In this chapter we will continue our work on the steering file from the last lesson.
Remember that you have reconstructed a B0 particle list.
We now want to reconstruct the Rest of Event of the B0.
ROE variables
In principle, one can already try to use some of the Rest of Event variables.
Exercise
Find documentation for the Rest Of Event variables.
Hint
Use the search feature in the basf2 documentation, or use the offline help by typing b2help-variables
in your bash terminal (for example b2help-variables | grep -i roe
).
Among the most universal and useful are ROE invariant mass roeM
or ROE energy roeE
. Also, one can call
nROE_Charged
or nROE_Photons
to know how many charged particles or
photons entered the ROE.
Remember that we were collecting all variables in the b_vars
list.
Let’s include the following lines to have a useful selection of them:
| # ROE variables
roe_kinematics = ["roeE()", "roeM()", "roeP()", "roeMbc()", "roeDeltae()"]
roe_multiplicities = [
"nROE_Charged()",
"nROE_Photons()",
"nROE_NeutralHadrons()",
]
b_vars += roe_kinematics + roe_multiplicities
|
Exercise
Run your steering file and check that it completes without error.
In principle we could already start to do an analysis.
However, the ROE variables that we have just defined are not quite useful yet:
we first need to “clean up” the ROE.
For this, we define ROE masks.
ROE masks
The main philosophy of the ROE is to include every particle in the event,
that has not been associated to the signal candidate.
That is why a typical ROE contains not only the partner particle (e.g. the tag or signal B),
but also all other particles, like
hadron split-off particles, δ-rays, unused radiative photons, beam-induced background particles or products of kaon or pion decays.
It is up to the analyst to decide what particles actually matter for the analysis.
This is called “cleaning up” the ROE. For this procedure, ROE masks are used.
ROE masks are just sets of selection cuts
to be applied on the ROE particles.
For our example, let’s start by defining the following selection cut strings:
| # build the rest of the event
ma.buildRestOfEvent("B0", fillWithMostLikely=True, path=main)
track_based_cuts = "thetaInCDCAcceptance and pt > 0.075 and dr < 5 and abs(dz) < 10"
ecl_based_cuts = "thetaInCDCAcceptance and E > 0.05"
|
Here we created different cuts for charged particles, like electrons or charged pions, and for photons,
because of different methods of measurement used to detect these particles.
Tip
These are example cuts, please use official guidelines from
Charged or Neutral Performance groups to set up your own selection in a “real” analysis.
Hint
A mask is defined as a tuple with three values. Use appendROEMasks
to
“activate” it.
Solution
| # build the rest of the event
ma.buildRestOfEvent("B0", fillWithMostLikely=True, path=main)
track_based_cuts = "thetaInCDCAcceptance and pt > 0.075 and dr < 5 and abs(dz) < 10"
ecl_based_cuts = "thetaInCDCAcceptance and E > 0.05"
roe_mask = ("my_mask", track_based_cuts, ecl_based_cuts)
ma.appendROEMasks("B0", [roe_mask], path=main)
|
Now we have created a mask with a name my_mask
, that will only allow track-based
particles that pass selection cuts track_based_cuts
and ECL-based particles, that pass
ecl_based_cuts
.
The analyst can create as many ROE masks as needed and use them in different ROE-dependent
algorithms or ROE variables.
For ROE variables, the mask is specified as an argument, like roeM(my_mask)
or roeE(my_mask)
.
In the last section, we defined two lists of ROE variables (roe_kinematics
and roe_multiplicities
).
Now we want to have
the same variables but with the my_mask
argument. Since we’re lazy, we use a python
loop to insert this argument.
Exercise
Write a for
loop that runs over roe_kinematics + roe_multiplicities
and
replaces the ()
of each variable with (my_mask)
. Add these new
variables to the b_vars
list.
Hint
The variables are nothing more than a string, which has a replace
method:
>>> "roeE()".replace("()", "(my_mask)")
'roeE(my_mask)'
Hint
Fill the missing bit of code:
for roe_variable in roe_kinematics + roe_multiplicities:
roe_variable_with_mask = your_code_here
b_vars.append(roe_variable_with_mask)
Solution
61
62
63
64
65
66
67
68
69
70
71
72 | roe_kinematics = ["roeE()", "roeM()", "roeP()", "roeMbc()", "roeDeltae()"]
roe_multiplicities = [
"nROE_Charged()",
"nROE_Photons()",
"nROE_NeutralHadrons()",
]
b_vars += roe_kinematics + roe_multiplicities
# Let's also add a version of the ROE variables that includes the mask:
for roe_variable in roe_kinematics + roe_multiplicities:
# e.g. instead of 'roeE()' (no mask) we want 'roeE(my_mask)'
roe_variable_with_mask = roe_variable.replace("()", "(my_mask)")
b_vars.append(roe_variable_with_mask)
|
Tip
There are also KLM-based hadrons in ROE, like K0L or neutrons, but they are
not participating in ROE 4-momentum computation, because of various temporary
difficulties in KLM reconstruction. Nevertheless, one can count them using
nROE_NeutralHadrons
variable.
Exercise
Your steering file is now complete. Run it!
Solution
Your steering file should look like this:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106 | #!/usr/bin/env python3
import sys
import basf2 as b2
import modularAnalysis as ma
import stdV0s
import variables.collections as vc
import variables.utils as vu
# get input file number from the command line
filenumber = sys.argv[1]
# create path
main = b2.Path()
# load input data from mdst/udst file
ma.inputMdstList(
environmentType="default",
filelist=[b2.find_file(f"starterkit/2021/1111540100_eph3_BGx0_{filenumber}.root", "examples")],
path=main,
)
# fill final state particle lists
ma.fillParticleList(
"e+:uncorrected",
"electronID > 0.1 and dr < 0.5 and abs(dz) < 2 and thetaInCDCAcceptance",
path=main,
)
stdV0s.stdKshorts(path=main)
# combine final state particles to form composite particles
ma.reconstructDecay(
"J/psi:ee -> e+:uncorrected e-:uncorrected", cut="dM < 0.11", path=main
)
# combine J/psi and KS candidates to form B0 candidates
ma.reconstructDecay(
"B0 -> J/psi:ee K_S0:merged",
cut="Mbc > 5.2 and abs(deltaE) < 0.15",
path=main,
)
# match reconstructed with MC particles
ma.matchMCTruth("B0", path=main)
# build the rest of the event
ma.buildRestOfEvent("B0", fillWithMostLikely=True, path=main)
track_based_cuts = "thetaInCDCAcceptance and pt > 0.075 and dr < 5 and abs(dz) < 10"
ecl_based_cuts = "thetaInCDCAcceptance and E > 0.05"
roe_mask = ("my_mask", track_based_cuts, ecl_based_cuts)
ma.appendROEMasks("B0", [roe_mask], path=main)
# Create list of variables to save into the output file
b_vars = []
standard_vars = vc.kinematics + vc.mc_kinematics + vc.mc_truth
b_vars += vc.deltae_mbc
b_vars += standard_vars
# ROE variables
roe_kinematics = ["roeE()", "roeM()", "roeP()", "roeMbc()", "roeDeltae()"]
roe_multiplicities = [
"nROE_Charged()",
"nROE_Photons()",
"nROE_NeutralHadrons()",
]
b_vars += roe_kinematics + roe_multiplicities
# Let's also add a version of the ROE variables that includes the mask:
for roe_variable in roe_kinematics + roe_multiplicities:
# e.g. instead of 'roeE()' (no mask) we want 'roeE(my_mask)'
roe_variable_with_mask = roe_variable.replace("()", "(my_mask)")
b_vars.append(roe_variable_with_mask)
# Variables for final states (electrons, positrons, pions)
fs_vars = vc.pid + vc.track + vc.track_hits + standard_vars
b_vars += vu.create_aliases_for_selected(
fs_vars,
"B0 -> [J/psi -> ^e+ ^e-] [K_S0 -> ^pi+ ^pi-]",
prefix=["ep", "em", "pip", "pim"],
)
# Variables for J/Psi, KS
jpsi_ks_vars = vc.inv_mass + standard_vars
b_vars += vu.create_aliases_for_selected(jpsi_ks_vars, "B0 -> ^J/psi ^K_S0")
# Also add kinematic variables boosted to the center of mass frame (CMS)
# for all particles
cmskinematics = vu.create_aliases(
vc.kinematics, "useCMSFrame({variable})", "CMS"
)
b_vars += vu.create_aliases_for_selected(
cmskinematics, "^B0 -> [^J/psi -> ^e+ ^e-] [^K_S0 -> ^pi+ ^pi-]"
)
# Save variables to an output file (ntuple)
ma.variablesToNtuple(
"B0",
variables=b_vars,
filename="Bd2JpsiKS.root",
treename="tree",
path=main,
)
# Start the event loop (actually start processing things)
b2.process(main)
# print out the summary
print(b2.statistics)
|
Quick plots
Exercise
Plot ROE invariant mass and number of charged particles in ROE distributions
and compare masked and unmasked ROE.
Column names in the ntuple:
|
roeM
|
nROE_Charged
|
Unmasked ROE |
roeM__bo__bc
|
nROE_Charged__bo__bc
|
ROE with my_mask |
roeM__bomy_mask__bc
|
nROE_Charged__bomy_mask__bc
|
Hint: Plotting side by side
One can use matplotlib
functions to plot several histograms on one figure side-by-side.
Documentation is on this page, but you also saw some examples in your
python training.
Hint: Outliers
Some of the distributions contain outliers, which need to be rejected in order to
get meaningful plots (this means to manually set the plotting range).
Proposed ranges: roeM
from 0 to 10 and nROE_Charged
from 0 to 15.
Hint: Styling
Another hint is that comparison plots look better if they are a bit transparent, which
can be achieved by supplying alpha=0.6
argument to the plotting functions.
Alternatively you might look into the histtype
argument to only show the outlines
of the distributions.
As we are plotting many distributions on one figure
legends and axis titles are important
Hint: Fill in the blanks
import root_pandas
import matplotlib.pyplot as plt
plt.style.use('belle2')
df = root_pandas.read_root('Bd2JpsiKS.root')
m_bins = 50
m_range = (0, 10)
fig, ax = plt.subplots(1,2, figsize=(15, 7))
# Left subplot of ROE mass:
ax[0].hist(...)
ax[0].hist(...)
ax[0].set_xlim(m_range)
ax[0].set_xlabel('ROE mass [GeV/$c^2$]')
# Right subplot of number of charged ROE particles:
m_bins = 15
m_range = (0, 15)
ax[1].hist(...)
ax[1].hist(...)
ax[1].set_xlim(m_range)
ax[1].set_xlabel('# of charged ROE particles')
ax[1].legend()
fig.tight_layout()
fig.savefig('roe_mask_comparison.svg')
Solution
import root_pandas
import matplotlib.pyplot as plt
plt.style.use('belle2')
df = root_pandas.read_root('Bd2JpsiKS.root')
m_bins = 50
m_range = (0, 10)
fig, ax = plt.subplots(1,2, figsize=(15, 7))
# Left subplot of ROE mass:
ax[0].hist(df['roeM__bo__bc'], label='No mask',
bins = m_bins, range=m_range, alpha=0.6)
ax[0].hist(df['roeM__bomy_mask__bc'], label='"my_mask" applied',
bins = m_bins, range=m_range, alpha=0.6)
ax[0].set_xlim(m_range)
ax[0].set_xlabel('ROE mass [GeV/$c^2$]')
# Right subplot of number of charged ROE particles:
m_bins = 15
m_range = (0, 15)
ax[1].hist(df['nROE_Charged__bo__bc'], label='No mask',
bins = m_bins, range=m_range, alpha=0.6)
ax[1].hist(df['nROE_Charged__bomy_mask__bc'], label='"my_mask" applied',
bins = m_bins, range=m_range, alpha=0.6)
ax[1].set_xlim(m_range)
ax[1].set_xlabel('# of charged ROE particles')
ax[1].legend()
fig.tight_layout()
fig.savefig('roe_mask_comparison.svg')
The resulting plot should look like the figure below.
Fig. 21.22 shows a comparison of roeM
and nROE_Charged
distributions
for ROE with mask my_mask
case and ROE with no mask applied.
Strange variable names
You might wonder where these strange variable names came from. This is because
it is tried to avoid branch names (columns of your output ROOT file) that contain
special characters (parentheses, spaces and so on).
For example, every (
is replaced by _bo
for “bracket open”. What does
_bc
stand for?
Exercise
Take another look at Fig. 21.22 and describe what you see.
Can you explain the differences between the masked and unmasked variables?
Solution
The invariant mass distribution for masked ROE is much narrower and its mean is a little bit below
nominal B0 mass, contrary to the unmasked ROE distribution.
This is expected, because a generic B0 decay may produce particles,
that are not accounted in ROE mass computation, like K0L or neutrinos.
The distribution of the number of charged particles for masked ROE has much more prominent peaks
at 4 and 6 particles than its unmasked version, which corresponds to the fact that a correctly
reconstructed B0 will have an even number of charged daughter particles.
This means that even a simple ROE mask like my_mask
does a really good job of cleaning up the particles,
which are not associated to the partner B0.
This concludes the Rest of Event setup as a middle stage algorithm to run Continuum Suppression (CS),
Flavor tagging or tag Vertex fitting.
Key points
The ROE of a selection is build with buildRestOfEvent
ROE masks are added with appendROEMask
or appendROEMasks
.
Use them to clean up beam-induced or other background particles.
For many analyses ROE is used as middleware to get tag vertex fit,
continuum suppression or flavor tag.
Usage of ROE without a mask is not recommended.
Stuck? We can help!
If you get stuck or have any questions to the online book material, the
#starterkit-workshop channel
in our chat is full of nice people who will provide fast help.
Refer to Collaborative Tools. for other
places to get help if you have specific or detailed questions about your
own analysis.
Improving things!
If you know how to do it, we recommend you to report bugs and other requests
with JIRA. Make sure to use the
documentation-training
component of the Belle II Software
project.
If you just want to give very quick feedback, use the last box
“Quick feedback”.
Please make sure to be as precise as possible to make it easier for us
to fix things! So for example:
typos (where?)
missing bits of information (what?)
bugs (what did you do? what goes wrong?)
too hard exercises (which one?)
etc.
If you are familiar with git and want to create your first pull request
for the software, take a look at How to contribute.
We’d be happy to have you on the team!
Authors of this lesson
Sviatoslav Bilokin,
Kilian Lieret