Belle II Software  release-08-01-10
PriorModel Class Reference
Inheritance diagram for PriorModel:
Collaboration diagram for PriorModel:

Public Member Functions

def __init__ (self, int n_output)
 
torch.tensor forward (self, torch.tensor x)
 

Public Attributes

 hidden1
 Linear layer with 9 inputs and 128 outputs.
 
 act1
 ReLU activation layer.
 
 hidden2
 Batchnormalization layer.
 
 hidden3
 Linear layer with 128 inputs and 64 outputs.
 
 act2
 ReLU activation layer.
 
 hidden4
 Batchnormalization layer.
 
 hidden5
 Linear layer with 64 inputs and 32 outputs.
 
 act3
 ReLU activation layer.
 
 hidden6
 Batchnormalization layer.
 
 hidden7
 Linear layer with 32 inputs and outputs for each particle in the particlelist.
 
 act4
 Softmax activation layer.
 

Detailed Description

Pytorch model for PID prior probability calculation.

Attributes:
    hidden1: Linear layer with 9 inputs and 128 outputs.
    act1: An RELU activation layer.
    hidden2: A batch normalization layer.
    hidden3: Linear layer with 128 inputs and 64 outputs.
    act2: An RELU activation layer.
    hidden4: A batch normalization layer.
    hidden5: Linear layer with 64 inputs and 32 outputs.
    act3: An RELU activation layer.
    hidden6: A batch normalization layer.
    hidden7: Linear layer with 9 inputs and 128 outputs.
    act4: A softmax activation layer.

Definition at line 105 of file priorDataLoaderAndModel.py.

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
int  n_output 
)
Initialize the PID prior probability model.

Parameter:
    n_output (int): Number of output nodes.

Definition at line 124 of file priorDataLoaderAndModel.py.

Member Function Documentation

◆ forward()

torch.tensor forward (   self,
torch.tensor  x 
)
Gives PID prior probabilities for the input features.

Parameter:
    x (torch.tensor): A 2D tensor containing features for a particle as a row.

Returns:
    A torch tensor containing PID prior probabilities for the provided features.

Definition at line 160 of file priorDataLoaderAndModel.py.


The documentation for this class was generated from the following file: