Belle II Software  release-06-01-15
HitXPModule.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #include <tracking/modules/trackingPerformanceEvaluation/HitXPModule.h>
10 #include <framework/datastore/StoreArray.h>
11 #include <framework/datastore/RelationArray.h>
12 #include <mdst/dataobjects/MCParticle.h>
13 #include <svd/dataobjects/SVDCluster.h>
14 #include <svd/dataobjects/SVDTrueHit.h>
15 #include <TFile.h>
16 #include <tracking/dataobjects/RecoTrack.h>
17 #include <tracking/dataobjects/hitXPDerivate.h>
18 
19 #include <string>
20 
21 using namespace Belle2;
22 
23 REG_MODULE(HitXP)
24 
26 {
27  setDescription("This module builds a ttree with true hit informations (momentum, position, PDGID, and track parameters hit per hit) running over simulated and reconstructed events.");
28 
30  addParam("additionalTree", c_addTree,
31  "produce two additional tree with reduced date: selTree (track with at least one hit per layer), tiSelTree (track with one hit per layer)",
32  false);
33 
34 }
35 
36 
37 HitXPModule::~HitXPModule()
38 {
39 }
40 
41 
42 
44 {
45 
47  StoreArray<SVDCluster> storeClusters("");
48  StoreArray<SVDTrueHit> storeTrueHits("");
49  StoreArray<MCParticle> storeMCParticles("");
50  StoreArray<RecoTrack> recoTracks("");
51 
52 
53  storeClusters.isRequired();
54  storeTrueHits.isRequired();
55  storeMCParticles.isRequired();
56  recoTracks.isRequired();
57 
58 
59  RelationArray relClusterTrueHits(storeClusters, storeTrueHits);
60  RelationArray relClusterMCParticles(storeClusters, storeMCParticles);
61  RelationArray recoTracksToMCParticles(recoTracks , storeMCParticles);
62 
63 
64 
73  m_outputFile = new TFile("TFile_hitXP.root", "RECREATE");
74  m_tree = new TTree("TTree_hitXP", "TTree_hitXP");
75 
76  m_tree->Branch("hitXP", &m_hitXP);
77  m_tree->Branch("trackNumber", &m_trackNumber);
78  m_tree->Branch("eventNumber", &m_eventNumber);
79  m_tree->Branch("numberHitPerTrack", &m_numberHitPerTrack);
80 
81  m_trackIterator = 0;
82  m_eventIterator = 0;
83 
84  //-------------------------------------------------------------------------------------------------//
85  //------------------------------------selected Tree creation--------------------------------------//
86  //-------------------------------------------------------------------------------------------------//
87  if (c_addTree) m_outputFileSel = new TFile("TFile_hitXPSel.root", "RECREATE");
88  m_treeSel = new TTree("TTree_hitXPSel", "TTree_hitXPSel");
89 
90  m_treeSel->Branch("hitXP", &m_hitXPSel);
91  m_treeSel->Branch("trackNumber", &m_trackNumberSel);
92  m_treeSel->Branch("eventNumber", &m_eventNumberSel);
93  m_treeSel->Branch("numberHitPerTrack", &m_numberHitPerTrackSel);
94 
95 
96  //-------------------------------------------------------------------------------------------------//
97  //------------------------------------tight selected Tree creation--------------------------------------//
98  //-------------------------------------------------------------------------------------------------//
99  if (c_addTree) m_outputFileTiSel = new TFile("TFile_hitXPTiSel.root", "RECREATE");
100  m_treeTiSel = new TTree("TTree_hitXPTiSel", "TTree_hitXPTiSel");
101 
102  m_treeTiSel->Branch("hitXP", &m_hitXPTiSel);
103  m_treeTiSel->Branch("trackNumber", &m_trackNumberTiSel);
104  m_treeTiSel->Branch("eventNumber", &m_eventNumberTiSel);
105  m_treeTiSel->Branch("numberHitPerTrack", &m_numberHitPerTrackTiSel);
106 
107 
108 //-------------------------------------------------------------------------------------------------//
109 //------------------------------------External Tree creation--------------------------------------//
110 //-------------------------------------------------------------------------------------------------//
111 
113  m_outputFileExt = new TFile("TFile_hitXP_ext.root", "RECREATE");
114  m_treeExt = new TTree("TTree_hitXP_ext", "TTree_hitXP_ext");
115 
116  m_treeExt->Branch("positionEntryX", &m_EpositionEntryX);
117  m_treeExt->Branch("positionEntryY", &m_EpositionEntryY);
118  m_treeExt->Branch("positionEntryZ", &m_EpositionEntryZ);
119  m_treeExt->Branch("momentumEntryX", &m_EmomentumEntryX);
120  m_treeExt->Branch("momentumEntryY", &m_EmomentumEntryY);
121  m_treeExt->Branch("momentumEntryZ", &m_EmomentumEntryZ);
122  m_treeExt->Branch("positionLocalEntryX", &m_EpositionLocalEntryX);
123  m_treeExt->Branch("positionLocalEntryY", &m_EpositionLocalEntryY);
124  m_treeExt->Branch("positionLocalEntryZ", &m_EpositionLocalEntryZ);
125  m_treeExt->Branch("PDGID", &m_EPDGID);
126  m_treeExt->Branch("position0X", &m_Eposition0X);
127  m_treeExt->Branch("position0Y", &m_Eposition0Y);
128  m_treeExt->Branch("position0Z", &m_Eposition0Z);
129  m_treeExt->Branch("momentum0X", &m_Emomentum0X);
130  m_treeExt->Branch("momentum0Y", &m_Emomentum0Y);
131  m_treeExt->Branch("momentum0Z", &m_Emomentum0Z);
132  m_treeExt->Branch("time", &m_Etime);
133  m_treeExt->Branch("sensorSensor", &m_EsensorSensor);
134  m_treeExt->Branch("sensorLayer", &m_EsensorLayer);
135  m_treeExt->Branch("sensorLadder", &m_EsensorLadder);
136  m_treeExt->Branch("reconstructed", &m_Ereconstructed);
137  m_treeExt->Branch("clusterU", &m_EclusterU);
138  m_treeExt->Branch("clusterV", &m_EclusterV);
139  m_treeExt->Branch("charge", &m_Echarge);
140  m_treeExt->Branch("trackNumber", &m_EtrackNumber);
141  m_treeExt->Branch("eventNumber", &m_EeventNumber);
142  m_treeExt->Branch("numberHitPerTrack", &m_EnumberHitPerTrack);
143  m_treeExt->Branch("omegaEntry", &m_EomegaEntry);
144  m_treeExt->Branch("omega0", &m_Eomega0);
145  m_treeExt->Branch("d0Entry", &m_Ed0Entry);
146  m_treeExt->Branch("d00", &m_Ed00);
147  m_treeExt->Branch("phi0Entry", &m_Ephi0Entry);
148  m_treeExt->Branch("phi00", &m_Ephi00);
149  m_treeExt->Branch("z0Entry", &m_Ez0Entry);
150  m_treeExt->Branch("z00", &m_Ez00);
151  m_treeExt->Branch("tanlambdaEntry", &m_EtanlambdaEntry);
152  m_treeExt->Branch("tanlambda0", &m_Etanlambda0);
153  m_treeExt->Branch("primary", &m_Eprimary);
154 
155 }
156 
158 
160 {
161  StoreArray<MCParticle> MCParticles;
162 
164  m_EeventNumber = m_eventIterator; //------------External Tree---------//
166 
167 
168  for (const MCParticle& particle : MCParticles) {
169  m_Eprimary = particle.getStatus();
170  for (const SVDTrueHit& hit : particle.getRelationsTo<SVDTrueHit>()) {
171  if (hit.getRelationsFrom<SVDCluster>().size() > 0) {
172  VxdID trueHitSensorID = hit.getSensorID();
173  const VXD::SensorInfoBase& sensorInfo = VXD::GeoCache::getInstance().getSensorInfo(trueHitSensorID);
174  const SVDCluster* cluster = hit.getRelationsFrom<SVDCluster>()[0];
175  hitXPDerivate entry(hit, *cluster, particle, sensorInfo);
176  int NClusterU = 0;
177  int NClusterV = 0;
178  for (SVDCluster Ncluster : hit.getRelationsFrom<SVDCluster>()) {
179  if (Ncluster.isUCluster()) NClusterU++;
180  else NClusterV++;
181  }
182  entry.setClusterU(NClusterU);
183  entry.setClusterV(NClusterV);
184 
185  bool isReconstructed(false);
186  for (const RecoTrack& aRecoTrack : particle.getRelationsFrom<RecoTrack>())
187  isReconstructed |= aRecoTrack.hasSVDHits();
188  entry.setReconstructed(isReconstructed);
189  m_hitXPSet.insert(entry);
190  }
191  }
193  m_EtrackNumber = m_trackIterator; //----------------External Tree ----------------//
195 
196  for (auto element : m_hitXPSet) {
197  m_hitXP.push_back(element);
198 
199  //-----------------External Tree ---------------------------- //
200  m_EpositionEntryX.push_back(element.m_positionEntry.x());
201  m_EpositionEntryY.push_back(element.m_positionEntry.y());
202  m_EpositionEntryZ.push_back(element.m_positionEntry.z());
203  m_EmomentumEntryX.push_back(element.m_momentumEntry.x());
204  m_EmomentumEntryY.push_back(element.m_momentumEntry.y());
205  m_EmomentumEntryZ.push_back(element.m_momentumEntry.z());
206  m_EpositionLocalEntryX.push_back(element.m_positionLocalEntry.x());
207  m_EpositionLocalEntryY.push_back(element.m_positionLocalEntry.y());
208  m_EpositionLocalEntryZ.push_back(element.m_positionLocalEntry.z());
209  m_EPDGID.push_back(element.m_PDGID);
210  m_Eposition0X.push_back(element.m_position0.x());
211  m_Eposition0Y.push_back(element.m_position0.y());
212  m_Eposition0Z.push_back(element.m_position0.z());
213  m_Emomentum0X.push_back(element.m_momentum0.x());
214  m_Emomentum0Y.push_back(element.m_momentum0.y());
215  m_Emomentum0Z.push_back(element.m_momentum0.z());
216  m_Etime.push_back(element.m_time);
217  m_EsensorSensor.push_back(element.m_sensorSensor);
218  m_EsensorLayer.push_back(element.m_sensorLayer);
219  m_EsensorLadder.push_back(element.m_sensorLadder);
220  m_Ereconstructed.push_back(element.m_reconstructed);
221  m_EclusterU.push_back(element.m_clusterU);
222  m_EclusterV.push_back(element.m_clusterV);
223  m_Echarge.push_back(element.m_charge);
224  m_EomegaEntry.push_back(element.getOmegaEntry());
225  m_Eomega0.push_back(element.getOmega0());
226  m_Ed0Entry.push_back(element.getD0Entry());
227  m_Ed00.push_back(element.getD00());
228  m_Ephi0Entry.push_back(element.getPhi0Entry());
229  m_Ephi00.push_back(element.getPhi00());
230  m_Ez0Entry.push_back(element.getZ0Entry());
231  m_Ez00.push_back(element.getZ00());
232  m_EtanlambdaEntry.push_back(element.getTanLambdaEntry());
233  m_Etanlambda0.push_back(element.getTanLambda0());
234  }
235  m_numberHitPerTrack = m_hitXP.size();
236  m_EnumberHitPerTrack = m_hitXP.size(); //-------external tree--------------//
237 
238 
239  m_tree->Fill();
240 
241  //-------external tree--------------//
242  m_treeExt->Fill();
243  m_EpositionEntryX.clear();
244  m_EpositionEntryY.clear();
245  m_EpositionEntryZ.clear();
246  m_EmomentumEntryX.clear();
247  m_EmomentumEntryY.clear();
248  m_EmomentumEntryZ.clear();
249  m_EpositionLocalEntryX.clear();
250  m_EpositionLocalEntryY.clear();
251  m_EpositionLocalEntryZ.clear();
252  m_EPDGID.clear();
253  m_Eposition0X.clear();
254  m_Eposition0Y.clear();
255  m_Eposition0Z.clear();
256  m_Emomentum0X.clear();
257  m_Emomentum0Y.clear();
258  m_Emomentum0Z.clear();
259  m_Etime.clear();
260  m_EsensorSensor.clear();
261  m_EsensorLayer.clear();
262  m_EsensorLadder.clear();
263  m_Ereconstructed.clear();
264  m_EclusterU.clear();
265  m_EclusterV.clear();
266  m_Echarge.clear();
267  m_EomegaEntry.clear();
268  m_Eomega0.clear();
269  m_Ed0Entry.clear();
270  m_Ed00.clear();
271  m_Ephi0Entry.clear();
272  m_Ephi00.clear();
273  m_Ez0Entry.clear();
274  m_Ez00.clear();
275  m_EtanlambdaEntry.clear();
276  m_Etanlambda0.clear();
277 
278 
279 
280  //-------------------------------------------------------------------------------------------------//
281  //------------------------------------Selected Tree creation--------------------------------------//
282  //-------------------------------------------------------------------------------------------------//
284  int f3 = 0, f4 = 0, f5 = 0, f6 = 0;
285  int layer_flag = 0;
286  unsigned int j = 0;
287  int brk = 0;
288  std::vector<hitXP> temp_hitXP;
289  while (j < m_hitXP.size() && brk == 0) {
290  if (m_hitXP[j].m_sensorLayer == 3) {
291  f3 = 1;
292  temp_hitXP.push_back(m_hitXP[j]);
293  j++;
294  while (j < m_hitXP.size() && brk == 0) {
295  if (m_hitXP[j].m_sensorLayer == 4) {
296  f4 = 1;
297  temp_hitXP.push_back(m_hitXP[j]);
298  j++;
299  while (j < m_hitXP.size() && brk == 0) {
300  if (m_hitXP[j].m_sensorLayer == 5) {
301  f5 = 1;
302  temp_hitXP.push_back(m_hitXP[j]);
303  j++;
304  while (j < m_hitXP.size() && brk == 0) {
305  if (m_hitXP[j].m_sensorLayer == 6) {
306  f6 = 1;
307  temp_hitXP.push_back(m_hitXP[j]);
308  brk = 1;
309  j++;
310  }
311  j++;
312  }
313  }
314  j++;
315  }
316  }
317  j++;
318  }
319  }
320  j++;
321  }
322  layer_flag = f3 * f4 * f5 * f6;
323  if (layer_flag != 0) {
324  int k;
325  for (k = 0; k < 4; k = k + 1) {
326  m_hitXPSel.push_back(temp_hitXP[k]);
327  }
331  m_treeSel->Fill();
332  m_hitXPSel.erase(m_hitXPSel.begin(), m_hitXPSel.end());
333  }
334 
335 
336 
337  //-------------------------------------------------------------------------------------------------//
338  //------------------------------------Tight Selected Tree creation--------------------------------------//
339  //-------------------------------------------------------------------------------------------------//
341  if (m_numberHitPerTrack == 4 && m_hitXP[0].m_sensorLayer == 3 && m_hitXP[1].m_sensorLayer == 4
342  && m_hitXP[2].m_sensorLayer == 5 && m_hitXP[3].m_sensorLayer == 6) {
343  int h = 0;
344  for (h = 0; h < 4; h = h + 1) {
345  m_hitXPTiSel.push_back(m_hitXP[h]);
346  }
350  m_treeTiSel->Fill();
351  m_hitXPTiSel.erase(m_hitXPTiSel.begin(), m_hitXPTiSel.end());
352  }
353  m_hitXP.erase(m_hitXP.begin(), m_hitXP.end());
354  m_hitXPSet.clear();
355  }
356 }
357 
358 
359 
361 {
362  m_outputFile->cd();
363  m_tree->Write();
364  m_outputFile->Close();
365 
366  if (c_addTree) {
367  //-------------------------------------------------------------------------------------------------//
368  //------------------------------------selected Tree storage--------------------------------------//
369  //-------------------------------------------------------------------------------------------------//
370  m_outputFileSel->cd();
371  m_treeSel->Write();
372  m_outputFileSel->Close();
373 
374 
375  //-------------------------------------------------------------------------------------------------//
376  //------------------------------------tight selected Tree storage--------------------------------------//
377  //-------------------------------------------------------------------------------------------------//
378  m_outputFileTiSel->cd();
379  m_treeTiSel->Write();
380  m_outputFileTiSel->Close();
381  }
382 
383 
384  //-------------------------------------------------------------------------------------------------//
385  //------------------------------------external Tree storage--------------------------------------//
386  //-------------------------------------------------------------------------------------------------//
387  m_outputFileExt->cd();
388  m_treeExt->Write();
389  m_outputFileExt->Close();
390 }
391 
This module from a data root file builds a tree of hitXP (see the class to know all the informations ...
Definition: HitXPModule.h:39
std::vector< double > m_EmomentumEntryX
exteral momentum at entry point, coordinate x
Definition: HitXPModule.h:95
std::vector< int > m_EclusterV
external flag of v-cluster
Definition: HitXPModule.h:114
TFile * m_outputFile
output file
Definition: HitXPModule.h:65
std::vector< double > m_EomegaEntry
external omega parameter at entry point
Definition: HitXPModule.h:119
std::vector< hitXP > m_hitXPSel
selected vector of hitXP
Definition: HitXPModule.h:78
TTree * m_treeTiSel
tight selected output tree
Definition: HitXPModule.h:83
TTree * m_tree
full output tree
Definition: HitXPModule.h:64
std::vector< double > m_Etanlambda0
external tanlambda parameter at IP
Definition: HitXPModule.h:128
std::vector< double > m_EtanlambdaEntry
external tanlambda parameter at entry point
Definition: HitXPModule.h:127
TTree * m_treeExt
external output tree
Definition: HitXPModule.h:91
std::vector< int > m_EPDGID
external PDGID
Definition: HitXPModule.h:101
std::vector< int > m_EsensorLayer
external layer of the hit
Definition: HitXPModule.h:110
int m_Eprimary
external flag for primary particles
Definition: HitXPModule.h:129
std::vector< double > m_EmomentumEntryY
exteral momentum at entry point, coordinate x
Definition: HitXPModule.h:96
void initialize() override
Initialize the Module.
Definition: HitXPModule.cc:43
int m_eventNumberTiSel
tight selected interative number of the event in the run
Definition: HitXPModule.h:87
bool c_addTree
parameter to produce additional tree
Definition: HitXPModule.h:68
void event() override
This method is the core of the module.
Definition: HitXPModule.cc:159
TFile * m_outputFileSel
selected output file
Definition: HitXPModule.h:77
TTree * m_treeSel
selected output tree
Definition: HitXPModule.h:76
std::vector< double > m_EpositionLocalEntryZ
exteral local position at entry point, coordinate z
Definition: HitXPModule.h:100
std::vector< int > m_Ereconstructed
external flag of track-reconstruction or not
Definition: HitXPModule.h:112
std::vector< double > m_EmomentumEntryZ
exteral momentum at entry point, coordinate x
Definition: HitXPModule.h:97
std::vector< double > m_Etime
external time of the hit
Definition: HitXPModule.h:108
void endRun() override
This method is called if the current run ends.
Definition: HitXPModule.cc:360
std::vector< double > m_Ephi0Entry
external phi0 parameter at entry point
Definition: HitXPModule.h:123
std::vector< double > m_Ed00
external d0 parameter at IP
Definition: HitXPModule.h:122
std::vector< int > m_EsensorSensor
external sensor of the hit
Definition: HitXPModule.h:109
int m_trackNumberSel
selected iterative number of the track in the run
Definition: HitXPModule.h:79
void terminate() override
This method is called at the end of the event processing.
Definition: HitXPModule.cc:392
std::vector< double > m_Emomentum0X
extral momentum at IP, coordinate x
Definition: HitXPModule.h:105
std::vector< double > m_Eposition0X
extral position at IP, coordinate x
Definition: HitXPModule.h:102
std::vector< double > m_EpositionLocalEntryY
exteral local position at entry point, coordinate y
Definition: HitXPModule.h:99
int m_trackIterator
iterator used to count track (m_trackNumber)
Definition: HitXPModule.h:73
std::vector< int > m_EsensorLadder
external ladder of the hit
Definition: HitXPModule.h:111
std::vector< double > m_EpositionLocalEntryX
exteral local position at entry point, coordinate x
Definition: HitXPModule.h:98
std::vector< double > m_Emomentum0Y
extral momentum at IP, coordinate y
Definition: HitXPModule.h:106
std::vector< int > m_EclusterU
external flag of u-cluster
Definition: HitXPModule.h:113
int m_EeventNumber
external iterator of event in the run
Definition: HitXPModule.h:117
std::vector< double > m_EpositionEntryX
exteral position at entry point, coordinate x
Definition: HitXPModule.h:92
int m_numberHitPerTrackTiSel
tight selected counter of the number of the hit for each track
Definition: HitXPModule.h:88
std::vector< hitXP > m_hitXPTiSel
tight selected vector of hitXP
Definition: HitXPModule.h:85
int m_eventNumber
interative number of the event in the run
Definition: HitXPModule.h:71
int m_numberHitPerTrack
counter of the number of the hit for each track
Definition: HitXPModule.h:72
TFile * m_outputFileTiSel
tight selected output file
Definition: HitXPModule.h:84
void beginRun() override
Called when entering a new run.
Definition: HitXPModule.cc:157
int m_trackNumber
iterative number of the track in the run
Definition: HitXPModule.h:70
std::set< hitXP, hitXP::timeCompare > m_hitXPSet
set of the hitXP, used to order tn time he hit
Definition: HitXPModule.h:67
TFile * m_outputFileExt
external output file
Definition: HitXPModule.h:90
std::vector< double > m_EpositionEntryZ
exteral position at entry point, coordinate z
Definition: HitXPModule.h:94
int m_eventNumberSel
selected interative number of the event in the run
Definition: HitXPModule.h:80
std::vector< double > m_Emomentum0Z
extral momentum at IP, coordinate z
Definition: HitXPModule.h:107
int m_trackNumberTiSel
tight selected iterative number of the track in the run
Definition: HitXPModule.h:86
std::vector< double > m_Ephi00
external phi0 parameter at IP
Definition: HitXPModule.h:124
std::vector< double > m_Echarge
external charge
Definition: HitXPModule.h:115
int m_numberHitPerTrackSel
selected counter of the number of the hit for each track
Definition: HitXPModule.h:81
std::vector< hitXP > m_hitXP
vector of the hitXP, used to fill the output tree
Definition: HitXPModule.h:66
int m_EtrackNumber
external iterator of track in the run
Definition: HitXPModule.h:116
std::vector< double > m_EpositionEntryY
exteral position at entry point, coordinate y
Definition: HitXPModule.h:93
int m_eventIterator
iterator used to count event number (m_eventNumber)
Definition: HitXPModule.h:74
std::vector< double > m_Ed0Entry
external d0 parameter at entry point
Definition: HitXPModule.h:121
std::vector< double > m_Ez00
external z0 parameter at IP
Definition: HitXPModule.h:126
std::vector< double > m_Eomega0
external omega parameter at IP
Definition: HitXPModule.h:120
std::vector< double > m_Eposition0Z
extral position at IP, coordinate z
Definition: HitXPModule.h:104
int m_EnumberHitPerTrack
external numer of the hit for each track
Definition: HitXPModule.h:118
std::vector< double > m_Eposition0Y
extral position at IP, coordinate y
Definition: HitXPModule.h:103
std::vector< double > m_Ez0Entry
external z0 parameter at entry point
Definition: HitXPModule.h:125
A Class to store the Monte Carlo particle information.
Definition: MCParticle.h:32
Base class for Modules.
Definition: Module.h:72
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:76
Low-level class to create/modify relations between StoreArrays.
Definition: RelationArray.h:62
The SVD Cluster class This class stores all information about reconstructed SVD clusters.
Definition: SVDCluster.h:28
Class SVDTrueHit - Records of tracks that either enter or leave the sensitive volume.
Definition: SVDTrueHit.h:33
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
const SensorInfoBase & getSensorInfo(Belle2::VxdID id) const
Return a referecne to the SensorInfo of a given SensorID.
Definition: GeoCache.cc:66
static GeoCache & getInstance()
Return a reference to the singleton instance.
Definition: GeoCache.cc:213
Base class to provide Sensor Information for PXD and SVD.
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
This class is the derivate of HitXP, and complete it with a constructor that use all other complex ty...
Definition: hitXPDerivate.h:27
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
Abstract base class for different kinds of events.