10 from ROOT
import Belle2
19 ROOT.gSystem.Load(
"libtracking")
23 """Module to collect matching information about the found particles and to generate
24 validation plots and figures of merit on the performance of track finding."""
26 """ Expert level behavior:
27 expert_level = default_expert_level: all figures and plots from this module except tree entries
28 expert_level > default_expert_level: everything including tree entries
29 expert_level <= default_expert_level//2: only basic figures
30 default_expert_level//2 < expert_level < default_expert_level: basic figures and basic tree entries
33 default_expert_level = 10
39 output_file_name=None,
40 reco_tracks_name='RecoTracks',
41 mc_reco_tracks_name='MCRecoTracks',
45 output_file_name = output_file_name
or name +
'TrackingValidation.root'
47 super().
__init__(foreach=mc_reco_tracks_name,
49 output_file_name=output_file_name,
51 expert_level=expert_level)
76 """Initialization signal at the start of the event processing"""
81 """Collect some statistics about the pattern recognition tracks used for comparision to the MC tracks
83 Executed once at the start of each event.
90 found_det_hit_ids = set()
91 matched_det_hit_ids = set()
92 clone_det_hit_ids = set()
93 fake_det_hit_ids = set()
95 for reco_track
in reco_tracks:
96 det_hit_ids = utilities.get_det_hit_ids(reco_track)
98 found_det_hit_ids |= det_hit_ids
100 if track_match_look_up.isMatchedPRRecoTrack(reco_track):
101 matched_det_hit_ids |= det_hit_ids
103 if track_match_look_up.isClonePRRecoTrack(reco_track):
104 clone_det_hit_ids |= det_hit_ids
106 if (track_match_look_up.isGhostPRRecoTrack(reco_track)
or
107 track_match_look_up.isBackgroundPRRecoTrack(reco_track)):
108 fake_det_hit_ids |= det_hit_ids
116 """Pick every MCRecoTrack"""
120 """Looks at the individual Monte Carlo tracks and store information about them"""
125 multiplicity = mc_reco_tracks.getEntries()
127 mc_particle = track_match_look_up.getRelatedMCParticle(mc_reco_track)
128 is_primary = bool(mc_particle.hasStatus(Belle2.MCParticle.c_PrimaryParticle))
130 mc_store_array_crops = peelers.peel_store_array_info(mc_reco_track, key=
"mc_{part_name}")
132 crops = dict(is_primary=is_primary,
133 multiplicity=multiplicity,
134 **mc_to_pr_match_info_crops,
135 **mc_store_array_crops
139 reco_track = track_match_look_up.getRelatedPRRecoTrack(mc_reco_track)
140 mc_particle_crops = peelers.peel_mc_particle(mc_particle)
141 hit_content_crops = peelers.peel_reco_track_hit_content(mc_reco_track)
144 subdetector_hit_efficiency_crops = peelers.peel_subdetector_hit_efficiency(mc_reco_track, reco_track)
150 event_crops = peelers.peel_event_info(event_meta_data)
153 store_array_crops = peelers.peel_store_array_info(reco_track, key=
"pr_{part_name}")
156 pr_purity_information = {
157 "pr_hit_purity": track_match_look_up.getRelatedPurity(reco_track)
if reco_track
else float(
"nan"),
158 **peelers.peel_subdetector_hit_purity(reco_track=reco_track, mc_reco_track=mc_reco_track,
159 key=
"pr_{part_name}")
163 trackfinder_crops = peelers.peel_trackfinder(reco_track)
166 qualityindicator_crops = peelers.peel_quality_indicators(reco_track)
168 crops.update(dict(**hit_content_crops,
170 **subdetector_hit_efficiency_crops,
171 **mc_hit_efficiencies_in_all_pr_tracks_crops,
174 **pr_purity_information,
176 **qualityindicator_crops
182 """Extracts track-match information from the MCMatcherTracksModule results"""
185 is_matched=track_match_look_up.isMatchedMCRecoTrack(mc_reco_track),
186 is_merged=track_match_look_up.isMergedMCRecoTrack(mc_reco_track),
187 is_missing=track_match_look_up.isMissingMCRecoTrack(mc_reco_track),
188 hit_efficiency=track_match_look_up.getRelatedEfficiency(mc_reco_track),
192 """Extracts hit efficiencies"""
193 mc_det_hit_ids = utilities.get_det_hit_ids(mc_reco_track)
195 hit_efficiency_in_all_found = utilities.calc_hit_efficiency(self.
found_det_hit_idsfound_det_hit_ids,
198 unfound_hit_efficiency = 1.0 - hit_efficiency_in_all_found
200 hit_efficiency_in_all_matched = utilities.calc_hit_efficiency(self.
matched_det_hit_idsmatched_det_hit_ids,
203 hit_efficiency_in_all_fake = utilities.calc_hit_efficiency(self.
fake_det_hit_idsfake_det_hit_ids,
206 hit_efficiency_crops = dict(
207 hit_efficiency_in_all_found=hit_efficiency_in_all_found,
208 unfound_hit_efficiency=unfound_hit_efficiency,
209 hit_efficiency_in_all_matched=hit_efficiency_in_all_matched,
210 hit_efficiency_in_all_fake=hit_efficiency_in_all_fake,
212 return hit_efficiency_crops
218 save_tree = refiners.save_tree(
222 folder_name=
"mc_tree",
223 above_expert_level=default_expert_level
228 save_tree_basic = refiners.save_tree(
232 folder_name=
"mc_tree",
233 above_expert_level=default_expert_level // 2,
234 below_expert_level=default_expert_level
239 save_overview_figures_of_merit = refiners.save_fom(
241 name=
"{module.id}_overview_figures_of_merit",
242 title=
"Overview figures in {module.title}",
243 aggregation=np.nanmean,
245 select={
"is_matched":
"finding efficiency",
"hit_efficiency":
"hit efficiency", },
246 filter_on=
"is_primary",
248 finding efficiency - the ratio of matched primary Monte Carlo tracks to all Monte Carlo tracks
249 hit efficiency - the ratio of hits picked up by the matched pattern recognition track of primary Monte Carlo tracks
258 save_hit_efficiency_histogram = refiners.save_histograms(
260 above_expert_level=default_expert_level - 1,
261 select={
"hit_efficiency":
"hit efficiency"},
262 filter_on=
"is_primary",
263 description=
"Not a serious plot yet.",
268 renaming_select_for_finding_efficiency_profiles = {
269 'is_matched':
'finding efficiency',
272 'multiplicity':
'multiplicity',
273 'phi0_truth':
'#phi',
277 save_finding_efficiency_profiles = refiners.save_profiles(
279 above_expert_level=default_expert_level - 1,
280 select=renaming_select_for_finding_efficiency_profiles,
281 y=
'finding efficiency',
283 filter_on=
"is_primary",
290 save_finding_efficiency_by_tan_lamba_profiles = refiners.save_profiles(
292 above_expert_level=default_expert_level - 1,
294 'is_matched':
'finding efficiency',
295 'tan_lambda_truth':
'tan #lambda'
297 y=
'finding efficiency',
299 filter_on=
"is_primary",
307 save_finding_efficiency_by_tan_lamba_in_pt_groups_profiles = refiners.save_profiles(
309 above_expert_level=default_expert_level - 1,
311 'is_matched':
'finding efficiency',
312 'tan_lambda_truth':
'tan #lambda'
314 y=
'finding efficiency',
316 filter_on=
"is_primary",
317 groupby=[(
"pt_truth", [0.070, 0.250, 0.600])],
326 renaming_select_for_hit_efficiency_profiles = {
327 'hit_efficiency':
'hit efficiency',
330 'multiplicity':
'multiplicity',
331 'phi0_truth':
'#phi',
335 save_hit_efficiency_profiles = refiners.save_profiles(
337 above_expert_level=default_expert_level - 1,
338 select=renaming_select_for_hit_efficiency_profiles,
341 filter_on=
"is_primary",
348 save_hit_efficiency_by_tan_lambda_profiles = refiners.save_profiles(
350 above_expert_level=default_expert_level - 1,
352 'hit_efficiency':
'hit efficiency',
353 'tan_lambda_truth':
'tan #lambda',
357 filter_on=
"is_primary",
366 save_finding_efficiency_by_pt_profiles_groupbyCharge = refiners.save_profiles(
368 above_expert_level=default_expert_level - 1,
370 'is_matched':
'finding efficiency',
373 y=
'finding efficiency',
375 filter_on=
"is_primary",
376 groupby=[(
"charge_truth", [0.])],
384 save_finding_efficiency_by_tan_lambda_profiles_groupbyCharge = refiners.save_profiles(
386 above_expert_level=default_expert_level - 1,
388 'is_matched':
'finding efficiency',
389 'tan_lambda_truth':
'tan #lambda'
391 y=
'finding efficiency',
393 filter_on=
"is_primary",
394 groupby=[(
"charge_truth", [0.])],
403 save_hit_efficiency_by_pt_profiles_groupbyCharge = refiners.save_profiles(
405 above_expert_level=default_expert_level - 1,
407 'hit_efficiency':
'hit efficiency',
412 filter_on=
"is_primary",
413 groupby=[(
"charge_truth", [0.])],
421 save_hit_efficiency_by_tan_lambda_profiles_groupbyCharge = refiners.save_profiles(
423 above_expert_level=default_expert_level - 1,
425 'hit_efficiency':
'hit efficiency',
426 'tan_lambda_truth':
'tan #lambda',
430 filter_on=
"is_primary",
431 groupby=[(
"charge_truth", [0.])],
441 save_hit_efficiency_in_all_found_hist = refiners.save_histograms(
443 above_expert_level=default_expert_level - 1,
445 select=dict(hit_efficiency_in_all_found=
"total hit efficiency vs. all reconstructed tracks")
452 save_missing_mc_tracks_hit_efficiency_in_all_found_hist = refiners.save_histograms(
454 above_expert_level=default_expert_level - 1,
455 filter_on=
"is_missing",
457 select=dict(hit_efficiency_in_all_found=
"total hit efficiency in all reconstructed tracks for missing mc tracks")
a (simplified) python wrapper for StoreArray.
a (simplified) python wrapper for StoreObjPtr.
Class to provide convenient methods to look up matching information between pattern recognition and M...
def peel_hit_efficiencies_in_all_pr_tracks(self, mc_reco_track)
clone_det_hit_ids
Set of all detector and hits ids contained in clone pr tracks.
def peel(self, mc_reco_track)
track_match_look_up
Reference to the track match lookup object reading the relation information constructed by the MCMatc...
def peel_mc_to_pr_match_info(self, mc_reco_track)
mc_reco_tracks_name
Name of the StoreArray of the ideal mc tracks.
def pick(self, mc_reco_track)
def __init__(self, name, contact, output_file_name=None, reco_tracks_name='RecoTracks', mc_reco_tracks_name='MCRecoTracks', expert_level=None)
matched_det_hit_ids
Set of all detector and hits ids contained in matched pr tracks.
found_det_hit_ids
Set of all detector and hits ids contained in any pr track.
fake_det_hit_ids
Set of all detector and hits ids contained in background and ghost pr tracks.
reco_tracks_name
Name of the StoreArray of the tracks from pattern recognition.
int default_expert_level
the threshold value for the expert level