2 #include <ecl/calibration/eclMuMuEAlgorithm.h>
3 #include <ecl/dbobjects/ECLCrystalCalib.h>
16 double eclNovoConst(
double* x,
double* par)
21 double width = par[2];
22 double sln4 = sqrt(log(4));
23 double y = par[3] * sln4;
24 double tail = -log(y + sqrt(1 + y * y)) / sln4;
26 if (TMath::Abs(tail) < 1.e-7) {
27 qc = 0.5 * TMath::Power(((x[0] - peak) / width), 2);
29 double qa = tail * sqrt(log(4.));
30 double qb = sinh(qa) / qa;
31 double qx = (x[0] - peak) / width * qb;
32 double qy = 1. + tail * qx;
35 qc = 0.5 * (TMath::Power((log(qy) / tail), 2) + tail * tail);
39 return par[0] * exp(-qc) + par[4];
43 eclMuMuEAlgorithm::eclMuMuEAlgorithm():
CalibrationAlgorithm(
"eclMuMuECollector"), cellIDLo(1), cellIDHi(8736), minEntries(150),
44 maxIterations(10), tRatioMin(0.2), tRatioMax(0.25), performFits(true), findExpValues(false), storeConst(0)
47 "Perform energy calibration of ecl crystals by fitting a Novosibirsk function to energy deposited by muons"
55 double limitTol = 0.0005;
56 double minFitLimit = 1e-25;
57 double minFitProbIter = 1e-8;
58 double constRatio = 0.5;
59 double peakMin(0.4), peakMax(2.2);
60 double peakTol = limitTol * (peakMax - peakMin);
61 double effSigMin(0.02), effSigMax(0.2);
62 double effSigTol = limitTol * (effSigMax - effSigMin);
64 double etaMin(-0.7), etaMax(-0.2);
65 double etaTol = limitTol * (etaMax - etaMin);
66 double constMin(0.), constMax(10.);
67 double constTol = limitTol * constMax;
75 dummy = (TH1F*)gROOT->FindObject(
"IntegralVsCrysID");
76 if (dummy) {
delete dummy;}
77 dummy = (TH1F*)gROOT->FindObject(
"AverageExpECrys");
78 if (dummy) {
delete dummy;}
79 dummy = (TH1F*)gROOT->FindObject(
"AverageElecCalib");
80 if (dummy) {
delete dummy;}
81 dummy = (TH1F*)gROOT->FindObject(
"AverageInitCalib");
82 if (dummy) {
delete dummy;}
86 auto EnVsCrysID = getObjectPtr<TH2F>(
"EnVsCrysID");
87 auto ExpEvsCrys = getObjectPtr<TH1F>(
"ExpEvsCrys");
88 auto ElecCalibvsCrys = getObjectPtr<TH1F>(
"ElecCalibvsCrys");
89 auto InitialCalibvsCrys = getObjectPtr<TH1F>(
"InitialCalibvsCrys");
90 auto CalibEntriesvsCrys = getObjectPtr<TH1F>(
"CalibEntriesvsCrys");
91 auto RawDigitAmpvsCrys = getObjectPtr<TH2F>(
"RawDigitAmpvsCrys");
92 auto RawDigitTimevsCrys = getObjectPtr<TH2F>(
"RawDigitTimevsCrys");
97 TH1F* IntegralVsCrysID =
new TH1F(
"IntegralVsCrysID",
"Integral of EnVsCrysID for each crystal;crystal ID;Entries", 8736, 0, 8736);
98 TH1F* AverageExpECrys =
new TH1F(
"AverageExpECrys",
"Average expected E per crys from collector;Crystal ID;Energy (GeV)", 8736, 0,
100 TH1F* AverageElecCalib =
new TH1F(
"AverageElecCalib",
"Average electronics calib const vs crystal;Crystal ID;Calibration constant",
102 TH1F* AverageInitCalib =
new TH1F(
"AverageInitCalib",
"Average initial calib const vs crystal;Crystal ID;Calibration constant",
105 for (
int crysID = 0; crysID < 8736; crysID++) {
106 TH1D* hEnergy = EnVsCrysID->ProjectionY(
"hEnergy", crysID + 1, crysID + 1);
107 int Integral = hEnergy->Integral();
108 IntegralVsCrysID->SetBinContent(crysID + 1, Integral);
110 double TotEntries = CalibEntriesvsCrys->GetBinContent(crysID + 1);
112 double expectedE = 0.;
113 if (TotEntries > 0.) {expectedE = ExpEvsCrys->GetBinContent(crysID + 1) / TotEntries;}
114 AverageExpECrys->SetBinContent(crysID + 1, expectedE);
116 double calibconst = 0.;
117 if (TotEntries > 0.) {calibconst = ElecCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
118 AverageElecCalib->SetBinContent(crysID + 1, calibconst);
121 if (TotEntries > 0.) {calibconst = InitialCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
122 AverageInitCalib->SetBinContent(crysID + 1, calibconst);
127 TFile* histfile =
new TFile(
"eclMuMuEAlgorithm.root",
"recreate");
129 IntegralVsCrysID->Write();
130 AverageExpECrys->Write();
131 AverageElecCalib->Write();
132 AverageInitCalib->Write();
133 RawDigitAmpvsCrys->Write();
134 RawDigitTimevsCrys->Write();
139 B2RESULT(
"eclMuMuEAlgorithm has not been asked to perform fits; copying input histograms and quitting");
146 bool sufficientData =
true;
148 if (IntegralVsCrysID->GetBinContent(crysID + 1) <
minEntries) {
149 if (
storeConst == 1) {B2RESULT(
"eclMuMuEAlgorithm: crystal " << crysID <<
" has insufficient statistics: " << IntegralVsCrysID->GetBinContent(crysID + 1) <<
". Requirement is " <<
minEntries);}
150 sufficientData =
false;
165 TH1F* CalibVsCrysID =
new TH1F(
"CalibVsCrysID",
"Calibration constant vs crystal ID;crystal ID;counts per GeV", 8736, 0, 8736);
166 TH1F* ExpEnergyperCrys =
new TH1F(
"ExpEnergyperCrys",
"Expected energy per crystal;Crystal ID;Peak energy (GeV)", 8736, 0, 8736);
169 TH1F* PeakVsCrysID =
new TH1F(
"PeakVsCrysID",
"Peak of Novo fit vs crystal ID;crystal ID;Peak normalized energy", 8736, 0,
171 TH1F* effSigVsCrysID =
new TH1F(
"effSigVsCrysID",
"effSigma vs crystal ID;crystal ID;sigma)", 8736, 0, 8736);
172 TH1F* etaVsCrysID =
new TH1F(
"etaVsCrysID",
"eta vs crystal ID;crystal ID;Novo eta parameter", 8736, 0, 8736);
173 TH1F* constVsCrysID =
new TH1F(
"constVsCrysID",
"fit constant vs crystal ID;crystal ID;fit constant", 8736, 0, 8736);
174 TH1F* normVsCrysID =
new TH1F(
"normVsCrysID",
"Novosibirsk normalization vs crystal ID;crystal ID;normalization", 8736, 0, 8736);
175 TH1F* fitLimitVsCrysID =
new TH1F(
"fitLimitVsCrysID",
"fit range upper limit vs crystal ID;crystal ID;upper fit limit", 8736, 0,
177 TH1F* StatusVsCrysID =
new TH1F(
"StatusVsCrysID",
"Fit status vs crystal ID;crystal ID;Fit status", 8736, 0, 8736);
180 TH1F* hStatus =
new TH1F(
"hStatus",
"Fit status", 25, -5, 20);
181 TH1F* hPeak =
new TH1F(
"hPeak",
"Peaks of normalized energy distributions, successful fits;Peak of Novosibirsk fit", 200, 0.8, 1.2);
182 TH1F* fracPeakUnc =
new TH1F(
"fracPeakUnc",
"Fractional uncertainty on peak uncertainty, successful fits;Uncertainty on peak", 100,
184 TH1F* nIterations =
new TH1F(
"nIterations",
"Number of times histogram was fit;Number of iterations", 20, -0.5, 19.5);
189 bool allFitsOK =
true;
193 TString name =
"Enormalized";
195 TH1D* hEnergy = EnVsCrysID->ProjectionY(name, crysID + 1, crysID + 1);
198 double histMin = hEnergy->GetXaxis()->GetXmin();
199 double histMax = hEnergy->GetXaxis()->GetXmax();
200 TF1* func =
new TF1(
"eclNovoConst", eclNovoConst, histMin, histMax, 5);
201 func->SetParNames(
"normalization",
"peak",
"effSigma",
"eta",
"const");
202 func->SetParLimits(1, peakMin, peakMax);
203 func->SetParLimits(2, effSigMin, effSigMax);
204 func->SetParLimits(3, etaMin, etaMax);
205 func->SetParLimits(4, constMin, constMax);
208 hEnergy->GetXaxis()->SetRangeUser(peakMin, peakMax);
209 int maxBin = hEnergy->GetMaximumBin();
210 double peakE = hEnergy->GetBinLowEdge(maxBin);
211 double peakEUnc = 0.;
212 double normalization = hEnergy->GetMaximum();
214 double effSigma = hEnergy->GetRMS();
215 double sigmaUnc = 0.;
216 hEnergy->GetXaxis()->SetRangeUser(histMin, histMax);
219 double fitlow = 0.25;
220 double fithigh = peakE + 2.5 * effSigma;
227 int il0 = hEnergy->GetXaxis()->FindBin(fitlow);
228 int il1 = hEnergy->GetXaxis()->FindBin(fitlow + 0.1);
229 double constant = hEnergy->Integral(il0, il1) / (1 + il1 - il0);
230 if (constant < 0.01 * normalization) {constant = 0.01 * normalization;}
231 double constUnc = 0.;
234 double dIter = 0.1 * (histMax - histMin) / hEnergy->GetNbinsX();
236 double highold(0.), higholdold(0.);
237 bool fixConst =
false;
239 bool fitHist = IntegralVsCrysID->GetBinContent(crysID + 1) >=
minEntries;
246 func->SetParameters(normalization, peakE, effSigma, eta, constant);
247 if (fixConst) { func->FixParameter(4, 0); }
250 if (crysID < 1152 || crysID > 7775 || !
findExpValues) {func->FixParameter(3, etaNom);}
253 hEnergy->Fit(func,
"LIQ",
"", fitlow, fithigh);
256 normalization = func->GetParameter(0);
257 normUnc = func->GetParError(0);
258 peakE = func->GetParameter(1);
259 peakEUnc = func->GetParError(1);
260 effSigma = func->GetParameter(2);
261 sigmaUnc = func->GetParError(2);
262 eta = func->GetParameter(3);
263 etaUnc = func->GetParError(3);
264 constant = func->GetParameter(4);
265 constUnc = func->GetParError(4);
266 fitProb = func->GetProb();
269 double peak = func->Eval(peakE) - constant;
270 double tRatio = (func->Eval(fithigh) - constant) / peak;
271 if (tRatio < tRatioMin || tRatio >
tRatioMax) {
273 higholdold = highold;
275 fithigh = func->GetX(targetY, peakE, histMax);
279 if (abs(fithigh - higholdold) < dIter) {fithigh = 0.5 * (highold + higholdold); }
282 if (nIter >
maxIterations - 3) {fithigh = 0.33333 * (fithigh + highold + higholdold); }
286 if (constant < constTol && !fixConst) {
294 B2DEBUG(200, crysID <<
" " << nIter <<
" " << peakE <<
" " << constant <<
" " << tRatio <<
" " << fithigh);
303 if (normalization < constRatio * constant) {iStatus =
noPeak;}
306 if (fitProb <= minFitLimit || (fitProb < minFitProbIter && iStatus ==
iterations)) {iStatus =
poorFit;}
309 if ((peakE < peakMin + peakTol) || (peakE > peakMax - peakTol)) {iStatus =
atLimit;}
310 if ((effSigma < effSigMin + effSigTol) || (effSigma > effSigMax - effSigTol)) {iStatus =
atLimit;}
311 if ((eta < etaMin + etaTol) || (eta > etaMax - etaTol)) {iStatus =
atLimit;}
312 if (constant > constMax - constTol) {iStatus =
atLimit;}
315 if (nIter == 0) {iStatus =
notFit;}
318 int histbin = crysID + 1;
319 PeakVsCrysID->SetBinContent(histbin, peakE);
320 PeakVsCrysID->SetBinError(histbin, peakEUnc);
321 effSigVsCrysID->SetBinContent(histbin, effSigma);
322 effSigVsCrysID->SetBinError(histbin, sigmaUnc);
323 etaVsCrysID->SetBinContent(histbin, eta);
324 etaVsCrysID->SetBinError(histbin, etaUnc);
325 constVsCrysID->SetBinContent(histbin, constant);
326 constVsCrysID->SetBinError(histbin, constUnc);
327 normVsCrysID->SetBinContent(histbin, normalization);
328 normVsCrysID->SetBinError(histbin, normUnc);
329 fitLimitVsCrysID->SetBinContent(histbin, fithigh);
330 fitLimitVsCrysID->SetBinError(histbin, 0);
331 StatusVsCrysID->SetBinContent(histbin, iStatus);
332 StatusVsCrysID->SetBinError(histbin, 0);
335 hStatus->Fill(iStatus);
336 nIterations->Fill(nIter);
339 fracPeakUnc->Fill(peakEUnc / peakE);
343 B2INFO(
"cellID " << crysID + 1 <<
" status = " << iStatus <<
" fit probability = " << fitProb);
351 for (
int crysID = 0; crysID < 8736; crysID++) {
352 int histbin = crysID + 1;
353 double fitstatus = StatusVsCrysID->GetBinContent(histbin);
354 double peakE = PeakVsCrysID->GetBinContent(histbin);
355 double fracpeakEUnc = PeakVsCrysID->GetBinError(histbin) / peakE;
362 B2RESULT(
"eclMuMuEAlgorithm: cellID " << histbin <<
" is not a successful fit. Status = " << fitstatus);
369 double inputExpE = abs(AverageExpECrys->GetBinContent(histbin));
370 ExpEnergyperCrys->SetBinContent(histbin, inputExpE * peakE);
371 ExpEnergyperCrys->SetBinError(histbin, fracpeakEUnc * inputExpE * peakE);
375 double inputCalib = abs(AverageInitCalib->GetBinContent(histbin));
376 CalibVsCrysID->SetBinContent(histbin, inputCalib / peakE);
377 CalibVsCrysID->SetBinError(histbin, fracpeakEUnc * inputCalib / peakE);
383 bool DBsuccess =
false;
389 std::vector<float> tempE;
390 std::vector<float> tempUnc;
391 for (
int crysID = 0; crysID < 8736; crysID++) {
392 tempE.push_back(ExpEnergyperCrys->GetBinContent(crysID + 1));
393 tempUnc.push_back(ExpEnergyperCrys->GetBinError(crysID + 1));
398 B2RESULT(
"eclCosmicEAlgorithm: successfully stored expected energies ECLExpMuMuE");
403 std::vector<float> tempCalib;
404 std::vector<float> tempCalibUnc;
405 for (
int crysID = 0; crysID < 8736; crysID++) {
406 tempCalib.push_back(CalibVsCrysID->GetBinContent(crysID + 1));
407 tempCalibUnc.push_back(CalibVsCrysID->GetBinError(crysID + 1));
412 B2RESULT(
"eclMuMuEAlgorithm: successfully stored ECLCrystalEnergyMuMu calibration constants");
419 PeakVsCrysID->Write();
420 effSigVsCrysID->Write();
421 etaVsCrysID->Write();
422 constVsCrysID->Write();
423 normVsCrysID->Write();
424 fitLimitVsCrysID->Write();
425 StatusVsCrysID->Write();
427 fracPeakUnc->Write();
428 nIterations->Write();
433 ExpEnergyperCrys->Write();
435 CalibVsCrysID->Write();
441 dummy = (TH1F*)gROOT->FindObject(
"PeakVsCrysID");
delete dummy;
442 dummy = (TH1F*)gROOT->FindObject(
"effSigVsCrysID");
delete dummy;
443 dummy = (TH1F*)gROOT->FindObject(
"etaVsCrysID");
delete dummy;
444 dummy = (TH1F*)gROOT->FindObject(
"constVsCrysID");
delete dummy;
445 dummy = (TH1F*)gROOT->FindObject(
"normVsCrysID");
delete dummy;
446 dummy = (TH1F*)gROOT->FindObject(
"fitLimitVsCrysID");
delete dummy;
447 dummy = (TH1F*)gROOT->FindObject(
"StatusVsCrysID");
delete dummy;
448 dummy = (TH1F*)gROOT->FindObject(
"fitProbSame");
delete dummy;
449 dummy = (TH1F*)gROOT->FindObject(
"fracPeakUnc");
delete dummy;
450 dummy = (TH1F*)gROOT->FindObject(
"nIterations");
delete dummy;
451 dummy = (TH1F*)gROOT->FindObject(
"hStatus");
delete dummy;
452 dummy = (TH1F*)gROOT->FindObject(
"ExpEnergyperCrys");
delete dummy;
453 dummy = (TH1F*)gROOT->FindObject(
"CalibVsCrysID");
delete dummy;
459 B2RESULT(
"eclMuMuEAlgorithm performed fits but was not asked to store contants");
461 }
else if (!DBsuccess) {
462 if (
findExpValues) { B2RESULT(
"eclMuMuEAlgorithm: failed to store expected values"); }
463 else { B2RESULT(
"eclMuMuEAlgorithm: failed to store calibration constants"); }