8 #include <svd/calibration/SVD3SampleCoGTimeCalibrationAlgorithm.h>
10 #include <svd/dbobjects/SVDCoGCalibrationFunction.h>
11 #include <svd/calibration/SVD3SampleCoGTimeCalibrations.h>
16 #include <framework/logging/Logger.h>
19 #include <TFitResult.h>
24 SVD3SampleCoGTimeCalibrationAlgorithm::SVD3SampleCoGTimeCalibrationAlgorithm(
const std::string& str) :
27 setDescription(
"SVD3SampleCoGTimeCalibration calibration algorithm");
34 gROOT->SetBatch(
true);
36 int ladderOfLayer[4] = {7, 10, 12, 16};
37 int sensorOnLayer[4] = {2, 3, 4, 5};
44 std::unique_ptr<TF1> pol3(
new TF1(
"pol3",
"[0] + [1]*x + [2]*[3]*[3]*x - [2]*[3]*x*x + [2]*x*x*x/3", -10,
48 pol3->SetParLimits(1, 0, 100);
49 pol3->SetParLimits(2, 0, 0.1);
52 pol3->SetParLimits(3, 30, 60);
56 while (gSystem->GetPathInfo(Form(
"algorithm_3SampleCoG_output_rev_%d.root", cal_rev), info) == 0)
58 std::unique_ptr<TFile> f(
new TFile(Form(
"algorithm_3SampleCoG_output_rev_%d.root", cal_rev),
"RECREATE"));
60 auto m_tree =
new TTree(Form(
"rev_%d", cal_rev),
"RECREATE");
61 int layer_num, ladder_num, sensor_num, view, ndf;
62 float a, b, c, d, a_err, b_err, c_err, d_err, chi2, p;
63 m_tree->Branch(
"layer", &layer_num,
"layer/I");
64 m_tree->Branch(
"ladder", &ladder_num,
"ladder/I");
65 m_tree->Branch(
"sensor", &sensor_num,
"sensor/I");
66 m_tree->Branch(
"isU", &view,
"isU/I");
67 m_tree->Branch(
"a", &a,
"a/F");
68 m_tree->Branch(
"b", &b,
"b/F");
69 m_tree->Branch(
"c", &c,
"c/F");
70 m_tree->Branch(
"d", &d,
"d/F");
71 m_tree->Branch(
"a_err", &a_err,
"a_err/F");
72 m_tree->Branch(
"b_err", &b_err,
"b_err/F");
73 m_tree->Branch(
"c_err", &c_err,
"c_err/F");
74 m_tree->Branch(
"d_err", &d_err,
"d_err/F");
75 m_tree->Branch(
"chi2", &chi2,
"chi2/F");
76 m_tree->Branch(
"ndf", &ndf,
"ndf/I");
77 m_tree->Branch(
"p", &p,
"p/F");
79 for (
int layer = 0; layer < 4; layer++) {
80 layer_num = layer + 3;
81 for (
int ladder = 0; ladder < (int)ladderOfLayer[layer]; ladder++) {
82 ladder_num = ladder + 1;
83 for (
int sensor = 0; sensor < (int)sensorOnLayer[layer]; sensor++) {
84 sensor_num = sensor + 1;
85 for (view = 1; view > -1; view--) {
89 auto hEventT0vsCoG = getObjectPtr<TH2F>(Form(
"eventT0vsCoG__L%dL%dS%d%c", layer_num, ladder_num, sensor_num, side));
90 auto hEventT0 = getObjectPtr<TH1F>(Form(
"eventT0__L%dL%dS%d%c", layer_num, ladder_num, sensor_num, side));
91 auto hEventT0nosync = getObjectPtr<TH1F>(Form(
"eventT0nosync__L%dL%dS%d%c", layer_num, ladder_num, sensor_num, side));
92 B2INFO(
"Histogram: " << hEventT0vsCoG->GetName() <<
93 " Entries (n. clusters): " << hEventT0vsCoG->GetEntries());
94 if (layer_num == 3 && hEventT0vsCoG->GetEntries() <
m_minEntries) {
95 B2INFO(
"Histogram: " << hEventT0vsCoG->GetName() <<
96 " Entries (n. clusters): " << hEventT0vsCoG->GetEntries() <<
98 B2WARNING(
"Not enough data, adding one run to the collector");
100 gSystem->Unlink(Form(
"algorithm_3SampleCoG_output_rev_%d.root", cal_rev));
103 for (
int i = 1; i <= hEventT0vsCoG->GetNbinsX(); i++) {
104 for (
int j = 1; j <= hEventT0vsCoG->GetNbinsY(); j++) {
105 if (hEventT0vsCoG->GetBinContent(i, j) < max(2,
int(hEventT0vsCoG->GetEntries() * 0.001))) {
106 hEventT0vsCoG->SetBinContent(i, j, 0);
110 TProfile* pfx = hEventT0vsCoG->ProfileX();
111 std::string name =
"pfx_" + std::string(hEventT0vsCoG->GetName());
112 pfx->SetName(name.c_str());
115 pol3->SetParameter(1, 1.75);
116 pol3->SetParameter(2, 0.005);
117 pol3->SetParameter(3, 40);
118 TFitResultPtr tfr = pfx->Fit(
"pol3",
"QMRS");
120 pol3->GetParameters(par);
123 timeCal->set_current(1);
124 timeCal->set_pol3parameters(par[0], par[1] + par[2]*par[3]*par[3], -par[2]*par[3], par[2] / 3);
125 payload->set(layer_num, ladder_num, sensor_num,
bool(view), 1, *timeCal);
128 hEventT0vsCoG->Write();
129 hEventT0nosync->Write();
134 B2FATAL(
"Fit to the histogram failed in SVD3SampleCoGTimeCalibrationAlgorithm. "
135 <<
"Check the 2-D histogram to clarify the reason.");
137 a = par[0]; b = par[1]; c = par[2]; d = par[3];
138 a_err = tfr->ParError(0); b_err = tfr->ParError(1); c_err = tfr->ParError(2); d_err = tfr->ParError(3);
162 float meanRawTimeL3V = 0;
164 auto rawTimeL3V = getObjectPtr<TH1F>(
"hRawTimeL3V");
171 meanRawTimeL3V = rawTimeL3V->GetMean();
178 B2INFO(
"Setting start payload boundary to be the first run ("
179 << currentRun.first <<
"," << currentRun.second <<
")");
185 <<
" to " << meanRawTimeL3V <<
". We are requesting a new payload boundary for ("
186 << currentRun.first <<
"," << currentRun.second <<
")");
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfuly =0 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
std::string m_id
Parameter given to set the UniqueID of the payload.
std::optional< float > m_previousRawTimeMeanL3V
Raw CoG of the previous run.
float m_minEntries
Set the minimun number of entries required in the histograms of layer 3.
virtual EResult calibrate() override
Run algo on data.
virtual bool isBoundaryRequired(const Calibration::ExpRun ¤tRun) override
If the event T0 changes significantly return true.
float m_allowedTimeShift
Allowed Raw CoGshift.
SVDCalibrationsBase< SVDCalibrationsScalar< SVDCoGCalibrationFunction > > t_payload
typedef for the SVDCoGCalibrationFunction payload of all SVD sensors
class to contain the CoG Time calibrations
Abstract base class for different kinds of events.