Belle II Software  release-06-02-00
eclHadronTimeCalibrationValidationCollectorModule Class Reference

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events. More...

#include <eclHadronTimeCalibrationValidationCollectorModule.h>

Inheritance diagram for eclHadronTimeCalibrationValidationCollectorModule:
Collaboration diagram for eclHadronTimeCalibrationValidationCollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclHadronTimeCalibrationValidationCollectorModule ()
 Module constructor.
 
virtual ~eclHadronTimeCalibrationValidationCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 Required input array of tracks.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0. More...
 
TTree * m_dbg_tree_photonClusters
 Output tree with detailed event data. More...
 
TTree * m_dbg_tree_event
 debug output tree for per event
 
int m_tree_evt_num = -1
 Event number for debug TTree output.
 
int m_tree_run = -1
 Run number for debug TTree output.
 
int m_tree_cid = -1
 ECL Cell ID (1..8736) for debug TTree output.
 
double m_tree_dt99 = -1
 dt99 for cluster
 
double m_tree_time = -1
 Calibrated time.
 
double m_tree_time_fromE0 = -1
 Calibrated time - highest E cluster.
 
double m_tree_E0 = -1
 Highest E cluster energy.
 
double m_tree_t0 = -1
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = -1
 EventT0 uncertainty for debug TTree output.
 
int m_NtightTracks = -1
 Number of tight tracks.
 
int m_NphotonClusters = -1
 Number of photon clusters.
 
int m_NGoodClusters = -1
 Number of good clusters.
 
std::vector< float > m_EperCrys
 ECL Cal digit energy for each crystal.
 
double m_E_photon_clust = -1
 Photon cluster energy.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
double m_looseTrkZ0
 Loose track z0 minimum cut.
 
double m_tightTrkZ0
 Tight track z0 minimum cut.
 
double m_looseTrkD0
 Loose track d0 minimum cut.
 
double m_tightTrkD0
 Tight track d0 minimum cut.
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events.

Definition at line 44 of file eclHadronTimeCalibrationValidationCollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 178 of file eclHadronTimeCalibrationValidationCollectorModule.cc.

179 {
180  int cutIndexPassed = 0;
181  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
182  B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
183 
184 
185 
186  // Storage crystal energies
187  m_EperCrys.resize(8736);
188  for (auto& eclCalDigit : m_eclCalDigitArray) {
189  int tempCrysID = eclCalDigit.getCellId() - 1;
190  m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
191  }
192 
193  // Getting the event t0 using the full event t0 rather than from the CDC specifically
194 
195  double evt_t0 = -1000 ;
196  double evt_t0_unc = -1000 ;
197 
198  // Determine if there is an event t0 to use and then extract the information about it
199  if (m_eventT0.isOptional()) {
200  if (!m_eventT0.isValid()) {
201  return;
202  }
203  if (!m_eventT0->hasEventT0()) {
204  return;
205  } else {
206  // Overall event t0 (combination of multiple event t0s from different detectors)
207  evt_t0 = m_eventT0->getEventT0() ;
208  evt_t0_unc = m_eventT0->getEventT0Uncertainty() ;
209  }
210  B2DEBUG(26, "Found event t0") ;
211  }
212 
213  //---------------------------------------------------------------------
214  //..Track properties. Use pion (211) mass hypothesis,
215  // which is the only particle hypothesis currently available???
216  int nTrkAll = tracks.getEntries() ;
217 
218  int nTrkLoose = 0 ;
219  int nTrkTight = 0 ;
222  /* Loop over all the tracks to define the tight and loose selection tracks.
223  We will select events with only a few tight tracks and no additional loose tracks.
224  Tight tracks are a subset of looses tracks. */
225  for (int iTrk = 0 ; iTrk < nTrkAll ; iTrk++) {
226 
227  // Get track biasing towards the particle being a pion
228  const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion) ;
229  if (not tempTrackFit) {continue ;}
230 
231  // Collect track info to be used for categorizing
232  //short charge = tempTrackFit->getChargeSign() ;
233  double z0 = tempTrackFit->getZ0() ;
234  double d0 = tempTrackFit->getD0() ;
235  int nCDChits = tempTrackFit->getHitPatternCDC().getNHits() ;
236  //double pt = tempTrackFit->getTransverseMomentum() ;
237  //double p = tempTrackFit->getMomentum().Mag() ;
238 
239  /* Test if loose track */
240 
241  // d0 and z0 cuts
242  if (fabs(d0) > m_looseTrkD0) {
243  continue;
244  }
245  if (fabs(z0) > m_looseTrkZ0) {
246  continue;
247  }
248  // Number of hits in the CDC
249  if (nCDChits < 1) {
250  continue;
251  }
252  nTrkLoose++;
253 
254 
255 
256  /* Test if the loose track is also a tight track */
257 
258  // Number of hits in the CDC
259  if (nCDChits < 20) {
260  continue;
261  }
262  // d0 and z0 cuts
263  if (fabs(d0) > m_tightTrkD0) {
264  continue;
265  }
266  if (fabs(z0) > m_tightTrkZ0) {
267  continue;
268  }
269  nTrkTight++;
270 
271  }
272  // After that last section the numbers of loose and tight tracks are known
273  B2DEBUG(26, "Found loose and tight tracks") ;
274 
275 
276  int numGoodTightTracks_minCut = 4 ;
277  if (nTrkTight < numGoodTightTracks_minCut) {
278  return ;
279  }
280  // There are at least X tight tracks
281  cutIndexPassed++ ;
282  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
283  B2DEBUG(22, "Cutflow: At least " << numGoodTightTracks_minCut << " tight tracks: index = " << cutIndexPassed) ;
284 
285 
286  int numGoodLooseTracks_minCut = numGoodTightTracks_minCut ;
287  if (nTrkLoose < numGoodLooseTracks_minCut) {
288  return ;
289  }
290  // There are more loose tracks than tight tracks then veto the event. If there are fewer loose tracks than tight tracks then veto the event, although this should be impossible
291  cutIndexPassed++ ;
292  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
293  B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed) ;
294 
295 
296  //------------------------------------------------------------------------
297  // Find the good ECL clusters
298  double clusterE_minCut = 0.1 ; // GeV
299  int nclust = m_eclClusterArray.getEntries();
300  int nGoodClusts = 0 ;
301  vector<int> goodClusterIdxs ;
302  for (int ic = 0; ic < nclust; ic++) {
303  double eClust = m_eclClusterArray[ic]->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons) ;
304  if (eClust > clusterE_minCut) {
305  goodClusterIdxs.push_back(ic) ;
306  nGoodClusts++ ;
307  }
308  }
309 
310 
311  // Cut on the minimum number of good clusters
312  int numGoodEMclusters_minCut = 5 ;
313  if (nGoodClusts < numGoodEMclusters_minCut) {
314  return ;
315  }
316  // There are at least 5 good EM clusters (photon = basically all clusters)
317  cutIndexPassed++ ;
318  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
319  B2DEBUG(22, "Cutflow: At least " << numGoodEMclusters_minCut << " ECL clusters: index = " << cutIndexPassed) ;
320 
321 
322  //------------------------------------------------------------------------
323  // Find the good photons first before doing anything with them
324 
325  double photonE_minCut = 0.05 ; // GeV
326  double zernikeMVA_minCut = 0.2 ;
327  int nPhotons = 0 ;
328 
329  vector<int> goodPhotonClusterIdxs ;
330  for (int ic = 0; ic < nclust; ic++) {
333  double photonTime = m_eclClusterArray[ic]->getTime();
334  double zernikeMVA = m_eclClusterArray[ic]->getZernikeMVA();
335  bool badPhotonTime = m_eclClusterArray[ic]->hasFailedFitTime();
336  bool badPhotonTimeResolution = m_eclClusterArray[ic]->hasFailedTimeResolution();
337  bool hasTrack = m_eclClusterArray[ic]->isTrack();
338  if ((eClust > photonE_minCut) &&
339  (fabs(photonTime) < m_timeAbsMax) &&
340  (!badPhotonTime) &&
341  (!badPhotonTimeResolution) &&
342  (zernikeMVA > zernikeMVA_minCut) &&
343  (!hasTrack)) {
344  goodPhotonClusterIdxs.push_back(ic) ;
345  nPhotons++;
346  }
347  }
348  }
349 
350 
351  // Cut on the minimum number of good photon clusters
352  int numGoodPhotonclusters_minCut = 1 ;
353  if (nPhotons < numGoodPhotonclusters_minCut) {
354  return ;
355  }
356  // There is at least one good photon in the event
357  cutIndexPassed++ ;
358  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
359  B2DEBUG(22, "Cutflow: At least " << numGoodPhotonclusters_minCut << " good photon: index = " << cutIndexPassed) ;
360 
361 
362 
363  //------------------------------------------------------------------------
364  /* Extract the times of the good clusters and
365  save the maximum energy crystal information (cid) */
366  vector<double> goodClustTimes ;
367  vector<double> goodClust_dt99 ;
368  vector<double> goodClusters_crysE ;
369  vector<double> goodClustE ;
370  vector<int> goodClustMaxEcrys_cid ;
371  for (long unsigned int i = 0; i < goodPhotonClusterIdxs.size(); i++) {
372  int ic = goodPhotonClusterIdxs[i] ;
373 
376  short cid = m_eclClusterArray[ic]->getMaxECellId() ;
377 
378  goodClustMaxEcrys_cid.push_back(cid) ;
379  goodClustTimes.push_back(m_eclClusterArray[ic]->getTime()) ;
380  goodClust_dt99.push_back(m_eclClusterArray[ic]->getDeltaTime99()) ;
381  goodClusters_crysE.push_back(m_EperCrys[cid - 1]) ;
382  goodClustE.push_back(eClust);
383  }
384  }
385 
386 
387  // Define a pair (energy,time) so that we can quickly and easily sort the cluster information
388  // based on the energy of the clusters
389  vector< pair<double, double> > pair_energy_time ;
390  for (long unsigned int ic = 0; ic < goodClusters_crysE.size(); ic++) {
391  pair_energy_time.push_back(make_pair(goodClusters_crysE[ic], goodClustTimes[ic])) ;
392  }
393 
394  // sorts pairs in decreasing order of their first value (energy)
395  // i.e. highest energy first
396  sort(pair_energy_time.begin(), pair_energy_time.end(), greater<>()) ;
397 
398 
399 
400  B2DEBUG(22, "Event passed all cuts");
401 
402 
403  // Fill the histogram for the event level variables
404  getObjectPtr<TH1F>("eventT0")->Fill(evt_t0) ;
405 
406  bool isCDCt0 = (static_cast<EventT0::EventT0Component>(*m_eventT0->getEventT0Component())).detectorSet.contains(Const::CDC);
407  bool isECLt0 = (static_cast<EventT0::EventT0Component>(*m_eventT0->getEventT0Component())).detectorSet.contains(Const::ECL);
408  string t0Detector = "UNKNOWN... WHY?";
409  if (isCDCt0) {
410  t0Detector = "CDC" ;
411  } else if (isECLt0) {
412  t0Detector = "ECL" ;
413  }
414 
415  B2DEBUG(26, "t0 = " << evt_t0 << " ns. t0 is from CDC?=" << isCDCt0 << ", t0 is from ECL?=" << isECLt0 << " t0 from " <<
416  t0Detector);
417 
418 
419 
420  //=== For each good photon cluster in the processed event and fill histogram.
421 
422  StoreObjPtr<EventMetaData> evtMetaData ;
423  for (long unsigned int i = 0 ; i < goodPhotonClusterIdxs.size() ; i++) {
424  getObjectPtr<TH1F>("clusterTime")->Fill(goodClustTimes[i]) ;
425  getObjectPtr<TH2F>("clusterTime_cid")->Fill(goodClustMaxEcrys_cid[i] + 0.001, goodClustTimes[i] , 1) ;
426  getObjectPtr<TH2F>("clusterTime_run")->Fill(evtMetaData->getRun() + 0.001, goodClustTimes[i] , 1) ;
427  getObjectPtr<TH2F>("clusterTimeClusterE")->Fill(goodClustE[i], goodClustTimes[i], 1) ;
428  getObjectPtr<TH2F>("dt99_clusterE")->Fill(goodClustE[i], goodClust_dt99[i], 1) ;
429 
430  //== Save debug TTree with detailed information if necessary.
431  if (m_saveTree) {
432 
433  m_tree_time = goodClustTimes[i] ;
434  m_E_photon_clust = goodClusters_crysE[i] ;
435  m_tree_t0 = evt_t0 ;
436  m_tree_t0_unc = evt_t0_unc ;
437  m_NtightTracks = nTrkTight ;
438  m_NphotonClusters = nPhotons ;
439  m_NGoodClusters = nGoodClusts ;
440  m_tree_evt_num = evtMetaData->getEvent() ;
441  m_tree_run = evtMetaData->getRun() ;
442  m_tree_cid = goodClustMaxEcrys_cid[i] ;
443  m_tree_dt99 = goodClust_dt99[i] ;
444 
445  m_dbg_tree_photonClusters->Fill() ;
446 
447  }
448  }
449  B2DEBUG(26, "Filled cluster tree") ;
450 
451  //=== Fill histogram for cluster time difference of the two max E photons
452  if (pair_energy_time.size() >= 2) {
453  getObjectPtr<TH1F>("clusterTimeE0E1diff")->Fill(pair_energy_time[0].second - pair_energy_time[1].second) ;
454  }
455 
456 
457 
458  if (m_saveTree) {
459  m_tree_t0 = evt_t0 ;
460  m_tree_t0_unc = evt_t0_unc ;
461  m_tree_evt_num = evtMetaData->getEvent() ;
462  m_tree_run = evtMetaData->getRun() ;
463  m_NtightTracks = nTrkTight ;
464  m_NphotonClusters = nPhotons ;
465  m_NGoodClusters = nGoodClusts ;
466 
467  m_tree_E0 = pair_energy_time[0].first ;
468  m_tree_time_fromE0 = pair_energy_time[0].second ;
469  m_dbg_tree_event->Fill() ;
470  }
471 
472  B2DEBUG(26, "Filled event tree") ;
473 
474 }
static const ChargedStable pion
charged pion particle
Definition: Const.h:542
@ c_nPhotons
CR is split into n photons (N1)
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:95
Values of the result of a track fit with a given particle hypothesis.
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
Structure for storing the extracted event t0s together with its detector and its uncertainty.
Definition: EventT0.h:34

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootOutputModule, and RootInputModule.

Definition at line 134 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

Member Data Documentation

◆ m_dbg_tree_photonClusters

TTree* m_dbg_tree_photonClusters
private

Output tree with detailed event data.

debug output tree for per electron cluster

Definition at line 88 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0 so use that as presumably some code has been run to determine what the best t0 is to use.

Definition at line 83 of file eclHadronTimeCalibrationValidationCollectorModule.h.


The documentation for this class was generated from the following files: