9 #include <svd/modules/svdSimulation/SVDDigitizerModule.h>
10 #include <vxd/geometry/GeoCache.h>
12 #include <framework/dataobjects/EventMetaData.h>
13 #include <framework/logging/Logger.h>
14 #include <framework/gearbox/Unit.h>
15 #include <framework/gearbox/Const.h>
16 #include <framework/datastore/DataStore.h>
17 #include <framework/datastore/StoreArray.h>
18 #include <framework/datastore/StoreObjPtr.h>
19 #include <framework/datastore/RelationArray.h>
20 #include <framework/datastore/RelationIndex.h>
21 #include <mdst/dataobjects/MCParticle.h>
22 #include <svd/dataobjects/SVDTrueHit.h>
23 #include <svd/dataobjects/SVDShaperDigit.h>
24 #include <svd/dataobjects/SVDEventInfo.h>
31 #include <root/TMath.h>
32 #include <root/TRandom.h>
46 double tree_signal[20];
58 SVDDigitizerModule::SVDDigitizerModule() :
Module(),
59 m_currentSensorWaveforms(nullptr),
60 m_mapping(m_xmlFileName)
86 "Zero suppression cut in sigmas of strip noise",
m_SNAdjacent);
88 "FADC mode: if True, ZS cut is rounded to nearest ADU ",
m_roundZS);
90 "Keep digit if numberOfSamples or more samples are over ZS threshold",
99 "Interval between ADC samples in ns, if = -1 taken from HardwareClockSettings payload (default).",
m_samplingTime);
101 "Start of the sampling window, in ns. Used to tune the SVD latency.",
m_startSampling);
105 "Left edge of event time randomization window, ns",
m_minTimeFrame);
107 "Right edge of event time randomization window, ns",
m_maxTimeFrame);
112 "ROOT Filename for statistics generation. If filename is empty, no statistics will be produced",
117 "Store signals (time/charge/tau) in a tab-delimited file",
162 "SVDDigitizer parameters (in default system units, *=cannot be set directly):");
163 B2DEBUG(29,
" DATASTORE COLLECTIONS:");
176 B2DEBUG(29,
" PHYSICS: ");
178 B2DEBUG(29,
" NOISE: ");
179 B2DEBUG(29,
" --> Add Poisson noise " << (
m_applyPoisson ?
"true" :
"false"));
180 B2DEBUG(29,
" --> Zero suppression cut" <<
m_SNAdjacent);
181 B2DEBUG(29,
" --> Round ZS cut: " << (
m_roundZS ?
"true" :
"false"));
184 B2DEBUG(29,
" TIMING: ");
188 B2DEBUG(29,
" REPORTING: ");
200 " 'Diffusion' distance, u", 100, -200, 200);
206 "Lorentz angle, electrons", 100, -0.002, 0.002);
209 "Strip signals vs. TrueHits, holes", 100, -400, 400);
210 m_signalDist_u->GetXaxis()->SetTitle(
"U strip position - TrueHit u [um]");
212 "Strip signals vs. TrueHits, electrons", 100, -400, 400);
213 m_signalDist_v->GetXaxis()->SetTitle(
"V strip position - TrueHit v [um]");
234 30, -0.002, -0.0004);
248 200, -100, 100, 4, -0.5, 3.5);
253 m_waveTree =
new TTree(
"waveTree",
"SVD waveforms");
254 m_waveTree->Branch(
"sensor", &tree_vxdID,
"sensor/I");
255 m_waveTree->Branch(
"u_or_v", &tree_uv,
"u_or_v/I");
256 m_waveTree->Branch(
"strip", &tree_strip,
"strip/I");
257 m_waveTree->Branch(
"signal", tree_signal,
"signal[20]/D");
290 B2WARNING(
"No valid SVDFADCMaskedStrip for the requested IoV -> no strips masked");
292 B2WARNING(
"No valid channel mapping -> all APVs will be enabled");
302 SVDModeByte modeByte = storeSVDEvtInfo->getModeByte();
307 const double systemClockPeriod = 1. /
m_hwClock->getGlobalClockFrequency();
332 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
333 sensorWaveforms.second.first.clear();
334 sensorWaveforms.second.second.clear();
349 unsigned int nSimHits = storeSimHits.
getEntries();
355 for (
unsigned int i = 0; i < nSimHits; ++i) {
371 "Could not find MCParticle which produced SVDSimhit " << i);
377 if (trueRel && trueRel->
weight > 0) {
389 "Sensor Information for Sensor " << sensorID <<
" not found, make sure that the geometry is set up correctly");
396 "Sensor Parameters for Sensor " << sensorID <<
": " << endl
409 "Processing hit " << i <<
" in Sensor " << sensorID <<
", related to MCParticle " <<
m_currentParticle);
435 TVector3 direction = stopPoint - startPoint;
436 double trackLength = direction.Mag();
446 double lastFraction {0};
447 double lastElectrons {0};
449 for (
auto& segment : segments) {
452 const double f = (segment.first + lastFraction) / 2;
453 const double e = segment.second - lastElectrons;
455 std::tie(lastFraction, lastElectrons) = segment;
458 const TVector3 position = startPoint + f * direction;
459 driftCharge(position, e, SVD::SensorInfo::electron);
468 bool have_electrons = (carrierType == SVD::SensorInfo::electron);
470 string carrierName = (have_electrons) ?
"electron" :
"hole";
472 "Drifting " << carriers <<
" " << carrierName <<
"s at position (" << position.x() <<
", " << position.y() <<
", " << position.z()
474 B2DEBUG(29,
"@@@ driftCharge: drifting " << carriers <<
" " << carrierName <<
"s at position (" << position.x() <<
", " <<
475 position.y() <<
", " << position.z()
482 double distanceToPlane = (have_electrons) ?
491 TVector3 mean_pos(position.X(), position.Y(), position.Z() + 0.5 * distanceToPlane);
494 TVector3 v = info.getVelocity(carrierType, mean_pos);
498 double driftTime = distanceToPlane / v.Z();
502 TVector3 center = position + driftTime * v;
503 double mobility = (have_electrons) ?
504 info.getElectronMobility(info.getEField(mean_pos).Mag()) :
505 info.getHoleMobility(info.getEField(mean_pos).Mag());
511 double sigma = std::max(1.0e-4, sqrt(2.0 * D * driftTime));
512 double tanLorentz = (!have_electrons) ? v.X() / v.Z() : v.Y() / v.Z();
515 B2DEBUG(29,
"D = " << D <<
", driftTime = " << driftTime /
Unit::ns <<
" ns");
516 B2DEBUG(29,
"sigma = " << sigma /
Unit::um <<
" um");
517 B2DEBUG(29,
"tan Lorentz = " << tanLorentz);
519 sigma *= sqrt(1.0 + tanLorentz * tanLorentz);
524 int vID = info.getVCellID(center.Y(),
true);
525 int uID = info.getUCellID(center.X(), center.Y(),
true);
526 int seedStrip = (!have_electrons) ? uID : vID;
527 double seedPos = (!have_electrons) ?
528 info.getUCellPosition(seedStrip, vID) :
529 info.getVCellPosition(seedStrip);
530 double geomPitch = (!have_electrons) ? 0.5 * info.getUPitch(center.Y()) : 0.5 * info.getVPitch();
531 int nCells = (!have_electrons) ? info.getUCells() : info.getVCells();
532 std::deque<double> stripCharges;
533 std::deque<double> strips;
534 #define NORMAL_CDF(z) 0.5 * std::erfc( - (z) * 0.707107)
535 double current_pos = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
536 double current_strip = seedStrip;
537 double cdf_low = NORMAL_CDF((current_pos - 0.5 * geomPitch) / sigma);
538 double cdf_high = NORMAL_CDF((current_pos + 0.5 * geomPitch) / sigma);
539 double charge = carriers * (cdf_high - cdf_low);
541 B2DEBUG(29,
"geomPitch = " << geomPitch /
Unit::um <<
" um");
542 B2DEBUG(29,
"charge = " << charge <<
" = " << carriers <<
"(carriers) * (" << cdf_high <<
"(cdf_high) - " << cdf_low <<
545 stripCharges.push_back(charge);
546 strips.push_back(current_strip);
547 while (cdf_low > 1.0e-5) {
548 current_pos -= geomPitch;
549 current_strip -= 0.5;
550 double cdf_current = NORMAL_CDF((current_pos - 0.5 * geomPitch) / sigma);
551 charge = carriers * (cdf_low - cdf_current);
552 stripCharges.push_front(charge);
553 strips.push_front(current_strip);
554 cdf_low = cdf_current;
556 current_pos = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
557 current_strip = seedStrip;
558 while (cdf_high < 1.0 - 1.0e-5) {
559 current_pos += geomPitch;
560 current_strip += 0.5;
561 double cdf_current = NORMAL_CDF((current_pos + 0.5 * geomPitch) / sigma);
562 charge = carriers * (cdf_current - cdf_high);
563 stripCharges.push_back(charge);
564 strips.push_back(current_strip);
565 cdf_high = cdf_current;
570 int npads = (strips.front() - floor(strips.front()) == 0) ? 5 : 4;
571 for (
int i = 0; i < npads; ++i) {
572 strips.push_front(strips.front() - 0.5);
573 stripCharges.push_front(0);
575 npads = (strips.back() - floor(strips.back()) == 0) ? 5 : 4;
576 for (
int i = 0; i < npads; ++i) {
577 strips.push_back(strips.back() + 0.5);
578 stripCharges.push_back(0);
581 B2DEBUG(29,
" --> charge sharing simulation, # strips = " << strips.size());
582 std::deque<double> readoutCharges;
583 std::deque<int> readoutStrips;
585 for (std::size_t index = 3; index < strips.size() - 3; index += 2) {
586 B2DEBUG(29,
" index = " << index <<
", strip = " << strips[index] <<
", stripCharge = " << stripCharges[index]);
587 int currentStrip =
static_cast<int>(strips[index]);
594 B2DEBUG(29,
" current strip = " << currentStrip);
595 B2DEBUG(29,
" index-3 = " << index - 3 <<
", strip = " << strips[index - 3] <<
", stripCharge = " << stripCharges[index - 3]);
596 B2DEBUG(29,
" index-2 = " << index - 2 <<
", strip = " << strips[index - 2] <<
", stripCharge = " << stripCharges[index - 2]);
597 B2DEBUG(29,
" index-1 = " << index - 1 <<
", strip = " << strips[index - 1] <<
", stripCharge = " << stripCharges[index - 1]);
598 B2DEBUG(29,
" index = " << index <<
", strip = " << strips[index] <<
", stripCharge = " << stripCharges[index]);
599 B2DEBUG(29,
" index+1 = " << index + 1 <<
", strip = " << strips[index + 1] <<
", stripCharge = " << stripCharges[index + 1]);
600 B2DEBUG(29,
" index+2 = " << index + 2 <<
", strip = " << strips[index + 2] <<
", stripCharge = " << stripCharges[index + 2]);
601 B2DEBUG(29,
" index+3 = " << index + 3 <<
", strip = " << strips[index + 3] <<
", stripCharge = " << stripCharges[index + 3]);
603 readoutCharges.push_back(c3 * stripCharges[index - 3]
604 + c2 * stripCharges[index - 2]
605 + c1 * stripCharges[index - 1]
606 + c0 * stripCharges[index]
607 + c1 * stripCharges[index + 1]
608 + c2 * stripCharges[index + 2]
609 + c3 * stripCharges[index + 3]
611 readoutStrips.push_back(currentStrip);
612 B2DEBUG(29,
" post simulation: " << index <<
", strip = " << currentStrip <<
", readoutCharge = " <<
613 readoutCharges[readoutCharges.size() - 1]);
617 while (readoutStrips.size() > 0 && readoutStrips.front() < 0) {
618 readoutStrips.pop_front();
619 tail += readoutCharges.front();
620 readoutCharges.pop_front();
622 readoutCharges.front() += tail;
624 while (readoutStrips.size() > 0 && readoutStrips.back() > nCells - 1) {
625 readoutStrips.pop_back();
626 tail += readoutCharges.back();
627 readoutCharges.pop_back();
629 readoutCharges.back() += tail;
632 for (
auto& c : readoutCharges)
633 c = (c <= 0) ? 0 : std::max(0.0, gRandom->Gaus(c, std::sqrt(info.c_fanoFactorSi * c)));
638 double d = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
639 for (std::size_t index = 0; index < readoutStrips.size(); ++ index) {
640 double dist = d + (readoutStrips[index] - seedStrip) * 2 * geomPitch;
641 histo->Fill(dist /
Unit::um, readoutCharges[index]);
647 SVDModeByte modeByte = storeSVDEvtInfo->getModeByte();
662 double recoveredCharge = 0;
663 for (std::size_t index = 0; index < readoutStrips.size(); index ++) {
666 waveforms[readoutStrips[index]].add(
m_currentTime + 0.5 * driftTime, readoutCharges[index],
670 waveforms[readoutStrips[index]].add(
m_currentTime + 0.5 * driftTime, apvCoupling * readoutCharges[index - 1],
673 if (index < readoutStrips.size() - 1)
674 waveforms[readoutStrips[index]].add(
m_currentTime + 0.5 * driftTime, apvCoupling * readoutCharges[index + 1],
676 recoveredCharge += readoutCharges[index];
677 B2DEBUG(29,
"strip: " << readoutStrips[index] <<
" charge: " << readoutCharges[index]);
679 B2DEBUG(29,
"Digitized " << recoveredCharge <<
" of " << carriers <<
" original carriers.");
684 charge += gRandom->Gaus(0., noise);
694 RelationArray relShaperDigitMCParticle(storeShaperDigits, storeMCParticles,
696 RelationArray relShaperDigitTrueHit(storeShaperDigits, storeTrueHits,
705 vector<pair<unsigned int, float> > digit_weights;
708 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
709 int sensorID = sensorWaveforms.first;
713 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
714 short int iStrip = stripWaveform.first;
717 vector<double> samples;
719 digit_weights.clear();
727 B2DEBUG(25,
"start sampling at " <<
m_initTime);
729 samples.push_back(
addNoise(electronWeight * s(t), elNoise));
740 std::transform(samples.begin(), samples.end(), rawSamples.begin(),
741 [&](
double x)->SVDShaperDigit::APVRawSampleType {
742 return SVDShaperDigit::trimToSampleRange(x * gain);
747 if (
m_roundZS) rawThreshold = round(rawThreshold);
748 auto n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
749 std::bind2nd(std::greater<double>(), rawThreshold)
757 if (!
m_map->isAPVinMap(sensorID,
true, iStrip))
continue;
768 n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
769 std::bind2nd(std::greater<double>(), rawThreshold)
776 int digIndex = storeShaperDigits.
getEntries();
777 storeShaperDigits.
appendNew(sensorID,
true, iStrip, rawSamples, 0);
780 if (particles.size() > 0) {
781 relShaperDigitMCParticle.
add(digIndex, particles.begin(), particles.end());
784 if (truehits.size() > 0) {
785 relShaperDigitTrueHit.
add(digIndex, truehits.begin(), truehits.end());
793 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
794 short int iStrip = stripWaveform.first;
797 vector<double> samples;
799 digit_weights.clear();
808 samples.push_back(
addNoise(electronWeight * s(t), elNoise));
818 std::transform(samples.begin(), samples.end(), rawSamples.begin(),
819 [&](
double x)->SVDShaperDigit::APVRawSampleType {
820 return SVDShaperDigit::trimToSampleRange(x * gain);
825 if (
m_roundZS) rawThreshold = round(rawThreshold);
826 auto n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
827 std::bind2nd(std::greater<double>(), rawThreshold)
835 if (!
m_map->isAPVinMap(sensorID,
false, iStrip))
continue;
846 n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
847 std::bind2nd(std::greater<double>(), rawThreshold)
853 int digIndex = storeShaperDigits.
getEntries();
854 storeShaperDigits.
appendNew(sensorID,
false, iStrip, rawSamples, 0);
857 if (particles.size() > 0) {
858 relShaperDigitMCParticle.
add(digIndex, particles.begin(), particles.end());
861 if (truehits.size() > 0) {
862 relShaperDigitTrueHit.
add(digIndex, truehits.begin(), truehits.end());
870 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
871 tree_vxdID = sensorWaveforms.first;
876 double thresholdU = 3.0 * info.getElectronicNoiseU();
877 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
878 tree_strip = stripWaveform.first;
881 if (s.getCharge() < thresholdU)
883 for (
int iTime = 0; iTime < 20; ++iTime) {
884 tree_signal[iTime] = s(10 * iTime);
890 double thresholdV = 3.0 * info.getElectronicNoiseV();
891 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
892 tree_strip = stripWaveform.first;
895 if (s.getCharge() < thresholdV)
897 for (
int iTime = 0; iTime < 20; ++iTime) {
898 tree_signal[iTime] = s(10. * iTime);
908 static size_t recordNo = 0;
909 static const string header(
"Event\tSensor\tSide\tStrip\tContrib\tTime\tCharge\tTau");
910 regex startLine(
"^|\n");
912 if (recordNo == 0) outfile << header << endl;
913 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
914 VxdID sensorID(sensorWaveforms.first);
919 double thresholdU = 3.0 * info.getElectronicNoiseU();
920 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
921 size_t strip = stripWaveform.first;
924 if (s.getCharge() < thresholdU)
927 ostringstream preamble;
929 preamble <<
"$&" << recordNo <<
'\t' << sensorID <<
'\t' << isU <<
'\t' << strip <<
'\t';
930 string signalString = s.toString();
931 signalString.pop_back();
932 string tableString = regex_replace(signalString, startLine, preamble.str());
933 outfile << tableString << endl;
937 double thresholdV = 3.0 * info.getElectronicNoiseV();
938 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
939 size_t strip = stripWaveform.first;
942 if (s.getCharge() < thresholdV)
945 ostringstream preamble;
947 preamble <<
"$&" << recordNo <<
'\t' << sensorID <<
'\t' << isU <<
'\t' << strip <<
'\t';
948 string signalString = s.toString();
949 signalString.pop_back();
950 string tableString = regex_replace(signalString, startLine, preamble.str());
951 outfile << tableString << endl;
968 int nTriggerClocks = triggerBin + relativeShift;
969 return floor(nTriggerClocks / 4);
int getPDGCode() const
PDG code.
static const double kBoltzmann
Boltzmann constant in GeV/K.
static const ParticleType photon
photon particle
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
static std::string relationName(const std::string &fromName, const std::string &toName, std::string const &namedRelation="")
Return storage name for a relation between two arrays of the given names.
void setDescription(const std::string &description)
Sets the description of the module.
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
std::string getFileName() const
Get the name of the downloaded payload file.
Low-level class to create/modify relations between StoreArrays.
void add(index_type from, index_type to, weight_type weight=1.0)
Add a new element to the relation.
Provides access to fast ( O(log n) ) bi-directional lookups on a specified relation.
const Element * getFirstElementTo(const TO &to) const
Return a pointer to the first relation Element of the given object.
float getCouplingConstant(const VxdID &sensorID, const bool &isU, const std::string &couplingName) const
Return coupling constant.
float getElectronWeight(const VxdID &sensorID, const bool &isU) const
Return Geant4 electron weight.
float isMasked(const VxdID &sensorID, const bool &isU, const unsigned short &strip) const
This is the method for getting the comprehensive list of masked strips at FADC level.
bool isValid()
returns true if the m_aDBObtPtr is valid in the requested IoV
Class to store SVD mode information.
baseType getTriggerBin() const
Get the triggerBin id.
float getNoiseInElectrons(const VxdID &sensorID, const bool &isU, const unsigned short &strip) const
This method provides the correct noise conversion into electrons, taking into account that the noise ...
double getChargeFromADC(const Belle2::VxdID &sensorID, const bool &isU, const unsigned short &strip, const double &pulseADC) const
Return the charge (number of electrons/holes) collected on a specific strip, given the number of ADC ...
static void setAPVMode(size_t mode, size_t firstSample)
set APV mode for the event
static const std::size_t c_nAPVSamples
Number of APV samples stored.
std::array< APVRawSampleType, c_nAPVSamples > APVRawSamples
array of APVRawSamplesType objects
double m_startSampling
Time window start, excluding trigger bin effect.
TH1D * m_histHitTime
Histogram showing the hit time.
TH1D * m_histDistanceToPlane_e
Histogram showing the distance to plane for e.
TH1D * m_histChargeSharing_u
Histogram showing the charge sharing + diffusion in u (r-phi).
double m_sensorThickness
Thickness of current sensor (read from m_currentSensorInfo).
void processHit()
Process one SVDSimHit by dividing the step in smaller steps and drifting the charge.
TH1D * m_histVelocity_h
Histogram showing the velocity of h.
SVDFADCMaskedStrips m_MaskedStr
FADC masked strip payload.
TH1D * m_histVelocity_e
Histogram showing the velocity of e-.
Waveforms m_waveforms
Structure containing waveforms in all existing sensors.
double m_samplingTime
Interval between two waveform samples, by default taken from HardwareClockSettings.
std::string m_relTrueHitSimHitName
Name of the relation between SVDTrueHits and SVDSimHits.
TH1D * m_histLorentz_v
Histogram showing the Lorentz angles in v (z).
void saveDigits()
Save digits to the DataStore Saves samples of generated waveforms.
bool m_randomizeEventTimes
Randomize event times? If set to true, event times will be randomized uniformly from m_minTimeFrame t...
int getFirstSample(int triggerBin, int relativShift)
return the starting sample
int m_startingSample
Starting sample for the selection of 3 samples in 3-mixed-6.
int m_currentParticle
Index of the particle which caused the current hit.
std::string m_relShaperDigitMCParticleName
Name of the relation between SVDShaperDigits and MCParticles.
int m_nSamplesOverZS
Keep digit if at least m_nSamplesOverZS are over threshold.
TH1D * m_histChargeSharing_v
Histogram showing the charge sharing + diffusion in v (z).
TH1D * m_histMobility_h
Histogram showing the mobility of h.
virtual void initialize() override
Initialize the module and check module parameters.
bool m_roundZS
Round ZS cut to nearest ADU.
void driftCharge(const TVector3 &position, double carriers, SVD::SensorInfo::CarrierType carrierType)
Drift the charge inside the silicon.
std::string m_storeShaperDigitsName
Name of the collection for the SVDShaperDigits.
virtual void event() override
Digitize one event.
bool m_is3sampleEvent
True if the event should be simulated with 3 sample.
double m_SNAdjacent
Zero-suppression cut.
double m_currentTime
Time of the current SimHit.
TFile * m_rootFile
Pointer to the ROOT filename for statistics.
SVDNoiseCalibrations m_NoiseCal
SVDNoise calibrations db object.
SensorWaveforms * m_currentSensorWaveforms
Pointer to the sensor in which the current hit occurred.
std::string m_storeTrueHitsName
Name of the collection for the SVDTrueHits.
TH1D * m_signalDist_u
Histogram showing the distribution of digit signals in u (r-phi).
DBObjPtr< PayloadFile > m_mapping
channel mapping payload
virtual void terminate() override
Terminate the module.
void saveSignals()
Save signals to a root-delimited file (to be analyzed in Python).
std::string m_storeMCParticlesName
Name of the collection for the MCParticles.
TH1D * m_signalDist_v
Histogram showing the distribution of digit signals in v (z).
double m_noiseFraction
(derived from SNAdjacent) Fraction of noisy strips per sensor.
static std::string m_xmlFileName
< channel mapping xml filename
double m_betaPrimeDecayTimeU
Decay time of betaprime waveform U-side.
SVDPulseShapeCalibrations m_PulseShapeCal
SVDPulseShapeCalibrations calibrations db object.
TH1D * m_histMobility_e
Histogram showing the mobility of e-.
std::string m_relShaperDigitTrueHitName
Name of the relation between SVDShaperDigits and SVDTrueHits.
SVDChargeSimulationCalibrations m_ChargeSimCal
SVDChargeSimulationCalibrations calibrations db object.
int m_nAPV25Samples
number of digitized samples read from SVDEventInfo
TTree * m_waveTree
Tree for waveform storage.
bool m_applyPoisson
Whether or not to apply poisson fluctuation of charge (Fano factor)
virtual void beginRun() override
Initialize the list of existing SVD Sensors.
TH1D * m_histDistanceToPlane_h
Histogram showing the distance to plane for h.
TH1D * m_histDriftTime_e
Histogram showing the drift time of e.
DBObjPtr< HardwareClockSettings > m_hwClock
Hardware Clocks.
std::string m_svdEventInfoName
Name of the SVDEventInfo object.
std::string m_signalsList
Name of the tab-delimited listing of waveforms.
double addNoise(double charge, double noise)
Calculate the noise contribution to one strip with given charge.
const SensorInfo * m_currentSensorInfo
Pointer to the SensorInfo of the current sensor.
TH1D * m_histLorentz_u
Histogram showing the Lorentz angles in u (r-phi).
int m_relativeShift
relative shift in SVDEventInfo obj
TH2F * m_histHitTimeTB
Histogram showing the hit time vs TB.
bool m_storeWaveforms
Store waveform data in the reporting file?
void saveWaveforms()
Save waveforms to the statistics file.
std::unique_ptr< SVDOnlineToOfflineMap > m_map
channel mapping map
float m_maxTimeFrame
High edge of randomization time frame.
TH1D * m_histDriftTime_h
Histogram showing the drift time of h.
double m_initTime
Time window start, including the triggerBin effect.
int m_currentTrueHit
Index of the TrueHit the current hit belongs to.
float m_minTimeFrame
Low edge of randomization time frame.
const SVDSimHit * m_currentHit
Pointer to the SVDSimhit currently digitized.
std::string m_relMCParticleSimHitName
Name of the relation between MCParticles and SVDSimHits.
double m_betaPrimeDecayTimeV
Decay time of betaprime waveform V-side.
double m_segmentLength
Max.
std::string m_rootFilename
Name of the ROOT filename to output statistics.
std::string m_storeSimHitsName
Name of the collection for the SVDSimhits.
float m_currentEventTime
Current event time.
Specific implementation of SensorInfo for SVD Sensors which provides additional sensor specific infor...
CarrierType
Enum to flag charge carriers.
double getBiasVoltage() const
Return the bias voltage on the sensor.
double getDepletionVoltage() const
Return the depletion voltage of the sensor.
virtual unsigned short getBackgroundTag() const
Get background tag.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
T * appendNew()
Construct a new T object at the end of the array.
int getEntries() const
Get the number of objects in the array.
bool registerRelationTo(const StoreArray< TO > &toArray, DataStore::EDurability durability=DataStore::c_Event, DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut, const std::string &namedRelation="") const
Register a relation to the given StoreArray.
Type-safe access to single objects in the data store.
static const double mm
[millimeters]
static const double e
Standard of [electric charge].
static const double um
[micrometers]
static const double ns
Standard of [time].
float getGlobalTime() const override
Return the time of the electron deposition.
int getPDGcode() const
Return the PDG code of the particle causing the electron deposition.
std::vector< std::pair< float, float > > getElectronsConstantDistance(double length) const
Get the electron deposition along constant stepsize.
float getElectrons() const
Return the number of created electrons.
VxdID getSensorID() const
Return the sensorID of the sensor the electron was deposited in.
TVector3 getPosIn() const
Return the start point of the electron deposition in local coordinates.
TVector3 getPosOut() const
Return the end point of the electron deposition in local coordinates.
Class to faciliate easy access to sensor information of the VXD like coordinate transformations or pi...
const std::set< Belle2::VxdID > getLayers(SensorInfoBase::SensorType sensortype=SensorInfoBase::VXD)
Return a set of all known Layers.
const std::set< Belle2::VxdID > & getSensors(Belle2::VxdID ladder) const
Return a set of all sensor IDs belonging to a given ladder.
static GeoCache & getInstance()
Return a reference to the singleton instance.
static const SensorInfoBase & get(Belle2::VxdID id)
Return a reference to the SensorInfo of a given SensorID.
const std::set< Belle2::VxdID > & getLadders(Belle2::VxdID layer) const
Return a set of all ladder IDs belonging to a given layer.
double getUPitch(double v=0) const
Return the pitch of the sensor.
double getWidth(double v=0) const
Return the width of the sensor.
VxdID getID() const
Return the ID of the Sensor.
double getVPitch(double v=0) const
Return the pitch of the sensor.
double getThickness() const
Return the thickness of the sensor.
double getLength() const
Return the length of the sensor.
Class to uniquely identify a any structure of the PXD and SVD.
void addParam(const std::string &name, T ¶mVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Namespace to encapsulate code needed for simulation and reconstrucion of the SVD.
std::pair< StripWaveforms, StripWaveforms > SensorWaveforms
Waveforms of u- and v- channels in one sensor.
std::function< double(double)> WaveformShape
WaveformShape type.
double w_adjacentU(double t)
Adjacent-channel waveform U-side.
double w_betaprime(double t)
Beta-prime waveform shape, x^alpha/(1+x)^beta.
double w_adjacentV(double t)
Adjacent-channel waveform V-side.
std::map< short int, SVDWaveform > StripWaveforms
Map of all channels' waveforms in one sensor side.
Abstract base class for different kinds of events.
Element type for the index.
RelationElement::index_type indexFrom
index of the element from which the relation points.
RelationElement::weight_type weight
weight of the relation.