![]() |
Belle II Software
release-06-00-14
|
Public Member Functions | |
def | __init__ (self, quantity_name, unit=None, outlier_z_score=None, absolute=False, contact='', plot_name=None, plot_title=None, plot_name_prefix='', plot_name_postfix='', plot_title_postfix='', referenceFileName=None # if set binnings of plots will be read from corresponding histograms) |
def | analyse (self, truths, estimates, variances=None, auxiliaries={}, which_plots=None, is_expert=None) |
def | contact (self) |
def | contact (self, contact) |
def | write (self, tDirectory=None) |
Public Attributes | |
quantity_name | |
name of the quantity the analysis is performed on | |
unit | |
unit the quanitity is given in | |
outlier_z_score | |
the outlier score defines in terms of how many std deviations a data point is considered as an outlier | |
absolute | |
if true only the absolute value is compared | |
plot_name | |
name of the plot | |
plot_title | |
title of the plot | |
plot_name_prefix | |
prefix to be prepended to the plot name | |
plot_name_postfix | |
post fix to be append after the plot name | |
plot_title_postfix | |
postfix to be appended after the title | |
plots | |
dictionary to store the plots | |
referenceFileName | |
name of the reference file, if set the binnings of plots will be read from the corresponding object in that file | |
contact | |
Forward the contract to all plots by reassigning the contact. | |
Static Public Attributes | |
float | default_outlier_z_score = 5.0 |
default outlier z score | |
string | default_plot_name = "{plot_name_prefix}_{subplot_name}{plot_name_postfix}" |
default plot name | |
string | default_plot_title = "{subplot_title} of {quantity_name}{plot_title_postfix}" |
default plot title | |
list | default_which_plots |
default list of plots to be created in this analysis More... | |
bool | default_is_expert = True |
if true the plots created here are declared as expert plots in the validation | |
Private Attributes | |
_contact | |
contact information | |
Performs a comparision of an estimated quantity to their truths by generating standardized validation plots.
def __init__ | ( | self, | |
quantity_name, | |||
unit = None , |
|||
outlier_z_score = None , |
|||
absolute = False , |
|||
contact = '' , |
|||
plot_name = None , |
|||
plot_title = None , |
|||
plot_name_prefix = '' , |
|||
plot_name_postfix = '' , |
|||
plot_title_postfix = '' , |
|||
referenceFileName = None # if set binnings of plots will be read from corresponding histograms |
|||
) |
def analyse | ( | self, | |
truths, | |||
estimates, | |||
variances = None , |
|||
auxiliaries = {} , |
|||
which_plots = None , |
|||
is_expert = None |
|||
) |
Compares the concrete estimate to the truth and generates plots of the estimates, residuals, pulls and p-values. Close indicates if the figure shall be closed after they are saved. Parameters ---------- truths : array_like(float) Sample of the true values estimates : array_like(float) Corresponding estimations variances : array_like(float), optional Corresponding variance estimations auxiliaries : Dict[name, array_like(float)], optional Auxiliary variable to show distribution of residuals and pull as function selected_plots : list(str), optional List of analysis plots to be generated. All if not given. Currently valid names are truths, estimates, diag_profile, diag_scatter, residuals, sigmas, pulls, p_values
def contact | ( | self, | |
contact | |||
) |
def write | ( | self, | |
tDirectory = None |
|||
) |
|
static |