Belle II Software  release-06-01-15
Trainer Class Reference

Public Member Functions

def __init__ (self, model, data_set, sess, log_dir=None, save_name=None, monitoring_size=100000, input_placeholders=None)
 
def train_model (self)
 

Public Attributes

 model
 model
 
 data_set
 data set
 
 monitoring_size
 monitoring size
 
 sess
 tf.session
 
 log_dir
 log directory
 
 x
 input placeholder features
 
 y_
 input placeholder targets
 
 monitoring_params
 monitoring params for early stopping criterion, loss function, etc
 
 termination_criterion
 termination criterion
 
 max_epochs
 global_training_parameters
 
 current_epoch
 current epoch
 
 minimizer
 optimizer
 
 train_log_dict
 train_log_dict
 
 saver
 saver
 
 save_name
 save name
 
 train_monitor
 train_monitor
 
 valid_monitor
 valid monitor
 
 train_writer
 train writer
 
 test_writer
 test writer
 
 merged_summary
 summary
 
 epoch_parameters
 epoch parameters
 

Private Member Functions

def _prepare_monitoring (self)
 
def _prepare_tensorboard (self, log_dir)
 
def _add_to_basf2_collections (self)
 
def _save_best_state (self, monitoring_params, label_name='mean_cross_entropy')
 
def _closing_ops (self)
 
def _train_epoch (self, current_epoch)
 

Private Attributes

 _time
 time
 

Detailed Description

handling the training of the network model

Definition at line 498 of file tensorflow_dnn_model.py.

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
  model,
  data_set,
  sess,
  log_dir = None,
  save_name = None,
  monitoring_size = 100000,
  input_placeholders = None 
)
class to train a predefined model
:param model: DefaultModel obj
:param data_set: TFData obj
:param sess: tensorflow.Session obj
:param log_dir: str, directory name of tensorboard logging
:param save_name: str, path and name for saving the weightfiles
:param monitoring_size: int, number of events of training fraction used for monitoring
:param input_placeholders: list of tf.placeholders, [features, targets]

Definition at line 503 of file tensorflow_dnn_model.py.

Member Function Documentation

◆ _add_to_basf2_collections()

def _add_to_basf2_collections (   self)
private
add to basf2 collection

Definition at line 622 of file tensorflow_dnn_model.py.

◆ _closing_ops()

def _closing_ops (   self)
private
closing ops

Definition at line 651 of file tensorflow_dnn_model.py.

◆ _prepare_monitoring()

def _prepare_monitoring (   self)
private
checking dataset sizes for evaluation

Definition at line 593 of file tensorflow_dnn_model.py.

◆ _prepare_tensorboard()

def _prepare_tensorboard (   self,
  log_dir 
)
private
prepare tensorboard

Definition at line 607 of file tensorflow_dnn_model.py.

◆ _save_best_state()

def _save_best_state (   self,
  monitoring_params,
  label_name = 'mean_cross_entropy' 
)
private
save model only if a global minimum is reached on validation set
:return:

Definition at line 632 of file tensorflow_dnn_model.py.

◆ _train_epoch()

def _train_epoch (   self,
  current_epoch 
)
private
train epoch

Definition at line 666 of file tensorflow_dnn_model.py.

◆ train_model()

def train_model (   self)
train model

Definition at line 730 of file tensorflow_dnn_model.py.


The documentation for this class was generated from the following file: