Belle II Software  release-08-01-10
hep_ml_uboost.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import subprocess
14 import time
15 
16 if __name__ == "__main__":
17  from basf2 import conditions, find_file
18  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
19  conditions.testing_payloads = [
20  'localdb/database.txt'
21  ]
22 
23  variables = ['p', 'pt', 'pz',
24  'daughter(0, p)', 'daughter(0, pz)', 'daughter(0, pt)',
25  'daughter(1, p)', 'daughter(1, pz)', 'daughter(1, pt)',
26  'daughter(2, p)', 'daughter(2, pz)', 'daughter(2, pt)',
27  'chiProb', 'dr', 'dz',
28  'daughter(0, dr)', 'daughter(1, dr)',
29  'daughter(0, dz)', 'daughter(1, dz)',
30  'daughter(0, chiProb)', 'daughter(1, chiProb)', 'daughter(2, chiProb)',
31  'daughter(0, kaonID)', 'daughter(0, pionID)',
32  'daughterInvM(0, 1)', 'daughterInvM(0, 2)', 'daughterInvM(1, 2)']
33 
34  train_file = find_file("mva/train_D0toKpipi.root", "examples")
35  test_file = find_file("mva/test_D0toKpipi.root", "examples")
36 
37  training_data = basf2_mva.vector(train_file)
38  testing_data = basf2_mva.vector(test_file)
39 
40  general_options = basf2_mva.GeneralOptions()
41  general_options.m_datafiles = training_data
42  general_options.m_treename = "tree"
43  general_options.m_variables = basf2_mva.vector(*variables)
44  # Spectators are the variables for which the selection should be uniform
45  general_options.m_spectators = basf2_mva.vector('M')
46  general_options.m_target_variable = "isSignal"
47  general_options.m_identifier = "HepMLUBoost"
48 
49  specific_options = basf2_mva.PythonOptions()
50  specific_options.m_steering_file = 'mva/examples/python/hep_ml_uboost.py'
51  # Set the parameters of the uBoostClassifier,
52  # defaults are 50, which is reasonable, but I want to have a example runtime < 2 minutes
53  import json
54  specific_options.m_config = json.dumps({'n_neighbors': 5, 'n_estimators': 5})
55  specific_options.m_framework = 'hep_ml'
56 
57  training_start = time.time()
58  basf2_mva.teacher(general_options, specific_options)
59  training_stop = time.time()
60  training_time = training_stop - training_start
61  method = basf2_mva_util.Method(general_options.m_identifier)
62  inference_start = time.time()
63  p, t = method.apply_expert(testing_data, general_options.m_treename)
64  inference_stop = time.time()
65  inference_time = inference_stop - inference_start
67  print("HepML", training_time, inference_time, auc)
68 
69  subprocess.call(f'basf2_mva_evaluate.py -c -o latex.pdf -train {train_file} -data {test_file} -i HepMLUBoost', shell=True)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)