13 from basf2_mva_evaluation
import plotting
14 from basf2
import conditions
19 from B2Tools
import b2latex, format
20 from basf2
import B2INFO
25 from typing
import List, Any
28 def get_argument_parser() -> argparse.ArgumentParser:
29 """ Parses the command line options of the fei and returns the corresponding arguments. """
30 parser = argparse.ArgumentParser()
31 parser.add_argument(
'-id',
'--identifiers', dest=
'identifiers', type=str, required=
True, action=
'append', nargs=
'+',
32 help=
'DB Identifier or weightfile')
33 parser.add_argument(
'-train',
'--train_datafiles', dest=
'train_datafiles', type=str, required=
False, action=
'append', nargs=
'+',
34 help=
'Data file containing ROOT TTree used during training')
35 parser.add_argument(
'-data',
'--datafiles', dest=
'datafiles', type=str, required=
True, action=
'append', nargs=
'+',
36 help=
'Data file containing ROOT TTree with independent test data')
37 parser.add_argument(
'-tree',
'--treename', dest=
'treename', type=str, default=
'tree', help=
'Treename in data file')
38 parser.add_argument(
'-out',
'--outputfile', dest=
'outputfile', type=str, default=
'output.zip',
39 help=
'Name of the created .zip archive file if not compiling or a pdf file if compilation is successful.')
40 parser.add_argument(
'-w',
'--working_directory', dest=
'working_directory', type=str, default=
'',
41 help=
"""Working directory where the created images and root files are stored,
42 default is to create a temporary directory.""")
43 parser.add_argument(
'-l',
'--localdb', dest=
'localdb', type=str, action=
'append', nargs=
'+', required=
False,
44 help=
"""path or list of paths to local database(s) containing the mvas of interest.
45 The testing payloads are preprended and take precedence over payloads in global tags.""")
46 parser.add_argument(
'-g',
'--globaltag', dest=
'globaltag', type=str, action=
'append', nargs=
'+', required=
False,
47 help=
'globaltag or list of globaltags containing the mvas of interest. The globaltags are prepended.')
48 parser.add_argument(
'-n',
'--fillnan', dest=
'fillnan', action=
'store_true',
49 help=
'Fill nan and inf values with actual numbers')
50 parser.add_argument(
'-c',
'--compile', dest=
'compile', action=
'store_true',
51 help=
'Compile latex to pdf directly')
52 parser.add_argument(
'-a',
'--abbreviation_length', dest=
'abbreviation_length',
53 action=
'store', type=int, default=5,
54 help=
'Number of characters to which variable names are abbreviated.')
58 def unique(input_list: List[Any]) -> List[Any]:
60 Returns a list containing only unique elements, keeps the original order of the list
61 @param input_list list containing the elements
70 def flatten(input_list: List[List[Any]]) -> List[Any]:
72 Flattens a list of lists
73 @param input_list list of lists to be flattened
75 return [item
for sublist
in input_list
for item
in sublist]
78 def create_abbreviations(names, length=5):
81 abbreviation = name[:length]
82 if abbreviation
not in count:
83 count[abbreviation] = 0
84 count[abbreviation] += 1
85 abbreviations = collections.OrderedDict()
89 abbreviation = name[:length]
90 abbreviations[name] = abbreviation
91 if count[abbreviation] > 1:
92 if abbreviation
not in count2:
93 count2[abbreviation] = 0
94 count2[abbreviation] += 1
95 abbreviations[name] += str(count2[abbreviation])
99 if __name__ ==
'__main__':
102 ROOT.PyConfig.IgnoreCommandLineOptions =
True
103 ROOT.PyConfig.StartGuiThread =
False
104 ROOT.gROOT.SetBatch(
True)
106 old_cwd = os.getcwd()
107 parser = get_argument_parser()
108 args = parser.parse_args()
110 identifiers = flatten(args.identifiers)
111 identifier_abbreviations = create_abbreviations(identifiers, args.abbreviation_length)
113 datafiles = flatten(args.datafiles)
114 if args.localdb
is not None:
115 for localdb
in flatten(args.localdb):
116 conditions.prepend_testing_payloads(localdb)
118 if args.globaltag
is not None:
119 for tag
in flatten(args.globaltag):
120 conditions.prepend_globaltag(tag)
122 print(
"Load methods")
125 print(
"Apply experts on independent data")
126 test_probability = {}
128 for method
in methods:
129 p, t = method.apply_expert(datafiles, args.treename)
130 test_probability[identifier_abbreviations[method.identifier]] = p
131 test_target[identifier_abbreviations[method.identifier]] = t
133 print(
"Apply experts on training data")
134 train_probability = {}
136 if args.train_datafiles
is not None:
137 train_datafiles = sum(args.train_datafiles, [])
138 for method
in methods:
139 p, t = method.apply_expert(train_datafiles, args.treename)
140 train_probability[identifier_abbreviations[method.identifier]] = p
141 train_target[identifier_abbreviations[method.identifier]] = t
143 variables = unique(v
for method
in methods
for v
in method.variables)
144 variable_abbreviations = create_abbreviations(variables, args.abbreviation_length)
145 root_variables = unique(v
for method
in methods
for v
in method.root_variables)
147 spectators = unique(v
for method
in methods
for v
in method.spectators)
148 spectator_abbreviations = create_abbreviations(spectators, args.abbreviation_length)
149 root_spectators = unique(v
for method
in methods
for v
in method.root_spectators)
151 print(
"Load variables array")
152 rootchain = ROOT.TChain(args.treename)
153 for datafile
in datafiles:
154 rootchain.Add(datafile)
160 for column
in variable_abbreviations.values():
161 np.nan_to_num(variables_data[column], copy=
False)
163 for column
in spectator_abbreviations.values():
164 np.nan_to_num(spectators_data[column], copy=
False)
166 print(
"Create latex file")
169 with tempfile.TemporaryDirectory()
as tempdir:
170 if args.working_directory ==
'':
173 os.chdir(args.working_directory)
175 with open(
'abbreviations.txt',
'w')
as f:
176 f.write(
'Identifier Abbreviation : Identifier \n')
177 for name, abbrev
in identifier_abbreviations.items():
178 f.write(f
'\t{abbrev} : {name}\n')
179 f.write(
'\n\n\nVariable Abbreviation : Variable \n')
180 for name, abbrev
in variable_abbreviations.items():
181 f.write(f
'\t{abbrev} : {name}\n')
182 f.write(
'\n\n\nSpectator Abbreviation : Spectator \n')
183 for name, abbrev
in spectator_abbreviations.items():
184 f.write(f
'\t{abbrev} : {name}\n')
186 o = b2latex.LatexFile()
187 o += b2latex.TitlePage(title=
'Automatic MVA Evaluation',
188 authors=[
r'Thomas Keck\\ Moritz Gelb\\ Nils Braun'],
189 abstract=
'Evaluation plots',
190 add_table_of_contents=
True).finish()
192 o += b2latex.Section(
"Classifiers")
193 o += b2latex.String(
r"""
194 This section contains the GeneralOptions and SpecificOptions of all classifiers represented by an XML tree.
195 The same information can be retrieved using the basf2\_mva\_info tool.
198 table = b2latex.LongTable(
r"ll",
"Abbreviations of identifiers",
"{name} & {abbr}",
r"Identifier & Abbreviation")
199 for identifier
in identifiers:
200 table.add(name=format.string(identifier), abbr=format.string(identifier_abbreviations[identifier]))
203 for method
in methods:
204 o += b2latex.SubSection(format.string(method.identifier))
205 o += b2latex.Listing(language=
'XML').add(method.description).finish()
207 o += b2latex.Section(
"Variables")
208 o += b2latex.String(
"""
209 This section contains an overview of the importance and correlation of the variables used by the classifiers.
210 And distribution plots of the variables on the independent dataset. The distributions are normed for signal and
211 background separately, and only the region +- 3 sigma around the mean is shown.
213 The importance scores shown are based on the variable importance as estimated by each MVA method internally.
214 This means the variable with the lowest importance will have score 0, and the variable
215 with the highest importance will have score 100. If the method does not provide such a ranking, all
216 importances will be 0.
219 table = b2latex.LongTable(
r"ll",
"Abbreviations of variables",
"{name} & {abbr}",
r"Variable & Abbreviation")
221 table.add(name=format.string(v), abbr=format.string(variable_abbreviations[v]))
224 o += b2latex.SubSection(
"Importance")
225 graphics = b2latex.Graphics()
227 p.add({identifier_abbreviations[i.identifier]: np.array([i.importances.get(v, 0.0)
for v
in variables])
for i
in methods},
228 identifier_abbreviations.values(), variable_abbreviations.values())
230 p.save(
'importance.pdf')
231 graphics.add(
'importance.pdf', width=1.0)
232 o += graphics.finish()
234 o += b2latex.SubSection(
"Correlation")
235 first_identifier_abbr = list(identifier_abbreviations.values())[0]
236 graphics = b2latex.Graphics()
238 p.add(variables_data, variable_abbreviations.values(),
239 test_target[first_identifier_abbr] == 1,
240 test_target[first_identifier_abbr] == 0)
242 p.save(
'correlation_plot.pdf')
243 graphics.add(
'correlation_plot.pdf', width=1.0)
244 o += graphics.finish()
247 variable_abbr = variable_abbreviations[v]
248 o += b2latex.SubSection(format.string(v))
249 graphics = b2latex.Graphics()
251 p.add(variables_data, variable_abbr, test_target[first_identifier_abbr] == 1, label=
"Signal")
252 p.add(variables_data, variable_abbr, test_target[first_identifier_abbr] == 0, label=
"Background")
254 p.save(f
'variable_{hash(v)}.pdf')
255 graphics.add(f
'variable_{hash(v)}.pdf', width=1.0)
256 o += graphics.finish()
258 o += b2latex.Section(
"Classifier Plot")
259 o += b2latex.String(
"This section contains the receiver operating characteristics (ROC), purity projection, ..."
260 "of the classifiers on training and independent data."
261 "The legend of each plot contains the shortened identifier and the area under the ROC curve"
264 o += b2latex.Section(
"ROC Plot")
265 graphics = b2latex.Graphics()
267 for identifier
in identifier_abbreviations.values():
268 p.add(test_probability, identifier, test_target[identifier] == 1, test_target[identifier] == 0)
270 p.axis.set_title(
"ROC Rejection Plot on independent data")
271 p.save(
'roc_plot_test.pdf')
272 graphics.add(
'roc_plot_test.pdf', width=1.0)
273 o += graphics.finish()
275 if train_probability:
276 for i, identifier
in enumerate(identifiers):
277 graphics = b2latex.Graphics()
279 identifier_abbr = identifier_abbreviations[identifier]
280 p.add(train_probability, identifier_abbr, train_target[identifier_abbr] == 1,
281 train_target[identifier_abbr] == 0, label=
'Train')
282 p.add(test_probability, identifier_abbr, test_target[identifier_abbr] == 1,
283 test_target[identifier_abbr] == 0, label=
'Test')
285 p.axis.set_title(identifier)
286 p.save(f
'roc_test_{hash(identifier)}.pdf')
287 graphics.add(f
'roc_test_{hash(identifier)}.pdf', width=1.0)
288 o += graphics.finish()
290 o += b2latex.Section(
"Classification Results")
292 for identifier
in identifiers:
293 identifier_abbr = identifier_abbreviations[identifier]
294 o += b2latex.SubSection(format.string(identifier_abbr))
295 graphics = b2latex.Graphics()
297 p.add(0, test_probability, identifier_abbr, test_target[identifier_abbr] == 1,
298 test_target[identifier_abbr] == 0, normed=
True)
299 p.sub_plots[0].axis.set_title(f
"Classification result in test data for {identifier}")
301 p.add(1, test_probability, identifier_abbr, test_target[identifier_abbr] == 1,
302 test_target[identifier_abbr] == 0, normed=
False)
303 p.sub_plots[1].axis.set_title(f
"Classification result in test data for {identifier}")
306 p.save(f
'classification_result_{hash(identifier)}.pdf')
307 graphics.add(f
'classification_result_{hash(identifier)}.pdf', width=1)
308 o += graphics.finish()
310 o += b2latex.Section(
"Diagonal Plot")
311 graphics = b2latex.Graphics()
313 for identifier
in identifiers:
314 o += b2latex.SubSection(format.string(identifier_abbr))
315 identifier_abbr = identifier_abbreviations[identifier]
316 p.add(test_probability, identifier_abbr, test_target[identifier_abbr] == 1, test_target[identifier_abbr] == 0)
318 p.axis.set_title(
"Diagonal plot on independent data")
319 p.save(
'diagonal_plot_test.pdf')
320 graphics.add(
'diagonal_plot_test.pdf', width=1.0)
321 o += graphics.finish()
323 if train_probability:
324 o += b2latex.SubSection(
"Overtraining Plot")
325 for identifier
in identifiers:
326 identifier_abbr = identifier_abbreviations[identifier]
327 probability = {identifier_abbr: np.r_[train_probability[identifier_abbr], test_probability[identifier_abbr]]}
328 target = np.r_[train_target[identifier_abbr], test_target[identifier_abbr]]
329 train_mask = np.r_[np.ones(len(train_target[identifier_abbr])), np.zeros(len(test_target[identifier_abbr]))]
330 graphics = b2latex.Graphics()
332 p.add(probability, identifier_abbr,
333 train_mask == 1, train_mask == 0,
334 target == 1, target == 0, )
336 p.axis.set_title(f
"Overtraining check for {identifier}")
337 p.save(f
'overtraining_plot_{hash(identifier)}.pdf')
338 graphics.add(f
'overtraining_plot_{hash(identifier)}.pdf', width=1.0)
339 o += graphics.finish()
341 o += b2latex.Section(
"Spectators")
342 o += b2latex.String(
"This section contains the distribution and dependence on the"
343 "classifier outputs of all spectator variables.")
345 table = b2latex.LongTable(
r"ll",
"Abbreviations of spectators",
"{name} & {abbr}",
r"Spectator & Abbreviation")
347 table.add(name=format.string(s), abbr=format.string(spectator_abbreviations[s]))
350 for spectator
in spectators:
351 spectator_abbr = spectator_abbreviations[spectator]
352 o += b2latex.SubSection(format.string(spectator))
353 graphics = b2latex.Graphics()
355 p.add(spectators_data, spectator_abbr, test_target[first_identifier_abbr] == 1, label=
"Signal")
356 p.add(spectators_data, spectator_abbr, test_target[first_identifier_abbr] == 0, label=
"Background")
358 p.save(f
'spectator_{hash(spectator)}.pdf')
359 graphics.add(f
'spectator_{hash(spectator)}.pdf', width=1.0)
360 o += graphics.finish()
362 for identifier
in identifiers:
363 o += b2latex.SubSubSection(format.string(spectator) +
" with classifier " + format.string(identifier))
364 identifier_abbr = identifier_abbreviations[identifier]
365 data = {identifier_abbr: test_probability[identifier_abbr], spectator_abbr: spectators_data[spectator_abbr]}
366 graphics = b2latex.Graphics()
368 p.add(data, spectator_abbr, identifier_abbr, list(range(10, 100, 10)),
369 test_target[identifier_abbr] == 1,
370 test_target[identifier_abbr] == 0)
372 p.save(f
'correlation_plot_{hash(spectator)}_{hash(identifier)}.pdf')
373 graphics.add(f
'correlation_plot_{hash(spectator)}_{hash(identifier)}.pdf', width=1.0)
374 o += graphics.finish()
377 B2INFO(f
"Creating a PDF file at {args.outputfile}. Please remove the '-c' switch if this fails.")
378 o.save(
'latex.tex', compile=
True)
380 B2INFO(f
"Creating a .zip archive containing plots and a TeX file at {args.outputfile}."
381 f
"Please unpack the archive and compile the latex.tex file with pdflatex.")
382 o.save(
'latex.tex', compile=
False)
385 if args.working_directory ==
'':
386 working_directory = tempdir
388 working_directory = args.working_directory
391 shutil.copy(os.path.join(working_directory,
'latex.pdf'), args.outputfile)
393 base_name = os.path.join(old_cwd, args.outputfile.rsplit(
'.', 1)[0])
394 shutil.make_archive(base_name,
'zip', working_directory)
def chain2dict(chain, tree_columns, dict_columns=None)