Belle II Software  release-08-01-10
sklearn_default.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import time
14 
15 
16 if __name__ == "__main__":
17  from basf2 import conditions, find_file
18  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
19  conditions.testing_payloads = [
20  'localdb/database.txt'
21  ]
22 
23  variables = ['M', 'p', 'pt', 'pz',
24  'daughter(0, p)', 'daughter(0, pz)', 'daughter(0, pt)',
25  'daughter(1, p)', 'daughter(1, pz)', 'daughter(1, pt)',
26  'daughter(2, p)', 'daughter(2, pz)', 'daughter(2, pt)',
27  'chiProb', 'dr', 'dz',
28  'daughter(0, dr)', 'daughter(1, dr)',
29  'daughter(0, dz)', 'daughter(1, dz)',
30  'daughter(0, chiProb)', 'daughter(1, chiProb)', 'daughter(2, chiProb)',
31  'daughter(0, kaonID)', 'daughter(0, pionID)',
32  'daughterInvM(0, 1)', 'daughterInvM(0, 2)', 'daughterInvM(1, 2)']
33 
34  train_file = find_file("mva/train_D0toKpipi.root", "examples")
35  test_file = find_file("mva/test_D0toKpipi.root", "examples")
36 
37  training_data = basf2_mva.vector(train_file)
38  testing_data = basf2_mva.vector(test_file)
39 
40  # Train a MVA method and directly upload it to the database
41  general_options = basf2_mva.GeneralOptions()
42  general_options.m_datafiles = training_data
43  general_options.m_treename = "tree"
44  general_options.m_identifier = "SKLearn-BDT"
45  general_options.m_variables = basf2_mva.vector(*variables)
46  general_options.m_target_variable = "isSignal"
47 
48  sklearn_nn_options = basf2_mva.PythonOptions()
49  sklearn_nn_options.m_framework = "sklearn"
50  sklearn_nn_options.m_steering_file = 'mva/examples/python/sklearn_default.py'
51 
52  training_start = time.time()
53  basf2_mva.teacher(general_options, sklearn_nn_options)
54  training_stop = time.time()
55  training_time = training_stop - training_start
56  method = basf2_mva_util.Method(general_options.m_identifier)
57  inference_start = time.time()
58  p, t = method.apply_expert(testing_data, general_options.m_treename)
59  inference_stop = time.time()
60  inference_time = inference_stop - inference_start
62  print("SKLearn", training_time, inference_time, auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)