::PxPyPzEVector p4Daughters;
152 for (auto& double_daughter : daughter_indices) {
153 unsigned long daughter = std::lround(double_daughter);
154 if (daughter >= daughters.size()) return Const::doubleNaN;
155
156 p4Daughters += daughters[daughter]->get4Vector();
157 }
158 auto p4Mother = mcparticle->get4Vector();
159 return (p4Mother - p4Daughters).mag2();
160 }
161
162 double genMotherPDG(const Particle* part)
163 {
164 return genNthMotherPDG(part, {});
165 }
166
167 double genMotherP(const Particle* part)
168 {
169 const MCParticle* mcparticle = part->getMCParticle();
170 if (!mcparticle) return Const::doubleNaN;
171
172 const MCParticle* mcmother = mcparticle->getMother();
173 if (!mcmother) return Const::doubleNaN;
174
175 return mcmother->getMomentum().R();
176 }
177
178 double genMotherIndex(const Particle* part)
179 {
180 return genNthMotherIndex(part, {});
181 }
182
183 double genParticleIndex(const Particle* part)
184 {
185 const MCParticle* mcparticle = part->getMCParticle();
186 if (!mcparticle) return Const::doubleNaN;
187 return mcparticle->getArrayIndex();
188 }
189
190 double isSignalAcceptMissingNeutrino(const Particle* part)
191 {
192 const MCParticle* mcparticle = part->getMCParticle();
193 if (!mcparticle) return Const::doubleNaN;
194
195 int status = MCMatching::getMCErrors(part, mcparticle);
196 //remove the following bits
197 status &= (~MCMatching::c_MissNeutrino);
198
199 return (status == MCMatching::c_Correct);
200 }
201
202 double isSignalAcceptMissingMassive(const Particle* part)
203 {
204 const MCParticle* mcparticle = part->getMCParticle();
205 if (!mcparticle) return Const::doubleNaN;
206
207 int status = MCMatching::getMCErrors(part, mcparticle);
208 //remove the following bits
209 status &= (~MCMatching::c_MissMassiveParticle);
210 status &= (~MCMatching::c_MissKlong);
211
212 return (status == MCMatching::c_Correct);
213 }
214
215 double isSignalAcceptMissingGamma(const Particle* part)
216 {
217 const MCParticle* mcparticle = part->getMCParticle();
218 if (!mcparticle) return Const::doubleNaN;
219
220 int status = MCMatching::getMCErrors(part, mcparticle);
221 //remove the following bits
222 status &= (~MCMatching::c_MissGamma);
223
224 return (status == MCMatching::c_Correct);
225 }
226
227 double isSignalAcceptMissing(const Particle* part)
228 {
229 const MCParticle* mcparticle = part->getMCParticle();
230 if (!mcparticle) return Const::doubleNaN;
231
232 int status = MCMatching::getMCErrors(part, mcparticle);
233 //remove the following bits
234 status &= (~MCMatching::c_MissGamma);
235 status &= (~MCMatching::c_MissMassiveParticle);
236 status &= (~MCMatching::c_MissKlong);
237 status &= (~MCMatching::c_MissNeutrino);
238
239 return (status == MCMatching::c_Correct);
240 }
241
242 double isSignalAcceptBremsPhotons(const Particle* part)
243 {
244 const MCParticle* mcparticle = part->getMCParticle();
245 if (!mcparticle) return Const::doubleNaN;
246
247 int status = MCMatching::getMCErrors(part, mcparticle);
248 //remove the following bits
249 status &= (~MCMatching::c_AddedRecoBremsPhoton);
250
251 return (status == MCMatching::c_Correct);
252 }
253
254 double particleMCMatchPDGCode(const Particle* part)
255 {
256 const MCParticle* mcparticle = part->getMCParticle();
257 if (!mcparticle) return Const::doubleNaN;
258 return mcparticle->getPDG();
259 }
260
261 double particleMCErrors(const Particle* part)
262 {
263 return MCMatching::getMCErrors(part);
264 }
265
266 double particleNumberOfMCMatch(const Particle* particle)
267 {
268 RelationVector<MCParticle> mcRelations = particle->getRelationsTo<MCParticle>();
269 return (mcRelations.size());
270 }
271
272 double particleMCMatchWeight(const Particle* particle)
273 {
274 auto relWithWeight = particle->getRelatedToWithWeight<MCParticle>();
275 if (!relWithWeight.first) return Const::doubleNaN;
276 return relWithWeight.second;
277 }
278
279 double particleMCMatchDecayTime(const Particle* part)
280 {
281 const MCParticle* mcparticle = part->getMCParticle();
282 if (!mcparticle) return Const::doubleNaN;
283 return mcparticle->getDecayTime();
284 }
285
286 double particleMCMatchLifeTime(const Particle* part)
287 {
288 const MCParticle* mcparticle = part->getMCParticle();
289 if (!mcparticle) return Const::doubleNaN;
290 return mcparticle->getLifetime();
291 }
292
293 double particleMCMatchPX(const Particle* part)
294 {
295 const MCParticle* mcparticle = part->getMCParticle();
296 if (!mcparticle) return Const::doubleNaN;
297
298 const auto& frame = ReferenceFrame::GetCurrent();
299 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
300 return frame.getMomentum(mcpP4).Px();
301 }
302
303 double particleMCMatchPY(const Particle* part)
304 {
305 const MCParticle* mcparticle = part->getMCParticle();
306 if (!mcparticle) return Const::doubleNaN;
307
308 const auto& frame = ReferenceFrame::GetCurrent();
309 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
310 return frame.getMomentum(mcpP4).Py();
311 }
312
313 double particleMCMatchPZ(const Particle* part)
314 {
315 const MCParticle* mcparticle = part->getMCParticle();
316 if (!mcparticle) return Const::doubleNaN;
317
318 const auto& frame = ReferenceFrame::GetCurrent();
319 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
320 return frame.getMomentum(mcpP4).Pz();
321 }
322
323 double particleMCMatchPT(const Particle* part)
324 {
325 const MCParticle* mcparticle = part->getMCParticle();
326 if (!mcparticle) return Const::doubleNaN;
327
328 const auto& frame = ReferenceFrame::GetCurrent();
329 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
330 return frame.getMomentum(mcpP4).Pt();
331 }
332
333 double particleMCMatchE(const Particle* part)
334 {
335 const MCParticle* mcparticle = part->getMCParticle();
336 if (!mcparticle) return Const::doubleNaN;
337
338 const auto& frame = ReferenceFrame::GetCurrent();
339 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
340 return frame.getMomentum(mcpP4).E();
341 }
342
343 double particleMCMatchP(const Particle* part)
344 {
345 const MCParticle* mcparticle = part->getMCParticle();
346 if (!mcparticle) return Const::doubleNaN;
347
348 const auto& frame = ReferenceFrame::GetCurrent();
349 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
350 return frame.getMomentum(mcpP4).P();
351 }
352
353 double particleMCMatchTheta(const Particle* part)
354 {
355 const MCParticle* mcparticle = part->getMCParticle();
356 if (!mcparticle) return Const::doubleNaN;
357
358 const auto& frame = ReferenceFrame::GetCurrent();
359 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
360 return frame.getMomentum(mcpP4).Theta();
361 }
362
363 double particleMCMatchPhi(const Particle* part)
364 {
365 const MCParticle* mcparticle = part->getMCParticle();
366 if (!mcparticle) return Const::doubleNaN;
367
368 const auto& frame = ReferenceFrame::GetCurrent();
369 ROOT::Math::PxPyPzEVector mcpP4 = mcparticle->get4Vector();
370 return frame.getMomentum(mcpP4).Phi();
371 }
372
373 double mcParticleNDaughters(const Particle* part)
374 {
375 const MCParticle* mcparticle = part->getMCParticle();
376
377 if (!mcparticle) return Const::doubleNaN;
378 return mcparticle->getNDaughters();
379 }
380
381 double particleMCRecoilMass(const Particle* part)
382 {
383 StoreArray<MCParticle> mcparticles;
384 if (mcparticles.getEntries() < 1) return Const::doubleNaN;
385
386 ROOT::Math::PxPyPzEVector pInitial = mcparticles[0]->get4Vector();
387 ROOT::Math::PxPyPzEVector pDaughters;
388 const std::vector<Particle*> daughters = part->getDaughters();
389 for (auto daughter : daughters) {
390 const MCParticle* mcD = daughter->getMCParticle();
391 if (!mcD) return Const::doubleNaN;
392
393 pDaughters += mcD->get4Vector();
394 }
395 return (pInitial - pDaughters).M();
396 }
397
398 ROOT::Math::PxPyPzEVector MCInvisibleP4(const MCParticle* mcparticle)
399 {
400 ROOT::Math::PxPyPzEVector ResultP4;
401 int pdg = abs(mcparticle->getPDG());
402 bool isNeutrino = (pdg == 12 or pdg == 14 or pdg == 16);
403
404 if (mcparticle->getNDaughters() > 0) {
405 const std::vector<MCParticle*> daughters = mcparticle->getDaughters();
406 for (auto daughter : daughters)
407 ResultP4 += MCInvisibleP4(daughter);
408 } else if (isNeutrino)
409 ResultP4 += mcparticle->get4Vector();
410
411 return ResultP4;
412 }
413
414 double particleMCCosThetaBetweenParticleAndNominalB(const Particle* part)
415 {
416 int particlePDG = abs(part->getPDGCode());
417 if (particlePDG != 511 and particlePDG != 521)
418 B2FATAL("The variable mcCosThetaBetweenParticleAndNominalB is only meant to be used on B mesons!");
419
420 PCmsLabTransform T;
421 double e_Beam = T.getCMSEnergy() / 2.0; // GeV
422 double m_B = part->getPDGMass();
423
424 // Y(4S) mass according PDG (https://pdg.lbl.gov/2020/listings/rpp2020-list-upsilon-4S.pdf)
425 const double mY4S = 10.5794; // GeV
426
427 // if this is a continuum run, use an approximate Y(4S) CMS energy
428 if (e_Beam * e_Beam - m_B * m_B < 0) {
429 e_Beam = mY4S / 2.0;
430 }
431 double p_B = std::sqrt(e_Beam * e_Beam - m_B * m_B);
432
433 // Calculate cosThetaBY with daughter neutrino momenta subtracted
434 const MCParticle* mcB = part->getMCParticle();
435 if (!mcB) return Const::doubleNaN;
436
437 int mcParticlePDG = abs(mcB->getPDG());
438 if (mcParticlePDG != 511 and mcParticlePDG != 521)
439 return Const::doubleNaN;
440
441 ROOT::Math::PxPyPzEVector p = T.rotateLabToCms() * (mcB->get4Vector() - MCInvisibleP4(mcB));
442 double e_d = p.E();
443 double m_d = p.M();
444 double p_d = p.P();
445
446 double theta_BY = (2 * e_Beam * e_d - m_B * m_B - m_d * m_d)
447 / (2 * p_B * p_d);
448 return theta_BY;
449 }
450
451 double mcParticleSecondaryPhysicsProcess(const Particle* p)
452 {
453 const MCParticle* mcp = p->getMCParticle();
454 if (!mcp) return Const::doubleNaN;
455 return mcp->getSecondaryPhysicsProcess();
456 }
457
458 double mcParticleStatus(const Particle* p)
459 {
460 const MCParticle* mcp = p->getMCParticle();
461 if (!mcp) return Const::doubleNaN;
462 return mcp->getStatus();
463 }
464
465 double particleMCPrimaryParticle(const Particle* p)
466 {
467 const MCParticle* mcp = p->getMCParticle();
468 if (!mcp) return Const::doubleNaN;
469
470 unsigned int bitmask = MCParticle::c_PrimaryParticle;
471 return mcp->hasStatus(bitmask);
472 }
473
474 double particleMCVirtualParticle(const Particle* p)
475 {
476 const MCParticle* mcp = p->getMCParticle();
477 if (!mcp) return Const::doubleNaN;
478
479 unsigned int bitmask = MCParticle::c_IsVirtual;
480 return mcp->hasStatus(bitmask);
481 }
482
483 double particleMCInitialParticle(const Particle* p)
484 {
485 const MCParticle* mcp = p->getMCParticle();
486 if (!mcp) return Const::doubleNaN;
487
488 unsigned int bitmask = MCParticle::c_Initial;
489 return mcp->hasStatus(bitmask);
490 }
491
492 double particleMCISRParticle(const Particle* p)
493 {
494 const MCParticle* mcp = p->getMCParticle();
495 if (!mcp) return Const::doubleNaN;
496
497 unsigned int bitmask = MCParticle::c_IsISRPhoton;
498 return mcp->hasStatus(bitmask);
499 }
500
501 double particleMCFSRParticle(const Particle* p)
502 {
503 const MCParticle* mcp = p->getMCParticle();
504 if (!mcp) return Const::doubleNaN;
505
506 unsigned int bitmask = MCParticle::c_IsFSRPhoton;
507 return mcp->hasStatus(bitmask);
508 }
509
510 double particleMCPhotosParticle(const Particle* p)
511 {
512 const MCParticle* mcp = p->getMCParticle();
513 if (!mcp) return Const::doubleNaN;
514
515 unsigned int bitmask = MCParticle::c_IsPHOTOSPhoton;
516 return mcp->hasStatus(bitmask);
517 }
518
519 double generatorEventWeight(const Particle*)
520 {
521 StoreObjPtr<EventMetaData> evtMetaData;
522 if (!evtMetaData) return Const::doubleNaN;
523 return evtMetaData->getGeneratedWeight();
524 }
525
526 int tauPlusMcMode(const Particle*)
527 {
528 StoreObjPtr<TauPairDecay> tauDecay;
529 if (!tauDecay) {
530 B2WARNING("Cannot find tau decay ID, did you forget to run TauDecayMarkerModule?");
531 return 0;
532 }
533 return tauDecay->getTauPlusIdMode();
534 }
535
536 int tauMinusMcMode(const Particle*)
537 {
538 StoreObjPtr<TauPairDecay> tauDecay;
539 if (!tauDecay) {
540 B2WARNING("Cannot find tau decay ID, did you forget to run TauDecayMarkerModule?");
541 return 0;
542 }
543 return tauDecay->getTauMinusIdMode();
544 }
545
546 int tauPlusMcProng(const Particle*)
547 {
548 StoreObjPtr<TauPairDecay> tauDecay;
549 if (!tauDecay) {
550 B2WARNING("Cannot find tau prong, did you forget to run TauDecayMarkerModule?");
551 return 0;
552 }
553 return tauDecay->getTauPlusMcProng();
554 }
555
556 int tauMinusMcProng(const Particle*)
557 {
558 StoreObjPtr<TauPairDecay> tauDecay;
559 if (!tauDecay) {
560 B2WARNING("Cannot find tau prong, did you forget to run TauDecayMarkerModule?");
561 return 0;
562 }
563 return tauDecay->getTauMinusMcProng();
564 }
565
566 double isReconstructible(const Particle* p)
567 {
568 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
569 return Const::doubleNaN;
570 const MCParticle* mcp = p->getMCParticle();
571 if (!mcp) return Const::doubleNaN;
572
573 // If charged: make sure it was seen in the SVD.
574 // If neutral: make sure it was seen in the ECL.
575 return (abs(mcp->getCharge()) > 0) ? seenInSVD(p) : seenInECL(p);
576 }
577
578 double isTrackFound(const Particle* p)
579 {
580 if (p->getParticleSource() != Particle::EParticleSourceObject::c_MCParticle)
581 return Const::doubleNaN;
582 const MCParticle* tmp_mcP = p->getMCParticle();
583 if (!Const::chargedStableSet.contains(Const::ParticleType(abs(tmp_mcP->getPDG()))))
584 return Const::doubleNaN;
585 Track* tmp_track = tmp_mcP->getRelated<Track>();
586 if (tmp_track) {
587 const TrackFitResult* tmp_tfr = tmp_track->getTrackFitResultWithClosestMass(Const::ChargedStable(abs(tmp_mcP->getPDG())));
588 if (tmp_tfr->getChargeSign()*tmp_mcP->getCharge() > 0)
589 return 1;
590 else
591 return -1;
592 }
593 return 0;
594 }
595
596 double seenInPXD(const Particle* p)
597 {
598 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
599 return Const::doubleNaN;
600 const MCParticle* mcp = p->getMCParticle();
601 if (!mcp) return Const::doubleNaN;
602 return mcp->hasSeenInDetector(Const::PXD);
603 }
604
605 double seenInSVD(const Particle* p)
606 {
607 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
608 return Const::doubleNaN;
609 const MCParticle* mcp = p->getMCParticle();
610 if (!mcp) return Const::doubleNaN;
611 return mcp->hasSeenInDetector(Const::SVD);
612 }
613
614 double seenInCDC(const Particle* p)
615 {
616 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
617 return Const::doubleNaN;
618 const MCParticle* mcp = p->getMCParticle();
619 if (!mcp) return Const::doubleNaN;
620 return mcp->hasSeenInDetector(Const::CDC);
621 }
622
623 double seenInTOP(const Particle* p)
624 {
625 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
626 return Const::doubleNaN;
627 const MCParticle* mcp = p->getMCParticle();
628 if (!mcp) return Const::doubleNaN;
629 return mcp->hasSeenInDetector(Const::TOP);
630 }
631
632 double seenInECL(const Particle* p)
633 {
634 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
635 return Const::doubleNaN;
636 const MCParticle* mcp = p->getMCParticle();
637 if (!mcp) return Const::doubleNaN;
638 return mcp->hasSeenInDetector(Const::ECL);
639 }
640
641 double seenInARICH(const Particle* p)
642 {
643 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
644 return Const::doubleNaN;
645 const MCParticle* mcp = p->getMCParticle();
646 if (!mcp) return Const::doubleNaN;
647 return mcp->hasSeenInDetector(Const::ARICH);
648 }
649
650 double seenInKLM(const Particle* p)
651 {
652 if (p->getParticleSource() == Particle::EParticleSourceObject::c_Composite)
653 return Const::doubleNaN;
654 const MCParticle* mcp = p->getMCParticle();
655 if (!mcp) return Const::doubleNaN;
656 return mcp->hasSeenInDetector(Const::KLM);
657 }
658
659 int genNStepsToDaughter(const Particle* p, const std::vector<double>& arguments)
660 {
661 if (arguments.size() != 1)
662 B2FATAL("Wrong number of arguments for genNStepsToDaughter");
663
664 const MCParticle* mcp = p->getMCParticle();
665 if (!mcp) {
666 B2WARNING("No MCParticle is associated to the particle");
667 return 0;
668 }
669
670 int nChildren = p->getNDaughters();
671 if (arguments[0] >= nChildren) {
672 return 0;
673 }
674
675 const Particle* daugP = p->getDaughter(arguments[0]);
676 const MCParticle* daugMCP = daugP->getMCParticle();
677 if (!daugMCP) {
678 // This is a strange case.
679 // The particle, p, has the related MC particle, but i-th daughter does not have the related MC Particle.
680 B2WARNING("No MCParticle is associated to the i-th daughter");
681 return 0;
682 }
683
684 if (nChildren == 1) return 1;
685
686 std::vector<int> genMothers;
687 MCMatching::fillGenMothers(daugMCP, genMothers);
688 auto match = std::find(genMothers.begin(), genMothers.end(), mcp->getIndex());
689 return match - genMothers.begin();
690 }
691
692 int genNMissingDaughter(const Particle* p, const std::vector<double>& arguments)
693 {
694 if (arguments.size() < 1)
695 B2FATAL("Wrong number of arguments for genNMissingDaughter");
696
697 const std::vector<int> PDGcodes(arguments.begin(), arguments.end());
698
699 const MCParticle* mcp = p->getMCParticle();
700 if (!mcp) {
701 B2WARNING("No MCParticle is associated to the particle");
702 return 0;
703 }
704
705 return MCMatching::countMissingParticle(p, mcp, PDGcodes);
706 }
707
708 double getHEREnergy(const Particle*)
709 {
710 static DBObjPtr<BeamParameters> beamParamsDB;
711 return (beamParamsDB->getHER()).E();
712 }
713
714 double getLEREnergy(const Particle*)
715 {
716 static DBObjPtr<BeamParameters> beamParamsDB;
717 return (beamParamsDB->getLER()).E();
718 }
719
720 double getCrossingAngleX(const Particle*)
721 {
722 // get the beam momenta from the DB
723 static DBObjPtr<BeamParameters> beamParamsDB;
724 B2Vector3D herVec = beamParamsDB->getHER().Vect();
725 B2Vector3D lerVec = beamParamsDB->getLER().Vect();
726
727 // only looking at the horizontal (XZ plane) -> set y-coordinates to zero
728 herVec.SetY(0);
729 lerVec.SetY(0);
730
731 //calculate the crossing angle
732 return herVec.Angle(-lerVec);
733 }
734
735 double getCrossingAngleY(const Particle*)
736 {
737 // get the beam momenta from the DB
738 static DBObjPtr<BeamParameters> beamParamsDB;
739 B2Vector3D herVec = beamParamsDB->getHER().Vect();
740 B2Vector3D lerVec = beamParamsDB->getLER().Vect();
741
742 // only looking at the vertical (YZ plane) -> set x-coordinates to zero
743 herVec.SetX(0);
744 lerVec.SetX(0);
745
746 //calculate the crossing angle
747 return herVec.Angle(-lerVec);
748 }
749
750
751 double particleClusterMatchWeight(const Particle* particle)
752 {
753 /* Get the weight of the *cluster* mc match for the mcparticle matched to
754 * this particle.
755 *
756 * Note that for track-based particles this is different from the mc match
757 * of the particle (which it inherits from the mc match of the track)
758 */
759 const MCParticle* matchedToParticle = particle->getMCParticle();
760 if (!matchedToParticle) return Const::doubleNaN;
761 int matchedToIndex = matchedToParticle->getArrayIndex();
762
763 const ECLCluster* cluster = particle->getECLCluster();
764 if (!cluster) return Const::doubleNaN;
765
766 const auto mcps = cluster->getRelationsTo<MCParticle>();
767 for (unsigned int i = 0; i < mcps.size(); ++i)
768 if (mcps[i]->getArrayIndex() == matchedToIndex)
769 return mcps.weight(i);
770
771 return Const::doubleNaN;
772 }
773
774 double particleClusterBestMCMatchWeight(const Particle* particle)
775 {
776 /* Get the weight of the best mc match of the cluster associated to
777 * this particle.
778 *
779 * Note for electrons (or any track-based particle) this may not be
780 * the same thing as the mc match of the particle (which is taken
781 * from the track).
782 *
783 * For photons (or any ECL-based particle) this will be the same as the
784 * mcMatchWeight
785 */
786 const ECLCluster* cluster = particle->getECLCluster();
787 if (!cluster) return Const::doubleNaN;
788
789 /* loop over all mcparticles related to this cluster, find the largest
790 * weight by std::sort-ing the doubles
791 */
792 auto mcps = cluster->getRelationsTo<MCParticle>();
793 if (mcps.size() == 0) return Const::doubleNaN;
794
795 std::vector<double> weights;
796 for (unsigned int i = 0; i < mcps.size(); ++i)
797 weights.emplace_back(mcps.weight(i));
798
799 // sort descending by weight
800 std::sort(weights.begin(), weights.end());
801 std::reverse(weights.begin(), weights.end());
802 return weights[0];
803 }
804
805 double particleClusterBestMCPDGCode(const Particle* particle)
806 {
807 /* Get the PDG code of the best mc match of the cluster associated to this
808 * particle.
809 *
810 * Note for electrons (or any track-based particle) this may not be the
811 * same thing as the mc match of the particle (which is taken from the track).
812 *
813 * For photons (or any ECL-based particle) this will be the same as the mcPDG
814 */
815 const ECLCluster* cluster = particle->getECLCluster();
816 if (!cluster) return Const::doubleNaN;
817
818 auto mcps = cluster->getRelationsTo<MCParticle>();
819 if (mcps.size() == 0) return Const::doubleNaN;
820
821 std::vector<std::pair<double, int>> weightsAndIndices;
822 for (unsigned int i = 0; i < mcps.size(); ++i)
823 weightsAndIndices.emplace_back(mcps.weight(i), i);
824
825 // sort descending by weight
826 std::sort(weightsAndIndices.begin(), weightsAndIndices.end(),
827 ValueIndexPairSorting::higherPair<decltype(weightsAndIndices)::value_type>);
828 // cppcheck-suppress containerOutOfBounds
829 return mcps.object(weightsAndIndices[0].second)->getPDG();
830 }
831
832 double particleClusterTotalMCMatchWeight(const Particle* particle)
833 {
834 const ECLCluster* cluster = particle->getECLCluster();
835 if (!cluster) return Const::doubleNaN;
836
837 auto mcps = cluster->getRelationsTo<MCParticle>();
838
839 // if there are no relations to any MCParticles, we return 0!
840 double weightsum = 0;
841 for (unsigned int i = 0; i < mcps.size(); ++i)
842 weightsum += mcps.weight(i);
843
844 return weightsum;
845 }
846
847 // Helper function for particleClusterTotalMCMatchWeightForKlong
848 void getKlongWeightMap(const Particle* particle, std::map<int, double>& mapMCParticleIndxAndWeight)
849 {
850 const ECLCluster* cluster = particle->getECLCluster();
851 auto mcps = cluster->getRelationsTo<MCParticle>();
852
853 for (unsigned int i = 0; i < mcps.size(); ++i) {
854 double weight = mcps.weight(i);
855 const MCParticle* mcp = mcps[i];
856
857 while (mcp) {
858 if (mcp->getPDG() == 130) {
859 int index = mcp->getArrayIndex();
860 if (mapMCParticleIndxAndWeight.find(index) != mapMCParticleIndxAndWeight.end()) {
861 mapMCParticleIndxAndWeight.at(index) = mapMCParticleIndxAndWeight.at(index) + weight;
862 } else {
863 mapMCParticleIndxAndWeight.insert({index, weight});
864 }
865 break;
866 } else {
867 mcp = mcp->getMother();
868 }
869 }
870 }
871 }
872
873 double particleClusterTotalMCMatchWeightForKlong(const Particle* particle)
874 {
875 const ECLCluster* cluster = particle->getECLCluster();
876 if (!cluster) return Const::doubleNaN;
877
878 auto mcps = cluster->getRelationsTo<MCParticle>();
879 if (mcps.size() == 0) return Const::doubleNaN;
880
881 std::map<int, double> mapMCParticleIndxAndWeight;
882 getKlongWeightMap(particle, mapMCParticleIndxAndWeight);
883
884 double totalWeight = 0;
885 for (const auto& map : mapMCParticleIndxAndWeight) {
886 totalWeight += map.second;
887 }
888
889 return totalWeight;
890 }
891
892 double particleClusterTotalMCMatchWeightForBestKlong(const Particle* particle)
893 {
894 const ECLCluster* cluster = particle->getECLCluster();
895 if (!cluster) return Const::doubleNaN;
896
897 auto mcps = cluster->getRelationsTo<MCParticle>();
898 if (mcps.size() == 0) return Const::doubleNaN;
899
900 std::map<int, double> mapMCParticleIndxAndWeight;
901 getKlongWeightMap(particle, mapMCParticleIndxAndWeight);
902
903 if (mapMCParticleIndxAndWeight.size() == 0)
904 return 0.0;
905
906 auto maxMap = std::max_element(mapMCParticleIndxAndWeight.begin(), mapMCParticleIndxAndWeight.end(),
907 [](const auto & x, const auto & y) { return x.second < y.second; }
908 );
909
910 return maxMap->second;
911 }
912
913 double isBBCrossfeed(const Particle* particle)
914 {
915 if (particle == nullptr)
916 return Const::doubleNaN;
917
918 int pdg = particle->getPDGCode();
919 if (abs(pdg) != 511 && abs(pdg) != 521 && abs(pdg) != 531)
920 return Const::doubleNaN;
921
922 std::vector<const Particle*> daughters = particle->getFinalStateDaughters();
923 int nDaughters = daughters.size();
924 if (nDaughters <= 1)
925 return 0;
926 std::vector<int> mother_ids;
927
928 for (int j = 0; j < nDaughters; ++j) {
929 const MCParticle* curMCParticle = daughters[j]->getMCParticle();
930 while (curMCParticle != nullptr) {
931 pdg = curMCParticle->getPDG();
932 if (abs(pdg) == 511 || abs(pdg) == 521 || abs(pdg) == 531) {
933 mother_ids.emplace_back(curMCParticle->getArrayIndex());
934 break;
935 }
936 const MCParticle* curMCMother = curMCParticle->getMother();
937 curMCParticle = curMCMother;
938 }
939 if (curMCParticle == nullptr) {
940 return Const::doubleNaN;
941 }
942 }
943
944 std::set<int> distinctIDs = std::set(mother_ids.begin(), mother_ids.end());
945 if (distinctIDs.size() == 1)
946 return 0;
947 else
948 return 1;
949 }
950
951 int ancestorBIndex(const Particle* particle)
952 {
953 const MCParticle* mcpart = particle->getMCParticle();
954
955 while (mcpart) {
956 int pdg = std::abs(mcpart->getPDG());
957
958 if ((pdg == 521) || (pdg == 511))
959 return mcpart->getArrayIndex();
960
961 mcpart = mcpart->getMother();
962 }
963
964 return -1;
965 }
966
967 VARIABLE_GROUP("MC matching and MC truth");
968 REGISTER_VARIABLE("isSignal", isSignal,
969 "1.0 if Particle is correctly reconstructed (SIGNAL), 0.0 if not, and NaN if no related MCParticle could be found. \n"
970 "It behaves according to DecayStringGrammar.");
971 REGISTER_VARIABLE("isSignalAcceptWrongFSPs", isSignalAcceptWrongFSPs,
972 "1.0 if Particle is almost correctly reconstructed (SIGNAL), 0.0 if not, and NaN if no related MCParticle could be found.\n"
973 "Misidentification of charged FSP is allowed.");
974 REGISTER_VARIABLE("isPrimarySignal", isPrimarySignal,
975 "1.0 if Particle is correctly reconstructed (SIGNAL) and primary, 0.0 if not, and NaN if no related MCParticle could be found");
976 REGISTER_VARIABLE("isSignalAcceptBremsPhotons", isSignalAcceptBremsPhotons,
977 "1.0 if Particle is correctly reconstructed (SIGNAL), 0.0 if not, and NaN if no related MCParticle could be found.\n"
978 "Particles with gamma daughters attached through the bremsstrahlung recovery modules are allowed.");
979 REGISTER_VARIABLE("genMotherPDG", genMotherPDG,
980 "Check the PDG code of a particles MC mother particle");
981 REGISTER_VARIABLE("genMotherPDG(i)", genNthMotherPDG,
982 "Check the PDG code of a particles n-th MC mother particle by providing an argument. 0 is first mother, 1 is grandmother etc. :noindex:");
983
984 REGISTER_VARIABLE("genQ2PmPd(i,j,...)", genQ2PmPd, R"DOC(
985 Returns the generated four momentum transfer squared :math:`q^2` calculated as :math:`q^2 = (p_m - p_{d_i} - p_{d_j} - ...)^2`.
986
987 Here :math:`p_m` is the four momentum of the given (mother) particle,
988 and :math:`p_{d_{i,j,...}}` are the daughter particles with indices given as arguments .
989 The ordering of daughters is as defined in the DECAY.DEC file used in the generation, with the numbering starting at :math:`N=0`.
990
991 Returns NaN if no related MCParticle could be found.
992 Returns NaN if any of the given indices is larger than the number of daughters of the given particle.
993
994 )DOC", ":math:`[\\text{GeV}/\\text{c}]^2`");
995
996 REGISTER_VARIABLE("genMotherID", genMotherIndex,
997 "Check the array index of a particles generated mother");
998 REGISTER_VARIABLE("genMotherID(i)", genNthMotherIndex,
999 "Check the array index of a particle n-th MC mother particle by providing an argument. 0 is first mother, 1 is grandmother etc. :noindex:");
1000 // genMotherPDG and genMotherID are overloaded (each are two C++ functions
1001 // sharing one variable name) so one of the two needs to be made the indexed
1002 // variable in sphinx
1003 REGISTER_VARIABLE("isBBCrossfeed", isBBCrossfeed,
1004 "Returns 1 for crossfeed in reconstruction of given B meson, 0 for no crossfeed and NaN for no true B meson or failed truthmatching.");
1005 REGISTER_VARIABLE("ancestorBIndex", ancestorBIndex,
1006 "Returns array index of B ancestor, or -1 if no B or no MC-matching is found.");
1007 REGISTER_VARIABLE("genMotherP", genMotherP,
1008 "Generated momentum of a particles MC mother particle\n\n", "GeV/c");
1009 REGISTER_VARIABLE("genParticleID", genParticleIndex,
1010 "Check the array index of a particle's related MCParticle");
1011 REGISTER_VARIABLE("isSignalAcceptMissingNeutrino",
1012 isSignalAcceptMissingNeutrino,
1013 "Same as isSignal, but also accept missing neutrino");
1014 REGISTER_VARIABLE("isSignalAcceptMissingMassive",
1015 isSignalAcceptMissingMassive,
1016 "Same as isSignal, but also accept missing massive particle");
1017 REGISTER_VARIABLE("isSignalAcceptMissingGamma",
1018 isSignalAcceptMissingGamma,
1019 "Same as isSignal, but also accept missing gamma, such as B -> K* gamma, pi0 -> gamma gamma");
1020 REGISTER_VARIABLE("isSignalAcceptMissing",
1021 isSignalAcceptMissing,
1022 "Same as isSignal, but also accept missing particle");
1023 REGISTER_VARIABLE("isMisidentified", isMisidentified,
1024 "Return 1 if the particle is misidentified: at least one of the final state particles has the wrong PDG code assignment (including wrong charge), 0 if PDG code is fine, and NaN if no related MCParticle could be found.");
1025 REGISTER_VARIABLE("isWrongCharge", isWrongCharge,
1026 "Return 1 if the charge of the particle is wrongly assigned, 0 if it's the correct charge, and NaN if no related MCParticle could be found.");
1027 REGISTER_VARIABLE("isCloneTrack", isCloneTrack,
1028 "Return 1 if the charged final state particle comes from a cloned track, 0 if not a clone. Returns NAN if neutral, composite, or MCParticle not found (like for data or if not MCMatched)");
1029 REGISTER_VARIABLE("isOrHasCloneTrack", isOrHasCloneTrack,
1030 "Return 1 if the particle is a clone track or has a clone track as a daughter, 0 otherwise.");
1031 REGISTER_VARIABLE("mcPDG", particleMCMatchPDGCode,
1032 "The PDG code of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).");
1033 REGISTER_VARIABLE("mcErrors", particleMCErrors,
1034 "The bit pattern indicating the quality of MC match (see MCMatching::MCErrorFlags)");
1035 REGISTER_VARIABLE("mcMatchWeight", particleMCMatchWeight,
1036 "The weight of the Particle -> MCParticle relation (only for the first Relation = largest weight).");
1037 REGISTER_VARIABLE("nMCMatches", particleNumberOfMCMatch,
1038 "The number of relations of this Particle to MCParticle.");
1039 REGISTER_VARIABLE("mcDecayTime", particleMCMatchDecayTime,
1040 "The decay time of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1041 "ns");
1042 REGISTER_VARIABLE("mcLifeTime", particleMCMatchLifeTime,
1043 "The life time of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1044 "ns");
1045 REGISTER_VARIABLE("mcPX", particleMCMatchPX,
1046 "The px of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1047 "GeV/c");
1048 REGISTER_VARIABLE("mcPY", particleMCMatchPY,
1049 "The py of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1050 "GeV/c");
1051 REGISTER_VARIABLE("mcPZ", particleMCMatchPZ,
1052 "The pz of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1053 "GeV/c");
1054 REGISTER_VARIABLE("mcPT", particleMCMatchPT,
1055 "The pt of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1056 "GeV/c");
1057 REGISTER_VARIABLE("mcE", particleMCMatchE,
1058 "The energy of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1059 "GeV");
1060 REGISTER_VARIABLE("mcP", particleMCMatchP,
1061 "The total momentum of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1062 "GeV/c");
1063 REGISTER_VARIABLE("mcPhi", particleMCMatchPhi,
1064 "The phi of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1065 "rad");
1066 REGISTER_VARIABLE("mcTheta", particleMCMatchTheta,
1067 "The theta of matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).\n\n",
1068 "rad");
1069 REGISTER_VARIABLE("nMCDaughters", mcParticleNDaughters,
1070 "The number of daughters of the matched MCParticle, NaN if no match. Requires running matchMCTruth() on the reconstructed particles, or a particle list filled with generator particles (MCParticle objects).");
1071 REGISTER_VARIABLE("mcRecoilMass", particleMCRecoilMass,
1072 "The mass recoiling against the particles attached as particle's daughters calculated using MC truth values.\n\n",
1073 "GeV/:math:`\\text{c}^2`");
1074 REGISTER_VARIABLE("mcCosThetaBetweenParticleAndNominalB",
1075 particleMCCosThetaBetweenParticleAndNominalB,
1076 "Cosine of the angle in CMS between momentum the particle and a nominal B particle. In this calculation, the momenta of all descendant neutrinos are subtracted from the B momentum.");
1077
1078
1079 REGISTER_VARIABLE("mcSecPhysProc", mcParticleSecondaryPhysicsProcess,
1080 R"DOC(
1081Returns the secondary physics process flag, which is set by Geant4 on secondary particles. It indicates the type of process that produced the particle.
1082
1083Returns NaN if the particle is not matched to a MCParticle.
1084
1085Returns -1 in case of unknown process.
1086
1087Returns 0 if the particle is primary, i.e. produced by the event generator and not Geant4. Particles produced by Geant4 (i.e. secondary particles) include those produced in interaction with detector material, Bremsstrahlung, and the decay products of long-lived particles (e.g. muons, pions, K_S0, K_L0, Lambdas, ...).
1088
1089List of possible values (taken from the Geant4 source of
1090`G4DecayProcessType <https://github.com/Geant4/geant4/blob/v10.6.3/source/processes/decay/include/G4DecayProcessType.hh>`_,
1091`G4HadronicProcessType <https://github.com/Geant4/geant4/blob/v10.6.3/source/processes/hadronic/management/include/G4HadronicProcessType.hh>`_,
1092`G4TransportationProcessType <https://github.com/Geant4/geant4/blob/v10.6.3/source/processes/transportation/include/G4TransportationProcessType.hh>`_ and
1093`G4EmProcessSubType <https://github.com/Geant4/geant4/blob/v10.6.3/source/processes/electromagnetic/utils/include/G4EmProcessSubType.hh>`_)
1094
1095* 1 Coulomb scattering
1096* 2 Ionisation
1097* 3 Bremsstrahlung
1098* 4 Pair production by charged
1099* 5 Annihilation
1100* 6 Annihilation to mu mu
1101* 7 Annihilation to hadrons
1102* 8 Nuclear stopping
1103* 9 Electron general process
1104* 10 Multiple scattering
1105* 11 Rayleigh
1106* 12 Photo-electric effect
1107* 13 Compton scattering
1108* 14 Gamma conversion
1109* 15 Gamma conversion to mu mu
1110* 16 Gamma general process
1111* 21 Cerenkov
1112* 22 Scintillation
1113* 23 Synchrotron radiation
1114* 24 Transition radiation
1115* 91 Transportation
1116* 92 Coupled transportation
1117* 111 Hadron elastic
1118* 121 Hadron inelastic
1119* 131 Capture
1120* 132 Mu atomic capture
1121* 141 Fission
1122* 151 Hadron at rest
1123* 152 Lepton at rest
1124* 161 Charge exchange
1125* 201 Decay
1126* 202 Decay with spin
1127* 203 Decay (pion make spin)
1128* 210 Radioactive decay
1129* 211 Unknown decay
1130* 221 Mu atom decay
1131* 231 External decay
1132
1133.. note:: This is what `modularAnalysis.printMCParticles` shows as ``creation process`` when ``showStatus`` is set to ``True``.
1134)DOC");
1135 REGISTER_VARIABLE("mcParticleStatus", mcParticleStatus,
1136 "Returns status bits of related MCParticle or NaN if MCParticle relation is not set.");
1137 REGISTER_VARIABLE("mcPrimary", particleMCPrimaryParticle,
1138 "Returns 1 if Particle is related to primary MCParticle, 0 if Particle is related to non - primary MCParticle, "
1139 "NaN if Particle is not related to MCParticle.");
1140 REGISTER_VARIABLE("mcVirtual", particleMCVirtualParticle,
1141 "Returns 1 if Particle is related to virtual MCParticle, 0 if Particle is related to non - virtual MCParticle, "
1142 "NaN if Particle is not related to MCParticle.")
1143 REGISTER_VARIABLE("mcInitial", particleMCInitialParticle,
1144 "Returns 1 if Particle is related to initial MCParticle, 0 if Particle is related to non - initial MCParticle, "
1145 "NaN if Particle is not related to MCParticle.")
1146 REGISTER_VARIABLE("mcISR", particleMCISRParticle,
1147 "Returns 1 if Particle is related to ISR MCParticle, 0 if Particle is related to non - ISR MCParticle, "
1148 "NaN if Particle is not related to MCParticle.")
1149 REGISTER_VARIABLE("mcFSR", particleMCFSRParticle,
1150 "Returns 1 if Particle is related to FSR MCParticle, 0 if Particle is related to non - FSR MCParticle ,"
1151 "NaN if Particle is not related to MCParticle.")
1152 REGISTER_VARIABLE("mcPhotos", particleMCPhotosParticle,
1153 "Returns 1 if Particle is related to Photos MCParticle, 0 if Particle is related to non - Photos MCParticle, "
1154 "NaN if Particle is not related to MCParticle.")
1155 REGISTER_VARIABLE("generatorEventWeight", generatorEventWeight,
1156 "[Eventbased] Returns the event weight produced by the event generator")
1157
1158 REGISTER_VARIABLE("genNStepsToDaughter(i)", genNStepsToDaughter,
1159 "Returns number of steps to i-th daughter from the particle at generator level. "
1160 "NaN if no MCParticle is associated to the particle or i-th daughter. "
1161 "NaN if i-th daughter does not exist.");
1162 REGISTER_VARIABLE("genNMissingDaughter(PDG)", genNMissingDaughter,
1163 "Returns the number of missing daughters having assigned PDG codes. "
1164 "NaN if no MCParticle is associated to the particle.");
1165 REGISTER_VARIABLE("Eher", getHEREnergy, R"DOC(
1166[Eventbased] The nominal HER energy used by the generator.
1167
1168.. warning:: This variable does not make sense for data.
1169
1170)DOC","GeV");
1171 REGISTER_VARIABLE("Eler", getLEREnergy, R"DOC(
1172[Eventbased] The nominal LER energy used by the generator.
1173
1174.. warning:: This variable does not make sense for data.
1175
1176)DOC","GeV");
1177 REGISTER_VARIABLE("XAngle", getCrossingAngleX, R"DOC(
1178[Eventbased] The nominal beam crossing angle in the x-z plane from generator level beam kinematics.
1179
1180.. warning:: This variable does not make sense for data.
1181
1182)DOC","rad");
1183 REGISTER_VARIABLE("YAngle", getCrossingAngleY, R"DOC(
1184[Eventbased] The nominal beam crossing angle in the y-z plane from generator level beam kinematics.
1185
1186.. warning:: This variable does not make sense for data.
1187
1188)DOC","rad");
1189
1190 VARIABLE_GROUP("Generated tau decay information");
1191 REGISTER_VARIABLE("tauPlusMCMode", tauPlusMcMode,
1192 "[Eventbased] Decay ID for the positive tau lepton in a tau pair generated event.");
1193 REGISTER_VARIABLE("tauMinusMCMode", tauMinusMcMode,
1194 "[Eventbased] Decay ID for the negative tau lepton in a tau pair generated event.");
1195 REGISTER_VARIABLE("tauPlusMCProng", tauPlusMcProng,
1196 "[Eventbased] Prong for the positive tau lepton in a tau pair generated event.");
1197 REGISTER_VARIABLE("tauMinusMCProng", tauMinusMcProng,
1198 "[Eventbased] Prong for the negative tau lepton in a tau pair generated event.");
1199
1200 VARIABLE_GROUP("MC particle seen in subdetectors");
1201 REGISTER_VARIABLE("isReconstructible", isReconstructible,
1202 "Checks charged particles were seen in the SVD and neutrals in the ECL, returns 1.0 if so, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1203 REGISTER_VARIABLE("seenInPXD", seenInPXD,
1204 "Returns 1.0 if the MC particle was seen in the PXD, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1205 REGISTER_VARIABLE("isTrackFound", isTrackFound,
1206 "works on charged stable particle list created from MCParticles, returns NaN if not ; returns 1.0 if there is a reconstructed track related to the charged stable MCParticle with the correct charge, return -1.0 if the reconstructed track has the wrong charge, return 0.0 when no reconstructed track is found.");
1207 REGISTER_VARIABLE("seenInSVD", seenInSVD,
1208 "Returns 1.0 if the MC particle was seen in the SVD, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1209 REGISTER_VARIABLE("seenInCDC", seenInCDC,
1210 "Returns 1.0 if the MC particle was seen in the CDC, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1211 REGISTER_VARIABLE("seenInTOP", seenInTOP,
1212 "Returns 1.0 if the MC particle was seen in the TOP, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1213 REGISTER_VARIABLE("seenInECL", seenInECL,
1214 "Returns 1.0 if the MC particle was seen in the ECL, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1215 REGISTER_VARIABLE("seenInARICH", seenInARICH,
1216 "Returns 1.0 if the MC particle was seen in the ARICH, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1217 REGISTER_VARIABLE("seenInKLM", seenInKLM,
1218 "Returns 1.0 if the MC particle was seen in the KLM, 0.0 if not, NaN for composite particles or if no related MCParticle could be found. Useful for generator studies, not for reconstructed particles.");
1219
1220 VARIABLE_GROUP("MC Matching for ECLClusters");
1221 REGISTER_VARIABLE("clusterMCMatchWeight", particleClusterMatchWeight,
1222 "Returns the weight of the ECLCluster -> MCParticle relation for the MCParticle matched to the particle. "
1223 "Returns NaN if: no cluster is related to the particle, the particle is not MC matched, or if there are no mcmatches for the cluster. "
1224 "Returns -1 if the cluster *was* matched to particles, but not the match of the particle provided.");
1225 REGISTER_VARIABLE("clusterBestMCMatchWeight", particleClusterBestMCMatchWeight,
1226 "Returns the weight of the ECLCluster -> MCParticle relation for the relation with the largest weight.");
1227 REGISTER_VARIABLE("clusterBestMCPDG", particleClusterBestMCPDGCode,
1228 "Returns the PDG code of the MCParticle for the ECLCluster -> MCParticle relation with the largest weight.");
1229 REGISTER_VARIABLE("clusterTotalMCMatchWeight", particleClusterTotalMCMatchWeight,
1230 "Returns the sum of all weights of the ECLCluster -> MCParticles relations.");
1231
1232 REGISTER_VARIABLE("clusterTotalMCMatchWeightForKlong", particleClusterTotalMCMatchWeightForKlong,
1233 "Returns the sum of all weights of the ECLCluster -> MCParticles relations when MCParticle is a Klong or daughter of a Klong");
1234 REGISTER_VARIABLE("clusterTotalMCMatchWeightForBestKlong", particleClusterTotalMCMatchWeightForBestKlong,
1235 "Returns the sum of all weights of the ECLCluster -> MCParticles relations when MCParticle is the same Klong or daughter of the Klong. If multiple MC Klongs are related to the ECLCluster, returns the sum of weights for the best matched Klong.");
1236
1237
1238 }
1240}
void SetX(DataType x)
set X/1st-coordinate
Definition: B2Vector3.h:457
void SetY(DataType y)
set Y/2nd-coordinate
Definition: B2Vector3.h:459
static const ParticleSet chargedStableSet
set of charged stable particles
Definition: Const.h:618
static const double doubleNaN
quiet_NaN
Definition: Const.h:703
@ c_IsFSRPhoton
bit 7: Particle is from finial state radiation
Definition: MCParticle.h:61
@ c_Initial
bit 5: Particle is initial such as e+ or e- and not going to Geant4
Definition: MCParticle.h:57
@ c_IsPHOTOSPhoton
bit 8: Particle is an radiative photon from PHOTOS
Definition: MCParticle.h:63
@ c_PrimaryParticle
bit 0: Particle is primary particle.
Definition: MCParticle.h:47
@ c_IsVirtual
bit 4: Particle is virtual and not going to Geant4.
Definition: MCParticle.h:55
@ c_IsISRPhoton
bit 6: Particle is from initial state radiation
Definition: MCParticle.h:59
const MCParticle * getMCParticle() const
Returns the pointer to the MCParticle object that was used to create this Particle (ParticleType == c...
Definition: Particle.cc:942
static const ReferenceFrame & GetCurrent()
Get current rest frame.
int getArrayIndex() const
Returns this object's array index (in StoreArray), or -1 if not found.
B2Vector3< double > B2Vector3D
typedef for common usage with double
Definition: B2Vector3.h:516
Abstract base class for different kinds of events.
Definition: ClusterUtils.h:24
static int countMissingParticle(const Belle2::Particle *particle, const Belle2::MCParticle *mcParticle, const std::vector< int > &daughterPDG)
Count the number of missing daughters of the 'particle'.
Definition: MCMatching.cc:561
@ c_Correct
This Particle and all its daughters are perfectly reconstructed.
Definition: MCMatching.h:34
@ c_MisID
One of the charged final state particles is mis-identified, i.e.
Definition: MCMatching.h:42
static int getMCErrors(const Belle2::Particle *particle, const Belle2::MCParticle *mcParticle=nullptr)
Returns quality indicator of the match as a bit pattern where the individual bits indicate the the ty...
Definition: MCMatching.cc:282
static void fillGenMothers(const Belle2::MCParticle *mcP, std::vector< int > &genMCPMothers)
Fills vector with array (1-based) indices of all generator ancestors of given MCParticle.
Definition: MCMatching.cc:61