Belle II Software  release-08-01-10
tmva_nn.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import time
14 
15 if __name__ == "__main__":
16  from basf2 import conditions, find_file
17  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
18  conditions.testing_payloads = [
19  'localdb/database.txt'
20  ]
21 
22  train_file = find_file("mva/train_D0toKpipi.root", "examples")
23  test_file = find_file("mva/test_D0toKpipi.root", "examples")
24 
25  training_data = basf2_mva.vector(train_file)
26  testing_data = basf2_mva.vector(test_file)
27 
28  variables = ['M', 'p', 'pt', 'pz',
29  'daughter(0, p)', 'daughter(0, pz)', 'daughter(0, pt)',
30  'daughter(1, p)', 'daughter(1, pz)', 'daughter(1, pt)',
31  'daughter(2, p)', 'daughter(2, pz)', 'daughter(2, pt)',
32  'chiProb', 'dr', 'dz',
33  'daughter(0, dr)', 'daughter(1, dr)',
34  'daughter(0, dz)', 'daughter(1, dz)',
35  'daughter(0, chiProb)', 'daughter(1, chiProb)', 'daughter(2, chiProb)',
36  'daughter(0, kaonID)', 'daughter(0, pionID)',
37  'daughterInvM(0, 1)', 'daughterInvM(0, 2)', 'daughterInvM(1, 2)']
38 
39  # Train a MVA method and directly upload it to the database
40  general_options = basf2_mva.GeneralOptions()
41  general_options.m_datafiles = training_data
42  general_options.m_treename = "tree"
43  general_options.m_identifier = "TMVA"
44  general_options.m_variables = basf2_mva.vector(*variables)
45  general_options.m_target_variable = "isSignal"
46 
47  tmva_nn_options = basf2_mva.TMVAOptionsClassification()
48  tmva_nn_options.m_type = "MLP"
49  tmva_nn_options.m_method = "MLP"
50  tmva_nn_options.m_config = ("H:!V:CreateMVAPdfs:VarTransform=N:NCycles=10:HiddenLayers=N+1:TrainingMethod=BFGS")
51 
52  training_start = time.time()
53  basf2_mva.teacher(general_options, tmva_nn_options)
54  training_stop = time.time()
55 
56  training_time = training_stop - training_start
57  method = basf2_mva_util.Method(general_options.m_identifier)
58 
59  inference_start = time.time()
60  p, t = method.apply_expert(testing_data, general_options.m_treename)
61  inference_stop = time.time()
62  inference_time = inference_stop - inference_start
63 
65  print("TMVA", training_time, inference_time, auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)