Belle II Software  release-06-02-00
eclMuMuEAlgorithm.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #include <ecl/calibration/eclMuMuEAlgorithm.h>
10 #include <ecl/dbobjects/ECLCrystalCalib.h>
11 
12 #include "TH2F.h"
13 #include "TFile.h"
14 #include "TMath.h"
15 #include "TF1.h"
16 #include "TROOT.h"
17 
18 using namespace std;
19 using namespace Belle2;
20 using namespace ECL;
21 
23 double eclNovoConst(double* x, double* par)
24 {
25  double qc = 0;
26 
27  double peak = par[1];
28  double width = par[2];
29  double sln4 = sqrt(log(4));
30  double y = par[3] * sln4;
31  double tail = -log(y + sqrt(1 + y * y)) / sln4;
32 
33  if (TMath::Abs(tail) < 1.e-7) {
34  qc = 0.5 * TMath::Power(((x[0] - peak) / width), 2);
35  } else {
36  double qa = tail * sqrt(log(4.));
37  double qb = sinh(qa) / qa;
38  double qx = (x[0] - peak) / width * qb;
39  double qy = 1. + tail * qx;
40 
41  if (qy > 1.E-7)
42  qc = 0.5 * (TMath::Power((log(qy) / tail), 2) + tail * tail);
43  else
44  qc = 15.0;
45  }
46  return par[0] * exp(-qc) + par[4];
47 }
48 
49 
50 eclMuMuEAlgorithm::eclMuMuEAlgorithm(): CalibrationAlgorithm("eclMuMuECollector"), cellIDLo(1), cellIDHi(8736), minEntries(150),
51  nToRebin(1000), tRatioMin(0.05), tRatioMax(0.40), lowerEdgeThresh(0.10), performFits(true), findExpValues(false), storeConst(0)
52 {
54  "Perform energy calibration of ecl crystals by fitting a Novosibirsk function to energy deposited by muons"
55  );
56 }
57 
59 {
62  double limitTol = 0.0005; /*< tolerance for checking if a parameter is at the limit */
63  double minFitLimit = 1e-25; /*< cut off for labeling a fit as poor */
64  double peakMin(0.4), peakMax(2.2); /*< range for peak of normalized energy distribution */
65  double peakTol = limitTol * (peakMax - peakMin); /*< fit is at limit if it is within peakTol of min or max */
66  double effSigMin(0.02), effSigMax(0.2); /*< range for effective sigma of normalized energy distribution */
67  double effSigTol = limitTol * (effSigMax - effSigMin); /*< fit is at limit if it is within effSigTol of min or max */
68  double etaNom(-0.41); /*< Nominal tail parameter; fixed to this value for low statistics fits */
69  double etaMin(-1.), etaMax(0.); /*< Novosibirsk tail parameter range */
70  double etaTol = limitTol * (etaMax - etaMin); /*< fit is at limit if it is within etaTol of min or max */
71 
73  gROOT->SetBatch();
74 
77  B2INFO("eclMuMuEAlgorithm parameters:");
78  B2INFO("cellIDLo = " << cellIDLo);
79  B2INFO("cellIDHi = " << cellIDHi);
80  B2INFO("minEntries = " << minEntries);
81  B2INFO("tRatioMin = " << tRatioMin);
82  B2INFO("tRatioMax = " << tRatioMax);
83  B2INFO("lowerEdgeThresh = " << lowerEdgeThresh);
84  B2INFO("performFits = " << performFits);
85  B2INFO("findExpValues = " << findExpValues);
86  B2INFO("storeConst = " << storeConst);
87 
90  TH1F* dummy;
91  dummy = (TH1F*)gROOT->FindObject("IntegralVsCrysID");
92  if (dummy) {delete dummy;}
93  dummy = (TH1F*)gROOT->FindObject("AverageExpECrys");
94  if (dummy) {delete dummy;}
95  dummy = (TH1F*)gROOT->FindObject("AverageElecCalib");
96  if (dummy) {delete dummy;}
97  dummy = (TH1F*)gROOT->FindObject("AverageInitCalib");
98  if (dummy) {delete dummy;}
99 
102  auto TrkPerCrysID = getObjectPtr<TH1F>("TrkPerCrysID");
103  auto EnVsCrysID = getObjectPtr<TH2F>("EnVsCrysID");
104  auto ExpEvsCrys = getObjectPtr<TH1F>("ExpEvsCrys");
105  auto ElecCalibvsCrys = getObjectPtr<TH1F>("ElecCalibvsCrys");
106  auto InitialCalibvsCrys = getObjectPtr<TH1F>("InitialCalibvsCrys");
107  auto CalibEntriesvsCrys = getObjectPtr<TH1F>("CalibEntriesvsCrys");
108  auto RawDigitAmpvsCrys = getObjectPtr<TH2F>("RawDigitAmpvsCrys");
109  auto RawDigitTimevsCrys = getObjectPtr<TH2F>("RawDigitTimevsCrys");
110  auto hitCrysVsExtrapolatedCrys = getObjectPtr<TH2F>("hitCrysVsExtrapolatedCrys");
111 
115  TH1F* IntegralVsCrysID = new TH1F("IntegralVsCrysID", "Integral of EnVsCrysID for each crystal;crystal ID;Entries", 8736, 0, 8736);
116  TH1F* AverageExpECrys = new TH1F("AverageExpECrys", "Average expected E per crys from collector;Crystal ID;Energy (GeV)", 8736, 0,
117  8736);
118  TH1F* AverageElecCalib = new TH1F("AverageElecCalib", "Average electronics calib const vs crystal;Crystal ID;Calibration constant",
119  8736, 0, 8736);
120  TH1F* AverageInitCalib = new TH1F("AverageInitCalib", "Average initial calib const vs crystal;Crystal ID;Calibration constant",
121  8736, 0, 8736);
122 
123  for (int crysID = 0; crysID < 8736; crysID++) {
124  TH1D* hEnergy = EnVsCrysID->ProjectionY("hEnergy", crysID + 1, crysID + 1);
125  int Integral = hEnergy->Integral();
126  IntegralVsCrysID->SetBinContent(crysID + 1, Integral);
127 
128  double TotEntries = CalibEntriesvsCrys->GetBinContent(crysID + 1);
129 
130  double expectedE = 0.;
131  if (TotEntries > 0.) {expectedE = ExpEvsCrys->GetBinContent(crysID + 1) / TotEntries;}
132  AverageExpECrys->SetBinContent(crysID + 1, expectedE);
133 
134  double calibconst = 0.;
135  if (TotEntries > 0.) {calibconst = ElecCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
136  AverageElecCalib->SetBinContent(crysID + 1, calibconst);
137 
138  calibconst = 0.;
139  if (TotEntries > 0.) {calibconst = InitialCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
140  AverageInitCalib->SetBinContent(crysID + 1, calibconst);
141  }
142 
145  TFile* histfile = new TFile("eclMuMuEAlgorithm.root", "recreate");
146  TrkPerCrysID->Write();
147  EnVsCrysID->Write();
148  IntegralVsCrysID->Write();
149  AverageExpECrys->Write();
150  AverageElecCalib->Write();
151  AverageInitCalib->Write();
152  RawDigitAmpvsCrys->Write();
153  RawDigitTimevsCrys->Write();
154  hitCrysVsExtrapolatedCrys->Write();
155 
158  if (!performFits) {
159  B2RESULT("eclMuMuEAlgorithm has not been asked to perform fits; copying input histograms and quitting");
160  histfile->Close();
161  return c_NotEnoughData;
162  }
163 
166  bool sufficientData = true;
167  for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
168  if (IntegralVsCrysID->GetBinContent(crysID + 1) < minEntries) {
169  if (storeConst == 1) {B2RESULT("eclMuMuEAlgorithm: crystal " << crysID << " has insufficient statistics: " << IntegralVsCrysID->GetBinContent(crysID + 1) << ". Requirement is " << minEntries);}
170  sufficientData = false;
171  break;
172  }
173  }
174 
176  if (!sufficientData && storeConst == 1) {
177  histfile->Close();
178  return c_NotEnoughData;
179  }
180 
185  TH1F* CalibVsCrysID = new TH1F("CalibVsCrysID", "Calibration constant vs crystal ID;crystal ID;counts per GeV", 8736, 0, 8736);
186  TH1F* ExpEnergyperCrys = new TH1F("ExpEnergyperCrys", "Expected energy per crystal;Crystal ID;Peak energy (GeV)", 8736, 0, 8736);
187 
189  TH1F* PeakVsCrysID = new TH1F("PeakVsCrysID", "Peak of Novo fit vs crystal ID;crystal ID;Peak normalized energy", 8736, 0,
190  8736);
191  TH1F* EdgeVsCrysID = new TH1F("EdgeVsCrysID", "Lower edge of Novo fit vs crystal ID;crystal ID", 8736, 0,
192  8736);
193  TH1F* effSigVsCrysID = new TH1F("effSigVsCrysID", "effSigma vs crystal ID;crystal ID;sigma)", 8736, 0, 8736);
194  TH1F* etaVsCrysID = new TH1F("etaVsCrysID", "eta vs crystal ID;crystal ID;Novo eta parameter", 8736, 0, 8736);
195  TH1F* normVsCrysID = new TH1F("normVsCrysID", "Novosibirsk normalization vs crystal ID;crystal ID;normalization", 8736, 0, 8736);
196  TH1F* lowerLimitVsCrysID = new TH1F("lowerLimitVsCrysID", "fit range lower limit vs crystal ID;crystal ID;lower fit limit", 8736, 0,
197  8736);
198  TH1F* fitLimitVsCrysID = new TH1F("fitLimitVsCrysID", "fit range upper limit vs crystal ID;crystal ID;upper fit limit", 8736, 0,
199  8736);
200  TH1F* StatusVsCrysID = new TH1F("StatusVsCrysID", "Fit status vs crystal ID;crystal ID;Fit status", 8736, 0, 8736);
201 
203  TH1F* hStatus = new TH1F("hStatus", "Fit status", 25, -5, 20);
204  TH1F* hPeak = new TH1F("hPeak", "Peaks of normalized energy distributions, successful fits;Peak of Novosibirsk fit", 200, 0.8, 1.2);
205  TH1F* fracPeakUnc = new TH1F("fracPeakUnc", "Fractional uncertainty on peak uncertainty, successful fits;Uncertainty on peak", 100,
206  0, 0.1);
207 
208 
211  bool allFitsOK = true;
212  for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
213 
215  TString name = "Enormalized";
216  name += crysID;
217  TH1D* hEnergy = EnVsCrysID->ProjectionY(name, crysID + 1, crysID + 1);
218 
220  double histMin = hEnergy->GetXaxis()->GetXmin();
221  double histMax = hEnergy->GetXaxis()->GetXmax();
222  TF1* func = new TF1("eclNovoConst", eclNovoConst, histMin, histMax, 5);
223  func->SetParNames("normalization", "peak", "effSigma", "eta", "const");
224  func->SetParLimits(1, peakMin, peakMax);
225  func->SetParLimits(2, effSigMin, effSigMax);
226  func->SetParLimits(3, etaMin, etaMax);
227 
228  //..Currently not using the constant term
229  double constant = 0.;
230  func->FixParameter(4, constant);
231 
232  //..If low statistics, rebin, and fix eta
233  if (hEnergy->GetEntries() < nToRebin) {
234  hEnergy->Rebin(2);
235  func->FixParameter(3, etaNom);
236  }
237 
239  hEnergy->GetXaxis()->SetRangeUser(peakMin, peakMax);
240  double peak = hEnergy->GetMaximum();
241  int maxBin = hEnergy->GetMaximumBin();
242  double peakE = hEnergy->GetBinLowEdge(maxBin);
243  double peakEUnc = 0.;
244  double normalization = hEnergy->GetMaximum();
245  double normUnc = 0.;
246  double effSigma = hEnergy->GetRMS();
247  double sigmaUnc = 0.;
248  hEnergy->GetXaxis()->SetRangeUser(histMin, histMax);
249  double fitProb = 0.;
250 
252  double eta = etaNom;
253  double etaUnc = 0.;
254 
255  //..Will find the lower edge of normalized energy at the end of the fit
256  double lowerEnEdge = 0.;
257 
258  //..Fit range from set of bins with sufficient entries.
259  double targetY = tRatioMin * peak;
260  int iLow = maxBin;
261  while (hEnergy->GetBinContent(iLow) > targetY) {iLow--;}
262  double fitlow = hEnergy->GetBinLowEdge(iLow);
263 
264  targetY = tRatioMax * peak;
265  int iHigh = maxBin;
266  while (hEnergy->GetBinContent(iHigh) > targetY) {iHigh++;}
267  double fithigh = hEnergy->GetBinLowEdge(iHigh + 1);
268 
271  bool fitHist = IntegralVsCrysID->GetBinContent(crysID + 1) >= minEntries; /* fit only if enough events */
272  if (fitHist) {
273 
275  func->SetParameters(normalization, peakE, effSigma, eta, constant);
276 
278  hEnergy->Fit(func, "LIQ", "", fitlow, fithigh);
279  normalization = func->GetParameter(0);
280  normUnc = func->GetParError(0);
281  peakE = func->GetParameter(1);
282  peakEUnc = func->GetParError(1);
283  effSigma = func->GetParameter(2);
284  sigmaUnc = func->GetParError(2);
285  eta = func->GetParameter(3);
286  etaUnc = func->GetParError(3);
287  fitProb = func->GetProb();
288 
289  //..Lower edge of the fit function is used to find the calibration constant.
290  // Can now use the peak of the fit, instead of the bin content.
291  peak = func->Eval(peakE);
292  targetY = lowerEdgeThresh * peak;
293 
295  iHigh = hEnergy->GetXaxis()->FindBin(peakE) + 1;
296  iLow = hEnergy->GetXaxis()->FindBin(fitlow);
297  int iLast = iHigh;
298  for (int ibin = iHigh; ibin > iLow; ibin--) {
299  double xc = hEnergy->GetBinCenter(ibin);
300  if (func->Eval(xc) > targetY) {iLast = ibin;}
301  }
302  double xHigh = hEnergy->GetBinCenter(iLast);
303  double xLow = hEnergy->GetBinCenter(iLast - 1);
304 
306  if (func->Eval(xLow) < targetY and func->Eval(xHigh) > targetY) {
307  func->SetNpx(1000);
308  lowerEnEdge = func->GetX(targetY, xLow, xHigh);
309  }
310  }
311 
314  int iStatus = fitOK; // success
315 
317  if (lowerEnEdge < 0.01) {iStatus = noLowerEdge;}
318 
320  if (fitProb <= minFitLimit) {iStatus = poorFit;}
321 
323  if ((peakE < peakMin + peakTol) || (peakE > peakMax - peakTol)) {iStatus = atLimit;}
324  if ((effSigma < effSigMin + effSigTol) || (effSigma > effSigMax - effSigTol)) {iStatus = atLimit;}
325  if ((eta < etaMin + etaTol) || (eta > etaMax - etaTol)) {iStatus = atLimit;}
326 
327  //** No fit
328  if (!fitHist) {iStatus = notFit;} // not fit
329 
331  int histbin = crysID + 1;
332  PeakVsCrysID->SetBinContent(histbin, peakE);
333  PeakVsCrysID->SetBinError(histbin, peakEUnc);
334  EdgeVsCrysID->SetBinContent(histbin, lowerEnEdge);
335  EdgeVsCrysID->SetBinError(histbin, peakEUnc); // approximate
336  effSigVsCrysID->SetBinContent(histbin, effSigma);
337  effSigVsCrysID->SetBinError(histbin, sigmaUnc);
338  etaVsCrysID->SetBinContent(histbin, eta);
339  etaVsCrysID->SetBinError(histbin, etaUnc);
340  normVsCrysID->SetBinContent(histbin, normalization);
341  normVsCrysID->SetBinError(histbin, normUnc);
342  lowerLimitVsCrysID->SetBinContent(histbin, fitlow);
343  lowerLimitVsCrysID->SetBinError(histbin, 0);
344  fitLimitVsCrysID->SetBinContent(histbin, fithigh);
345  fitLimitVsCrysID->SetBinError(histbin, 0);
346  StatusVsCrysID->SetBinContent(histbin, iStatus);
347  StatusVsCrysID->SetBinError(histbin, 0);
348 
350  hStatus->Fill(iStatus);
351  if (iStatus >= iterations) {
352  hPeak->Fill(peakE);
353  fracPeakUnc->Fill(peakEUnc / peakE);
354  }
355 
357  B2INFO("cellID " << crysID + 1 << " status = " << iStatus << " fit probability = " << fitProb);
358  histfile->cd();
359  hEnergy->Write();
360 
361  } /* end of loop over crystals */
362 
365  for (int crysID = 0; crysID < 8736; crysID++) {
366  int histbin = crysID + 1;
367  double fitstatus = StatusVsCrysID->GetBinContent(histbin);
368  double peakE = PeakVsCrysID->GetBinContent(histbin);
369  double edge = EdgeVsCrysID->GetBinContent(histbin);
370  double fracpeakEUnc = PeakVsCrysID->GetBinError(histbin) / peakE;
371 
373  if (fitstatus < iterations) {
374  peakE = -1.;
375  edge = -1.;
376  fracpeakEUnc = 0.;
377  if (histbin >= cellIDLo && histbin <= cellIDHi) {
378  B2RESULT("eclMuMuEAlgorithm: cellID " << histbin << " is not a successful fit. Status = " << fitstatus);
379  allFitsOK = false;
380  }
381  }
382 
384  if (findExpValues) {
385  double inputExpE = abs(AverageExpECrys->GetBinContent(histbin));
386  ExpEnergyperCrys->SetBinContent(histbin, inputExpE * edge);
387  ExpEnergyperCrys->SetBinError(histbin, fracpeakEUnc * inputExpE * peakE);
388  } else {
389 
391  double inputCalib = abs(AverageInitCalib->GetBinContent(histbin));
392  CalibVsCrysID->SetBinContent(histbin, inputCalib / edge);
393  CalibVsCrysID->SetBinError(histbin, fracpeakEUnc * inputCalib / peakE);
394  }
395  }
396 
399  bool DBsuccess = false;
400  if (storeConst == 0 || (storeConst == 1 && allFitsOK)) {
401  DBsuccess = true;
402  if (findExpValues) {
403 
405  std::vector<float> tempE;
406  std::vector<float> tempUnc;
407  for (int crysID = 0; crysID < 8736; crysID++) {
408  tempE.push_back(ExpEnergyperCrys->GetBinContent(crysID + 1));
409  tempUnc.push_back(ExpEnergyperCrys->GetBinError(crysID + 1));
410  }
411  ECLCrystalCalib* ExpectedE = new ECLCrystalCalib();
412  ExpectedE->setCalibVector(tempE, tempUnc);
413  saveCalibration(ExpectedE, "ECLExpMuMuE");
414  B2RESULT("eclCosmicEAlgorithm: successfully stored expected energies ECLExpMuMuE");
415 
416  } else {
417 
419  std::vector<float> tempCalib;
420  std::vector<float> tempCalibUnc;
421  for (int crysID = 0; crysID < 8736; crysID++) {
422  tempCalib.push_back(CalibVsCrysID->GetBinContent(crysID + 1));
423  tempCalibUnc.push_back(CalibVsCrysID->GetBinError(crysID + 1));
424  }
425  ECLCrystalCalib* MuMuECalib = new ECLCrystalCalib();
426  MuMuECalib->setCalibVector(tempCalib, tempCalibUnc);
427  saveCalibration(MuMuECalib, "ECLCrystalEnergyMuMu");
428  B2RESULT("eclMuMuEAlgorithm: successfully stored ECLCrystalEnergyMuMu calibration constants");
429  }
430  }
431 
435  PeakVsCrysID->Write();
436  EdgeVsCrysID->Write();
437  effSigVsCrysID->Write();
438  etaVsCrysID->Write();
439  normVsCrysID->Write();
440  lowerLimitVsCrysID->Write();
441  fitLimitVsCrysID->Write();
442  StatusVsCrysID->Write();
443  hPeak->Write();
444  fracPeakUnc->Write();
445  hStatus->Write();
446 
448  if (findExpValues) {
449  ExpEnergyperCrys->Write();
450  } else {
451  CalibVsCrysID->Write();
452  }
453  histfile->Close();
454 
457  dummy = (TH1F*)gROOT->FindObject("PeakVsCrysID"); delete dummy;
458  dummy = (TH1F*)gROOT->FindObject("EdgeVsCrysID"); delete dummy;
459  dummy = (TH1F*)gROOT->FindObject("effSigVsCrysID"); delete dummy;
460  dummy = (TH1F*)gROOT->FindObject("etaVsCrysID"); delete dummy;
461  dummy = (TH1F*)gROOT->FindObject("normVsCrysID"); delete dummy;
462  dummy = (TH1F*)gROOT->FindObject("lowerLimitVsCrysID"); delete dummy;
463  dummy = (TH1F*)gROOT->FindObject("fitLimitVsCrysID"); delete dummy;
464  dummy = (TH1F*)gROOT->FindObject("StatusVsCrysID"); delete dummy;
465  dummy = (TH1F*)gROOT->FindObject("fitProbSame"); delete dummy;
466  dummy = (TH1F*)gROOT->FindObject("fracPeakUnc"); delete dummy;
467  dummy = (TH1F*)gROOT->FindObject("hStatus"); delete dummy;
468  dummy = (TH1F*)gROOT->FindObject("ExpEnergyperCrys"); delete dummy;
469  dummy = (TH1F*)gROOT->FindObject("CalibVsCrysID"); delete dummy;
470 
471 
474  if (storeConst == -1) {
475  B2RESULT("eclMuMuEAlgorithm performed fits but was not asked to store contants");
476  return c_Failure;
477  } else if (!DBsuccess) {
478  if (findExpValues) { B2RESULT("eclMuMuEAlgorithm: failed to store expected values"); }
479  else { B2RESULT("eclMuMuEAlgorithm: failed to store calibration constants"); }
480  return c_Failure;
481  }
482  return c_OK;
483 }
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfuly =0 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
double tRatioMin
entries/peak at low edge of fit must be greater than this
int poorFit
low chi square; fit not useable
int iterations
fit reached max number of iterations, but is useable
int noLowerEdge
could not determine lower edge of fit
int storeConst
controls which values are written to the database.
bool performFits
if false, input histograms are copied to output, but no fits are done.
int cellIDHi
Last cellID to be fit.
double lowerEdgeThresh
Lower edge is where the fit = lowerEdgeThresh * peak value.
int cellIDLo
..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events
bool findExpValues
if true, fits are used to find expected energy deposit for each crystal instead of the calibration co...
int minEntries
All crystals to be fit must have at least minEntries events in the fit range.
int nToRebin
If fewer entries than this, rebin and fix eta parameter.
virtual EResult calibrate() override
..Run algorithm on events
int atLimit
a parameter is at the limit; fit not useable
double tRatioMax
entries/peak at high edge of fit must be greater than this
Abstract base class for different kinds of events.