18 def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
20 Create SKLearn classifier and store it in a State object
22 from sklearn.neural_network
import MLPClassifier
24 if isinstance(parameters, collections.Mapping):
25 clf = MLPClassifier(**parameters)
26 elif isinstance(parameters, collections.Sequence):
27 clf = MLPClassifier(*parameters)
35 Merge received data together and fit estimator.
36 Neural network do not support weights at the moment (sklearn 0.18.1).
37 So these are ignored here!
39 state.estimator = state.estimator.fit(np.vstack(state.X), np.hstack(state.y))
40 return state.estimator
43 if __name__ ==
"__main__":
44 from basf2
import conditions, find_file
46 conditions.testing_payloads = [
47 'localdb/database.txt'
50 variables = [
'M',
'p',
'pt',
'pz',
51 'daughter(0, p)',
'daughter(0, pz)',
'daughter(0, pt)',
52 'daughter(1, p)',
'daughter(1, pz)',
'daughter(1, pt)',
53 'daughter(2, p)',
'daughter(2, pz)',
'daughter(2, pt)',
54 'chiProb',
'dr',
'dz',
55 'daughter(0, dr)',
'daughter(1, dr)',
56 'daughter(0, dz)',
'daughter(1, dz)',
57 'daughter(0, chiProb)',
'daughter(1, chiProb)',
'daughter(2, chiProb)',
58 'daughter(0, kaonID)',
'daughter(0, pionID)',
59 'daughterInvM(0, 1)',
'daughterInvM(0, 2)',
'daughterInvM(1, 2)']
61 train_file = find_file(
"mva/train_D0toKpipi.root",
"examples")
62 test_file = find_file(
"mva/test_D0toKpipi.root",
"examples")
64 training_data = basf2_mva.vector(train_file)
65 testing_data = basf2_mva.vector(test_file)
68 general_options = basf2_mva.GeneralOptions()
69 general_options.m_datafiles = training_data
70 general_options.m_treename =
"tree"
71 general_options.m_identifier =
"SKLearn-NN"
72 general_options.m_variables = basf2_mva.vector(*variables)
73 general_options.m_target_variable =
"isSignal"
75 sklearn_nn_options = basf2_mva.PythonOptions()
76 sklearn_nn_options.m_framework =
"sklearn"
77 sklearn_nn_options.m_steering_file =
'mva/examples/python/sklearn_mlpclassifier.py'
78 param =
'{"hidden_layer_sizes": [29], "activation": "logistic", "max_iter": 100, "solver": "adam", "batch_size": 100}'
79 sklearn_nn_options.m_config = param
80 sklearn_nn_options.m_normalize =
True
82 training_start = time.time()
83 basf2_mva.teacher(general_options, sklearn_nn_options)
84 training_stop = time.time()
85 training_time = training_stop - training_start
87 inference_start = time.time()
88 p, t = method.apply_expert(testing_data, general_options.m_treename)
89 inference_stop = time.time()
90 inference_time = inference_stop - inference_start
92 print(
"SKLearn", training_time, inference_time, auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)