Expert for the FastBDT MVA method.
More...
#include <FastBDT.h>
Expert for the FastBDT MVA method.
Definition at line 124 of file FastBDT.h.
◆ apply() [1/2]
std::vector< float > apply |
( |
Dataset & |
test_data | ) |
const |
|
overridevirtual |
Apply this expert onto a dataset.
- Parameters
-
Implements Expert.
Definition at line 414 of file FastBDT.cc.
417 std::vector<float> probabilities(test_data.getNumberOfEvents());
418 for (
unsigned int iEvent = 0; iEvent < test_data.getNumberOfEvents(); ++iEvent) {
419 test_data.loadEvent(iEvent);
420 #if FastBDT_VERSION_MAJOR >= 3
421 #if FastBDT_VERSION_MAJOR >= 5
422 if (m_use_simplified_interface)
423 probabilities[iEvent] = m_classifier.predict(test_data.m_input);
438 return probabilities;
◆ apply() [2/2]
virtual std::vector<float> apply |
( |
Dataset & |
test_data, |
|
|
const unsigned int |
classID |
|
) |
| const |
|
inlinevirtualinherited |
Apply this expert onto a dataset.
Multi-class mode signature. Not pure virtual, since not all derived classes need to re-implement this.
- Parameters
-
test_data | dataset |
classID | class identifier. |
Reimplemented in TMVAExpertMulticlass.
Definition at line 59 of file Expert.h.
◆ load()
Load the expert from a Weightfile.
- Parameters
-
weightfile | containing all information necessary to build the expert |
Implements Expert.
Definition at line 321 of file FastBDT.cc.
The documentation for this class was generated from the following files: