16 if __name__ ==
"__main__":
17 from basf2
import conditions, find_file
19 conditions.testing_payloads = [
20 'localdb/database.txt'
23 variables = [
'M',
'p',
'pt',
'pz',
24 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
25 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
26 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
27 'chiProb',
'dr',
'dz',
28 'daughter(0, dr)',
'daughter(1, dr)',
29 'daughter(0, dz)',
'daughter(1, dz)',
30 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
31 'daughter(0, kaonID)',
'daughter(0, pionID)',
32 'daughterInvM(0, 1)',
'daughterInvM(0, 2)',
'daughterInvM(1, 2)']
34 train_file = find_file(
"mva/train_D0toKpipi.root",
"examples")
35 test_file = find_file(
"mva/test_D0toKpipi.root",
"examples")
37 training_data = basf2_mva.vector(train_file)
38 testing_data = basf2_mva.vector(test_file)
41 general_options = basf2_mva.GeneralOptions()
42 general_options.m_datafiles = training_data
43 general_options.m_treename =
"tree"
44 general_options.m_identifier =
"SKLearn-BDT"
45 general_options.m_variables = basf2_mva.vector(*variables)
46 general_options.m_target_variable =
"isSignal"
48 sklearn_nn_options = basf2_mva.PythonOptions()
49 sklearn_nn_options.m_framework =
"sklearn"
50 sklearn_nn_options.m_steering_file =
'mva/examples/python/sklearn_default.py'
52 training_start = time.time()
53 basf2_mva.teacher(general_options, sklearn_nn_options)
54 training_stop = time.time()
55 training_time = training_stop - training_start
57 inference_start = time.time()
58 p, t = method.apply_expert(testing_data, general_options.m_treename)
59 inference_stop = time.time()
60 inference_time = inference_stop - inference_start
62 print(
"SKLearn", training_time, inference_time, auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)