12 from basf2
import B2WARNING
16 def chain2dict(chain, tree_columns, dict_columns=None):
18 Convert a ROOT.TChain into a dictionary of np.arrays
19 @param chain the ROOT.TChain
20 @param tree_columns the column (or branch) names in the tree
21 @param dict_columns the corresponding column names in the dictionary
23 if len(tree_columns) == 0:
25 if dict_columns
is None:
26 dict_columns = tree_columns
28 from ROOT
import RDataFrame
29 rdf = RDataFrame(chain)
30 d = np.column_stack(list(rdf.AsNumpy(tree_columns).values()))
31 d = np.core.records.fromarrays(d.transpose(), names=dict_columns)
33 d = {column: np.zeros((chain.GetEntries(),))
for column
in dict_columns}
34 for iEvent, event
in enumerate(chain):
35 for dict_column, tree_column
in zip(dict_columns, tree_columns):
36 d[dict_column][iEvent] = getattr(event, tree_column)
40 def calculate_roc_auc(p, t):
42 Deprecated name of ``calculate_auc_efficiency_vs_purity``
44 @param p np.array filled with the probability output of a classifier
45 @param t np.array filled with the target (0 or 1)
48 "\033[93mcalculate_roc_auc\033[00m has been deprecated and will be removed in future.\n"
49 "This change has been made as calculate_roc_auc returned the area under the efficiency-purity curve\n"
50 "not the efficiency-background retention curve as expected by users.\n"
51 "Please replace calculate_roc_auc with:\n\n"
52 "\033[96mcalculate_auc_efficiency_vs_purity(probability, target[, weight])\033[00m:"
53 " the current definition of calculate_roc_auc\n"
54 "\033[96mcalculate_auc_efficiency_vs_background_retention(probability, target[, weight])\033[00m:"
55 " what is commonly known as roc auc\n")
56 return calculate_auc_efficiency_vs_purity(p, t)
59 def calculate_auc_efficiency_vs_purity(p, t, w=None):
61 Calculates the area under the efficiency-purity curve
62 @param p np.array filled with the probability output of a classifier
63 @param t np.array filled with the target (0 or 1)
64 @param w None or np.array filled with weights
75 efficiency = (T - np.cumsum(wt[index])) / float(T)
76 purity = (T - np.cumsum(wt[index])) / (N - np.cumsum(w[index]))
77 purity = np.where(np.isnan(purity), 0, purity)
78 return np.abs(np.trapz(purity, efficiency))
81 def calculate_auc_efficiency_vs_background_retention(p, t, w=None):
83 Calculates the area under the efficiency-background_retention curve (AUC ROC)
84 @param p np.array filled with the probability output of a classifier
85 @param t np.array filled with the target (0 or 1)
86 @param w None or np.array filled with weights
97 efficiency = (T - np.cumsum(wt[index])) / float(T)
98 background_retention = (N - T - np.cumsum((np.abs(1 - t) * w)[index])) / float(N - T)
99 return np.abs(np.trapz(efficiency, background_retention))
102 def calculate_flatness(f, p, w=None):
104 Calculates the flatness of a feature under cuts on a signal probability
105 @param f the feature values
106 @param p the probability values
107 @param w optional weights
108 @return the mean standard deviation between the local and global cut selection efficiency
110 quantiles = list(range(101))
111 binning_feature = np.unique(np.percentile(f, q=quantiles))
112 binning_probability = np.unique(np.percentile(p, q=quantiles))
113 if len(binning_feature) < 2:
114 binning_feature = np.array([np.min(f) - 1, np.max(f) + 1])
115 if len(binning_probability) < 2:
116 binning_probability = np.array([np.min(p) - 1, np.max(p) + 1])
117 hist_n, _ = np.histogramdd(np.c_[p, f],
118 bins=[binning_probability, binning_feature],
120 hist_inc = hist_n.sum(axis=1)
121 hist_inc /= hist_inc.sum(axis=0)
122 hist_n /= hist_n.sum(axis=0)
123 hist_n = hist_n.cumsum(axis=0)
124 hist_inc = hist_inc.cumsum(axis=0)
125 diff = (hist_n.T - hist_inc)**2
126 return np.sqrt(diff.sum() / (100 * 99))
131 Wrapper class providing an interface to the method stored under the given identifier.
132 It loads the Options, can apply the expert and train new ones using the current as a prototype.
133 This class is used by the basf_mva_evaluation tools
138 Load a method stored under the given identifier
139 @param identifier identifying the method
144 ROOT.Belle2.MVA.AbstractInterface.initSupportedInterfaces()
167 elif self.
general_optionsgeneral_options.m_method ==
"TMVAClassification":
168 self.
specific_optionsspecific_options = basf2_mva.TMVAOptionsClassification()
184 raise RuntimeError(
"Unknown method " + self.
general_optionsgeneral_options.m_method)
188 variables = [str(v)
for v
in self.
general_optionsgeneral_options.m_variables]
189 importances = self.
weightfileweightfile.getFeatureImportance()
192 self.
importancesimportances = {k: importances[k]
for k
in variables}
206 def train_teacher(self, datafiles, treename, general_options=None, specific_options=None):
208 Train a new method using this method as a prototype
209 @param datafiles the training datafiles
210 @param treename the name of the tree containing the training data
211 @param general_options general options given to basf2_mva.teacher
212 (if None the options of this method are used)
213 @param specific_options specific options given to basf2_mva.teacher
214 (if None the options of this method are used)
218 if isinstance(datafiles, str):
219 datafiles = [datafiles]
220 if general_options
is None:
222 if specific_options
is None:
225 with tempfile.TemporaryDirectory()
as tempdir:
226 identifier = tempdir +
"/weightfile.xml"
228 general_options.m_datafiles = basf2_mva.vector(*datafiles)
229 general_options.m_identifier = identifier
231 basf2_mva.teacher(general_options, specific_options)
233 method =
Method(identifier)
238 Apply the expert of the method to data and return the calculated probability and the target
239 @param datafiles the datafiles
240 @param treename the name of the tree containing the data
243 if isinstance(datafiles, str):
244 datafiles = [datafiles]
245 with tempfile.TemporaryDirectory()
as tempdir:
246 identifier = tempdir +
"/weightfile.xml"
247 ROOT.Belle2.MVA.Weightfile.save(self.
weightfileweightfile, identifier)
249 rootfilename = tempdir +
'/expert.root'
250 basf2_mva.expert(basf2_mva.vector(identifier),
251 basf2_mva.vector(*datafiles),
254 chain = ROOT.TChain(
"variables")
255 chain.Add(rootfilename)
257 expert_target = identifier +
'_' + self.
general_optionsgeneral_options.m_target_variable
262 ROOT.Belle2.MakeROOTCompatible.makeROOTCompatible(identifier),
267 ROOT.Belle2.MakeROOTCompatible.makeROOTCompatible(
269 f
'_{i}')
for i
in range(
274 [*branch_names, ROOT.Belle2.MakeROOTCompatible.makeROOTCompatible(expert_target)],
275 [*output_names, stripped_expert_target])
278 for x
in output_names]).T), d[stripped_expert_target]
specific_options
Specific options of the method.
def apply_expert(self, datafiles, treename)
description
Description of the method as a xml string returned by basf2_mva.info.
importances
Dictionary of the variable importances calculated by the method.
root_importances
Dictionary of the variables sorted by their importance but with root compatoble variable names.
variables
List of variables sorted by their importance.
def __init__(self, identifier)
weightfile
Weightfile of the method.
root_spectators
List of spectators with root compatible names.
spectators
List of spectators.
def train_teacher(self, datafiles, treename, general_options=None, specific_options=None)
root_variables
List of the variable importances calculated by the method, but with the root compatible variable name...
general_options
General options of the method.
identifier
Identifier of the method.