This class generates a Pandas dataframe with a random sample of SVD strip signals with specified size and parameters.
NB:
1. We generate time bins from quantiles, do we want a regular grid?
2. Have to think of possible irregular grid.
Definition at line 194 of file SVDSimBase.py.
def __init__ |
( |
|
self, |
|
|
|
t0_bounds, |
|
|
|
tau_bounds, |
|
|
|
amplitude_bounds, |
|
|
|
sigma_bounds, |
|
|
|
tau_sigma, |
|
|
|
bin_size, |
|
|
|
wf = betaprime_wave |
|
) |
| |
The constructor takes the following parameters:
t0_bounds is a tuple, (t0_min, t0_max)
tau_bounds is a tuple (tau_min, tau_max)
amplitude_bounds is a tuple (amp_min, amp_max)
sigma_bounds is a tuple (sigma_min, sigma_max)
bin_size is the % fraction of t0_min, t0_max interval corresponding to a single output t0 bin.
Definition at line 202 of file SVDSimBase.py.
202 def __init__(self, t0_bounds, tau_bounds, amplitude_bounds, sigma_bounds, tau_sigma, bin_size, wf=betaprime_wave):
204 The constructor takes the following parameters:
205 t0_bounds is a tuple, (t0_min, t0_max)
206 tau_bounds is a tuple (tau_min, tau_max)
207 amplitude_bounds is a tuple (amp_min, amp_max)
208 sigma_bounds is a tuple (sigma_min, sigma_max)
209 bin_size is the % fraction of t0_min, t0_max interval corresponding to a single output t0 bin.
212 self.t0_min, self.t0_max = t0_bounds
213 self.tau_min, self.tau_max = tau_bounds
214 self.amp_min, self.amp_max = amplitude_bounds
215 self.sigma_min, self.sigma_max = sigma_bounds
216 self.tau_coder = tau_encoder(amplitude_bounds, tau_bounds)
217 self.tau_sigma = tau_sigma
218 self.bin_size = bin_size