8 #include <ecl/geometry/GeoECLCreator.h>
9 #include "ecl/geometry/BelleLathe.h"
10 #include "ecl/geometry/BelleCrystal.h"
11 #include "G4LogicalVolume.hh"
12 #include "G4PVPlacement.hh"
13 #include <G4VisAttributes.hh>
15 #include <G4AssemblyVolume.hh>
16 #include <G4Region.hh>
17 #include <G4TwoVector.hh>
18 #include <G4PVReplica.hh>
19 #include "G4UserLimits.hh"
23 #include "CLHEP/Matrix/Vector.h"
24 #include "ecl/geometry/shapes.h"
25 #include <geometry/Materials.h>
33 G4LogicalVolume* top = &_top;
36 const double phi0 = 0;
37 const double dphi = sec ? M_PI / 16 : 2 * M_PI;
39 const bool b_inner_support_ring = 1;
40 const bool b_outer_support_ring = 1;
41 const bool b_support_wall = 1;
42 const bool b_ribs = 1;
43 const bool b_septum_wall = 1;
44 const bool b_crystals = 1;
45 const bool b_preamplifier = 1;
46 const bool b_support_leg = 1;
47 const int overlap = m_overlap;
49 int npoints = 1000 * 1000;
52 vector<cplacement_t> bp = load_placements(m_sap, ECLParts::backward);
53 vector<cplacement_t>::iterator fp = find_if(bp.begin(), bp.end(), [](
const cplacement_t& p) {
54 const int ECL_backward_part = 1000;
55 return p.nshape == ECL_backward_part;
58 G4Transform3D gTrans = (fp == bp.end()) ? G4Translate3D(0, 0, -1020) : get_transform(*fp);
59 if (fp != bp.end()) bp.erase(fp);
61 if (b_inner_support_ring) {
62 zr_t vc1[] = {{0., 452.3 + 3}, {0., 452.3}, {3., 474.9 - 20 / cosd(27.81)}, {434., 702.27 - 20 / cosd(27.81)}, {434., 702.27}, {3., 474.9}, {3., 452.3 + 3}};
63 std::vector<zr_t> contour1(vc1, vc1 +
sizeof(vc1) /
sizeof(
zr_t));
64 G4VSolid* part1solid =
new BelleLathe(
"part1solid", phi0, dphi, contour1);
65 G4LogicalVolume* part1logical =
new G4LogicalVolume(part1solid, Materials::get(
"SUS304"),
"part1logical", 0, 0, 0);
66 part1logical->SetVisAttributes(att(
"iron"));
67 auto pv =
new G4PVPlacement(gTrans * G4RotateY3D(M_PI), part1logical,
"part1physical", top,
false, 0, 0);
68 if (overlap) pv->CheckOverlaps(npoints);
73 double L = (435 - 202.67 - 3 - 1.6 * cosd(52.90 + 90)) / cosd(52.90);
74 zr_t vc23[] = {{0, 452.3 + 3}, {3, 452.3 + 3}, {3, 1190.2}, {3 + L * cosd(52.90), 1190.2 + L * sind(52.90)},
75 {3 + L * cosd(52.90) + 1.6 * cosd(52.90 + 90), 1190.2 + L * sind(52.90) + 1.6 * sind(52.90 + 90)}, {3 + 1.6 * cosd(52.90 + 90), 1190.2 + 1.6 * sind(52.90 + 90)}, {0, 1190.2}
77 std::vector<zr_t> contour23(vc23, vc23 +
sizeof(vc23) /
sizeof(
zr_t));
78 G4VSolid* part23solid =
new BelleLathe(
"part23solid", phi0, dphi, contour23);
79 G4LogicalVolume* part23logical =
new G4LogicalVolume(part23solid, Materials::get(
"A5052"),
"part23logical", 0, 0, 0);
80 part23logical->SetVisAttributes(att(
"alum"));
81 auto pv =
new G4PVPlacement(gTrans * G4RotateY3D(M_PI), part23logical,
"part23physical", top,
false, 0, 0);
82 if (overlap) pv->CheckOverlaps(npoints);
85 if (b_outer_support_ring) {
86 zr_t vc4[] = {{434 - 214.8, 1496 - 20}, {434, 1496 - 20}, {434, 1496 - 5}, {434 + 5, 1496 - 5}, {434 + 5, 1496}, {434 - 199.66, 1496}};
87 std::vector<zr_t> contour4(vc4, vc4 +
sizeof(vc4) /
sizeof(
zr_t));
88 G4VSolid* part4solid =
new BelleLathe(
"part4solid", phi0, dphi, contour4);
89 G4LogicalVolume* part4logical =
new G4LogicalVolume(part4solid, Materials::get(
"SUS304"),
"part4logical", 0, 0, 0);
90 part4logical->SetVisAttributes(att(
"iron"));
91 auto pv =
new G4PVPlacement(gTrans * G4RotateY3D(M_PI), part4logical,
"part4physical", top,
false, 0, 0);
92 if (overlap) pv->CheckOverlaps(npoints);
95 zr_t cont_array_in[] = {{3., 474.9}, {434., 702.27}, {434, 1496 - 20}, {434 - 214.8, 1496 - 20}, {3, 1190.2}};
96 std::vector<zr_t> contour_in(cont_array_in, cont_array_in +
sizeof(cont_array_in) /
sizeof(
zr_t));
97 G4VSolid* innervolume_solid =
new BelleLathe(
"innervolume_solid", 0, 2 * M_PI, contour_in);
98 G4LogicalVolume* innervolume_logical =
new G4LogicalVolume(innervolume_solid, Materials::get(
"G4_AIR"),
99 "innervolume_logical", 0, 0, 0);
100 innervolume_logical->SetVisAttributes(att(
"air"));
103 G4Region* aRegion =
new G4Region(
"ECLBackwardEnvelope");
104 innervolume_logical->SetRegion(aRegion);
105 aRegion->AddRootLogicalVolume(innervolume_logical);
107 auto gpvbp =
new G4PVPlacement(gTrans * G4RotateY3D(M_PI),
108 innervolume_logical,
"ECLBackwardPhysical",
110 if (overlap) gpvbp->CheckOverlaps(npoints);
112 G4VSolid* innervolumesector_solid =
new BelleLathe(
"innervolumesector_solid", -M_PI / 8, M_PI / 4, contour_in);
113 G4LogicalVolume* innervolumesector_logical =
new G4LogicalVolume(innervolumesector_solid, Materials::get(
"G4_AIR"),
114 "innervolumesector_logical", 0, 0, 0);
115 innervolumesector_logical->SetVisAttributes(att(
"air"));
116 new G4PVReplica(
"ECLBackwardSectorPhysical", innervolumesector_logical, innervolume_logical, kPhi, 8, M_PI / 4, 0);
119 double H = 60, W = 20;
120 double X0 = 702.27 + 0.001, X1 = 1496 - 20;
121 G4TwoVector r0o(X1, 0), r1o(X1 * sqrt(1 - pow(W / X1, 2)), W);
122 double beta = asin(W / X0);
123 G4TwoVector r0i(X0 / cos(beta / 2), 0), r1i(X0 * cos(beta / 2) - tan(beta / 2) * (W - X0 * sin(beta / 2)), W);
124 double dxymzp = (r0o - r0i).x(), dxypzp = (r1o - r1i).x();
125 double theta = atan(tand(27.81) / 2);
126 double dxymzm = dxymzp + tand(27.81) * H, dxypzm = dxypzp + tand(27.81) * H;
128 G4TwoVector m0 = (r0i + r0o) * 0.5, m1 = (r1i + r1o) * 0.5, dm = m1 - m0;
129 double alpha = atan(dm.x() / dm.y());
131 G4VSolid* solid6_p1 =
new G4Trap(
"solid6_p1", H / 2, theta, 0, W / 2, dxymzm / 2, dxypzm / 2, alpha, W / 2, dxymzp / 2, dxypzp / 2,
133 G4LogicalVolume* lsolid6_p1 =
new G4LogicalVolume(solid6_p1, Materials::get(
"SUS304"),
"lsolid6", 0, 0, 0);
134 G4VisAttributes* asolid6 =
new G4VisAttributes(G4Colour(1., 0.3, 0.2));
135 lsolid6_p1->SetVisAttributes(asolid6);
136 G4Transform3D tsolid6_p1(G4Translate3D(X0 * cos(beta / 2) + (dxymzp / 2 + dxypzp / 2) / 2 - tan(theta)*H / 2, W / 2, 434 - H / 2));
137 auto pv61 =
new G4PVPlacement(G4RotateZ3D(-M_PI / 8)*tsolid6_p1, lsolid6_p1,
"psolid6_p1", innervolumesector_logical,
false, 0, 0);
138 if (overlap) pv61->CheckOverlaps(npoints);
139 auto pv62 =
new G4PVPlacement(G4RotateZ3D(0)*tsolid6_p1, lsolid6_p1,
"psolid6_p2", innervolumesector_logical,
false, 0, 0);
140 if (overlap) pv62->CheckOverlaps(npoints);
143 dxymzm = dxymzp + tand(27.81) * H, dxypzm = dxypzp + tand(27.81) * H;
144 G4VSolid* solid6_p2 =
new G4Trap(
"solid6_p2", H / 2, theta, 0, W / 2, dxypzm / 2, dxymzm / 2, -alpha, W / 2, dxypzp / 2, dxymzp / 2,
146 G4LogicalVolume* lsolid6_p2 =
new G4LogicalVolume(solid6_p2, Materials::get(
"SUS304"),
"lsolid6", 0, 0, 0);
147 lsolid6_p2->SetVisAttributes(asolid6);
148 G4Transform3D tsolid6_p2(G4Translate3D(X0 * cos(beta / 2) + (dxymzp / 2 + dxypzp / 2) / 2 - tan(theta)*H / 2, -W / 2, 434 - H / 2));
149 auto pv63 =
new G4PVPlacement(G4RotateZ3D(0)*tsolid6_p2, lsolid6_p2,
"psolid6_p3", innervolumesector_logical,
false, 0, 0);
150 if (overlap) pv63->CheckOverlaps(npoints);
151 auto pv64 =
new G4PVPlacement(G4RotateZ3D(M_PI / 8)*tsolid6_p2, lsolid6_p2,
"psolid6_p4", innervolumesector_logical,
false, 0, 0);
152 if (overlap) pv64->CheckOverlaps(npoints);
154 G4VSolid* solid7_p8 =
new G4Box(
"solid7_p8", 171. / 2, (140. - 40) / 2 / 2, 40. / 2);
155 G4LogicalVolume* lsolid7 =
new G4LogicalVolume(solid7_p8, Materials::get(
"SUS304"),
"lsolid7", 0, 0, 0);
156 G4VisAttributes* asolid7 =
new G4VisAttributes(G4Colour(1., 0.3, 0.2));
157 lsolid7->SetVisAttributes(asolid7);
158 double dx = sqrt(X1 * X1 - 70 * 70) - 171. / 2;
159 G4Transform3D tsolid7_p1(G4Translate3D(dx, -20 - 25, 434 - 40. / 2));
160 auto pv71 =
new G4PVPlacement(tsolid7_p1, lsolid7,
"psolid7_p1", innervolumesector_logical,
false, 0, 0);
161 if (overlap) pv71->CheckOverlaps(npoints);
162 G4Transform3D tsolid7_p2(G4Translate3D(dx, 20 + 25, 434 - 40. / 2));
163 auto pv72 =
new G4PVPlacement(tsolid7_p2, lsolid7,
"psolid7_p2", innervolumesector_logical,
false, 0, 0);
164 if (overlap) pv72->CheckOverlaps(npoints);
166 double L = X1 - (X0 - tand(27.81) * 40) - 10;
167 G4VSolid* solid13 =
new G4Box(
"solid13", L / 2, 5. / 2, 18. / 2);
168 G4LogicalVolume* lsolid13 =
new G4LogicalVolume(solid13, Materials::get(
"SUS304"),
"lsolid13", 0, 0, 0);
169 G4VisAttributes* asolid13 =
new G4VisAttributes(G4Colour(1., 0.5, 0.5));
170 lsolid13->SetVisAttributes(asolid13);
171 G4Transform3D tsolid13(G4TranslateZ3D(434 - 60 + 18. / 2)*G4TranslateY3D(-5. / 2 - 0.5 / 2)*G4TranslateX3D(X0 - tand(
172 27.81) * 40 + L / 2 + 5));
173 auto pv131 =
new G4PVPlacement(tsolid13, lsolid13,
"psolid13_p1", innervolumesector_logical,
false, 0, 0);
174 if (overlap) pv131->CheckOverlaps(npoints);
175 auto pv132 =
new G4PVPlacement(G4RotateZ3D(M_PI / 8)*tsolid13, lsolid13,
"psolid13_p2", innervolumesector_logical,
false, 0, 0);
176 if (overlap) pv132->CheckOverlaps(npoints);
183 Point_t vin[] = {{434. - zsep, 702.27 - tand(27.81)* zsep}, {434. - 60, 702.27 - tand(27.81) * 60}, {434. - 60, 1496 - 20 - d}, {434. - zsep, 1496 - 20 - d}};
184 const int n =
sizeof(vin) /
sizeof(
Point_t);
185 Point_t c = centerofgravity(vin, vin + n);
186 G4ThreeVector contour_swall[n * 2];
187 for (
int i = 0; i < n; i++) contour_swall[i + 0] = G4ThreeVector(vin[i].x - c.x, vin[i].y - c.y, -0.5 / 2);
188 for (
int i = 0; i < n; i++) contour_swall[i + n] = G4ThreeVector(vin[i].x - c.x, vin[i].y - c.y, 0.5 / 2);
190 G4VSolid* septumwall_solid =
new BelleCrystal(
"septumwall_solid", n, contour_swall);
192 G4LogicalVolume* septumwall_logical =
new G4LogicalVolume(septumwall_solid, Materials::get(
"A5052"),
193 "septumwall_logical", 0, 0, 0);
194 septumwall_logical->SetVisAttributes(att(
"alum2"));
195 auto pv =
new G4PVPlacement(G4RotateZ3D(-M_PI / 2)*G4RotateY3D(-M_PI / 2)*G4Translate3D(c.x, c.y, 0), septumwall_logical,
196 "septumwall_physical", innervolumesector_logical,
false, 0, 0);
197 if (overlap) pv->CheckOverlaps(npoints);
199 for (
int i = 0; i < n; i++) contour_swall[i + 0] = G4ThreeVector(vin[i].x - c.x, vin[i].y - c.y, -0.5 / 2 / 2);
200 for (
int i = 0; i < n; i++) contour_swall[i + n] = G4ThreeVector(vin[i].x - c.x, vin[i].y - c.y, 0.5 / 2 / 2);
202 G4VSolid* septumwall2_solid =
new BelleCrystal(
"septumwall2_solid", n, contour_swall);
204 G4LogicalVolume* septumwall2_logical =
new G4LogicalVolume(septumwall2_solid, Materials::get(
"A5052"),
205 "septumwall2_logical", 0, 0, 0);
206 septumwall2_logical->SetVisAttributes(att(
"alum2"));
207 auto pv0 =
new G4PVPlacement(G4RotateZ3D(-M_PI / 8)*G4RotateZ3D(-M_PI / 2)*G4RotateY3D(-M_PI / 2)*G4Translate3D(c.x, c.y,
209 septumwall2_logical,
"septumwall2_physical", innervolumesector_logical,
false, 0, 0);
210 if (overlap) pv0->CheckOverlaps(npoints);
211 auto pv1 =
new G4PVPlacement(G4RotateZ3D(M_PI / 8)*G4RotateZ3D(-M_PI / 2)*G4RotateY3D(-M_PI / 2)*G4Translate3D(c.x, c.y,
213 septumwall2_logical,
"septumwall2_physical", innervolumesector_logical,
false, 1, 0);
214 if (overlap) pv1->CheckOverlaps(npoints);
217 zr_t vcr[] = {{3., 474.9}, {434. - zsep, 702.27 - tand(27.81)* zsep}, {434 - zsep, 1496 - 20}, {434 - 214.8, 1496 - 20}, {3, 1190.2}};
218 std::vector<zr_t> ccr(vcr, vcr +
sizeof(vcr) /
sizeof(
zr_t));
219 G4VSolid* crystalvolume_solid =
new BelleLathe(
"crystalvolume_solid", 0, M_PI / 8, ccr);
220 G4LogicalVolume* crystalvolume_logical =
new G4LogicalVolume(crystalvolume_solid, Materials::get(
"G4_AIR"),
221 "crystalvolume_logical", 0, 0, 0);
222 crystalvolume_logical->SetVisAttributes(att(
"air"));
223 auto gpv0 =
new G4PVPlacement(G4RotateZ3D(-M_PI / 8), crystalvolume_logical,
"ECLBackwardCrystalSectorPhysical_0",
224 innervolumesector_logical,
226 if (overlap) gpv0->CheckOverlaps(npoints);
227 auto gpv1 =
new G4PVPlacement(G4RotateZ3D(0), crystalvolume_logical,
"ECLBackwardCrystalSectorPhysical_1",
228 innervolumesector_logical,
false, 1,
230 if (overlap) gpv1->CheckOverlaps(npoints);
233 double d = 5, dr = 0.001;
234 Point_t vin[] = {{3., 474.9}, {434. - zsep, 702.27 - tand(27.81)* zsep}, {434 - zsep, 1496 - 20 - d - dr}, {434 - 214.8 - d / tand(52.90), 1496 - 20 - d - dr}, {3, 1190.2 - dr}};
235 const int n =
sizeof(vin) /
sizeof(
Point_t);
236 Point_t c = centerofgravity(vin, vin + n);
237 G4ThreeVector contour_swall[n * 2];
239 for (
int i = 0; i < n; i++) contour_swall[i + 0] = G4ThreeVector(vin[i].x - c.x, vin[i].y - c.y, -0.5 / 2 / 2);
240 for (
int i = 0; i < n; i++) contour_swall[i + n] = G4ThreeVector(vin[i].x - c.x, vin[i].y - c.y, 0.5 / 2 / 2);
242 G4VSolid* septumwall3_solid =
new BelleCrystal(
"septumwall3_solid", n, contour_swall);
244 G4LogicalVolume* septumwall3_logical =
new G4LogicalVolume(septumwall3_solid, Materials::get(
"A5052"),
245 "septumwall3_logical", 0, 0, 0);
246 septumwall3_logical->SetVisAttributes(att(
"alum2"));
247 auto pv0 =
new G4PVPlacement(G4RotateZ3D(-M_PI / 2)*G4RotateY3D(-M_PI / 2)*G4Translate3D(c.x, c.y, 0.5 / 2 / 2),
249 "septumwall3_physical_0", crystalvolume_logical,
false, 0, overlap);
250 if (overlap) pv0->CheckOverlaps(npoints);
251 auto pv1 =
new G4PVPlacement(G4RotateZ3D(M_PI / 8)*G4RotateZ3D(-M_PI / 2)*G4RotateY3D(-M_PI / 2)*G4Translate3D(c.x, c.y,
253 septumwall3_logical,
"septumwall3_physical_1", crystalvolume_logical,
false, 1, overlap);
254 if (overlap) pv1->CheckOverlaps(npoints);
259 vector<shape_t*> cryst = load_shapes(m_sap, ECLParts::backward);
260 vector<G4LogicalVolume*> wrapped_crystals;
261 for (
auto it = cryst.begin(); it != cryst.end(); it++) {
263 wrapped_crystals.push_back(wrapped_crystal(s,
"backward", 0.20 - 0.02));
265 for (vector<cplacement_t>::const_iterator it = bp.begin(); it != bp.end(); ++it) {
267 auto s = find_if(cryst.begin(), cryst.end(), [&t](
const shape_t* shape) {return shape->nshape == t.nshape;});
268 if (s == cryst.end())
continue;
270 G4Transform3D twc = G4Translate3D(0, 0, 3) * get_transform(t);
271 int indx = it - bp.begin();
272 auto pv =
new G4PVPlacement(twc, wrapped_crystals[s - cryst.begin()], suf(
"ECLBackwardWrappedCrystal_Physical", indx),
273 crystalvolume_logical,
274 false, (1152 + 6624) / 16 + indx, 0);
275 if (overlap)pv->CheckOverlaps(npoints);
279 if (b_preamplifier) {
280 for (vector<cplacement_t>::const_iterator it = bp.begin(); it != bp.end(); ++it) {
281 G4Transform3D twc = G4Translate3D(0, 0, 3) * get_transform(*it);
282 int indx = it - bp.begin();
283 auto pv =
new G4PVPlacement(twc * G4TranslateZ3D(300 / 2 + 0.20 + get_pa_box_height() / 2)*G4RotateZ3D(-M_PI / 2), get_preamp(),
284 suf(
"phys_backward_preamplifier", indx), crystalvolume_logical,
false, (1152 + 6624) / 16 + indx, 0);
285 if (overlap)pv->CheckOverlaps(npoints);
290 const G4VisAttributes* batt = att(
"iron");
292 G4VSolid* s1 =
new G4Box(
"leg_p1", 130. / 2, 185. / 2, (40. - 5) / 2);
293 G4LogicalVolume* l1 =
new G4LogicalVolume(s1, Materials::get(
"SUS304"),
"l1", 0, 0, 0);
294 G4Transform3D t1 = G4Translate3D(0, 185. / 2, (40. - 5) / 2);
295 l1->SetVisAttributes(batt);
297 Point_t v3[] = {{ -212. / 2, -135. / 2}, {212. / 2 - 30, -135. / 2}, {212. / 2, -135. / 2 + 30}, {212. / 2, 135. / 2} , { -212. / 2, 135. / 2}};
298 const int n3 =
sizeof(v3) /
sizeof(
Point_t);
299 G4ThreeVector c3[n3 * 2];
301 for (
int i = 0; i < n3; i++) c3[i + 0] = G4ThreeVector(v3[i].x, v3[i].y, -60. / 2);
302 for (
int i = 0; i < n3; i++) c3[i + n3] = G4ThreeVector(v3[i].x, v3[i].y, 60. / 2);
305 G4LogicalVolume* l3 =
new G4LogicalVolume(s3, Materials::get(
"SUS304"),
"l3", 0, 0, 0);
306 G4Transform3D t3 = G4Translate3D(0, 135. / 2 + 35, 40. - 5. + 212. / 2) * G4RotateY3D(-M_PI / 2);
307 l3->SetVisAttributes(batt);
309 G4VSolid* s6 =
new G4Box(
"leg_p6", 140. / 2, 189. / 2, 160. / 2);
310 G4LogicalVolume* l6 =
new G4LogicalVolume(s6, Materials::get(
"G4_AIR"),
"l6", 0, 0, 0);
311 G4Transform3D t6 = G4Translate3D(0, 170. + 189. / 2, 57. + 35. + 160. / 2);
312 l6->SetVisAttributes(att(
"air"));
314 G4VSolid* s6a =
new G4Box(
"leg_p6a", 140. / 2, (189. - 45.) / 2, 160. / 2);
315 G4LogicalVolume* l6a =
new G4LogicalVolume(s6a, Materials::get(
"SUS304"),
"l6a", 0, 0, 0);
316 l6a->SetVisAttributes(batt);
317 new G4PVPlacement(G4TranslateY3D(-45. / 2), l6a,
"l6a_physical", l6,
false, 0, overlap);
319 G4VSolid* s6b =
new G4Box(
"leg_p6b", 60. / 2, 45. / 2, 160. / 2);
320 G4LogicalVolume* l6b =
new G4LogicalVolume(s6b, Materials::get(
"SUS304"),
"l6b", 0, 0, 0);
321 l6b->SetVisAttributes(batt);
322 double dy = 189. / 2 - 45 + 45. / 2;
323 new G4PVPlacement(G4TranslateY3D(dy), l6b,
"l6b_physical", l6,
false, 0, overlap);
325 G4VSolid* s6c =
new G4Box(
"leg_p6c", 40. / 2, 45. / 2, 22.5 / 2);
326 G4LogicalVolume* l6c =
new G4LogicalVolume(s6c, Materials::get(
"SUS304"),
"l6c", 0, 0, 0);
327 l6c->SetVisAttributes(batt);
328 new G4PVPlacement(G4Translate3D(30 + 20, dy, 20 + 22.5 / 2), l6c,
"l6c_physical", l6,
false, 0, overlap);
329 new G4PVPlacement(G4Translate3D(30 + 20, dy, -20 - 22.5 / 2), l6c,
"l6c_physical", l6,
false, 1, overlap);
330 new G4PVPlacement(G4Translate3D(-30 - 20, dy, 20 + 22.5 / 2), l6c,
"l6c_physical", l6,
false, 2, overlap);
331 new G4PVPlacement(G4Translate3D(-30 - 20, dy, -20 - 22.5 / 2), l6c,
"l6c_physical", l6,
false, 3, overlap);
333 G4AssemblyVolume* support_leg =
new G4AssemblyVolume();
335 support_leg->AddPlacedVolume(l1, t1);
337 support_leg->AddPlacedVolume(l3, t3);
340 support_leg->AddPlacedVolume(l6, t6);
342 G4VSolid* s_all =
new G4Box(
"leg_all", 140. / 2, 359. / 2, (257. - 5.) / 2);
343 G4LogicalVolume* l_all =
new G4LogicalVolume(s_all, Materials::get(
"G4_AIR"),
"l_all", 0, 0, 0);
344 l_all->SetVisAttributes(att(
"air"));
345 G4Transform3D tp = G4Translate3D(0, -359. / 2, -(257. - 5.) / 2);
346 support_leg->MakeImprint(l_all, tp, 0, overlap);
349 for (
int i = 0; i < 8; i++)
350 new G4PVPlacement(gTrans * G4RotateX3D(M_PI)*G4RotateZ3D(-M_PI / 2 + M_PI / 8 + i * M_PI / 4)*G4Translate3D(0,
351 1496 - 185 + 359. / 2,
352 434 + 5 + (257. - 5.) / 2), l_all,
"lall_physical", top,
false, i, overlap);
355 G4VSolid* s1a =
new G4Box(
"leg_p1a", 130. / 2, 178. / 2, 5. / 2);
356 G4LogicalVolume* l1a =
new G4LogicalVolume(s1a, Materials::get(
"SUS304"),
"l1a", 0, 0, 0);
357 l1a->SetVisAttributes(batt);
358 for (
int i = 0; i < 8; i++)
359 new G4PVPlacement(gTrans * G4RotateX3D(M_PI)*G4RotateZ3D(-M_PI / 2 + M_PI / 8 + i * M_PI / 4)*G4Translate3D(0,
360 1496 - 185 + 178. / 2,
361 434 + 5 - 5. / 2), l1a,
"l1a_physical", top,
false, i, overlap);
a Belle crystal in Geant4
void backward(G4LogicalVolume &)
Place elements inside the backward endcap.
Common code concerning the geometry representation of the detector.
Abstract base class for different kinds of events.