Belle II Software  release-08-01-10
xgboost_default.py
1 #!/usr/bin/env python3
2 
3 
10 
11 import basf2_mva
12 import basf2_mva_util
13 import time
14 
15 if __name__ == "__main__":
16  from basf2 import conditions, find_file
17  # NOTE: do not use testing payloads in production! Any results obtained like this WILL NOT BE PUBLISHED
18  conditions.testing_payloads = [
19  'localdb/database.txt'
20  ]
21 
22  variables = ['M', 'p', 'pt', 'pz',
23  'daughter(0, p)', 'daughter(0, pz)', 'daughter(0, pt)',
24  'daughter(1, p)', 'daughter(1, pz)', 'daughter(1, pt)',
25  'daughter(2, p)', 'daughter(2, pz)', 'daughter(2, pt)',
26  'chiProb', 'dr', 'dz',
27  'daughter(0, dr)', 'daughter(1, dr)',
28  'daughter(0, dz)', 'daughter(1, dz)',
29  'daughter(0, chiProb)', 'daughter(1, chiProb)', 'daughter(2, chiProb)',
30  'daughter(0, kaonID)', 'daughter(0, pionID)',
31  'daughterInvM(0, 1)', 'daughterInvM(0, 2)', 'daughterInvM(1, 2)']
32 
33  train_file = find_file("mva/train_D0toKpipi.root", "examples")
34  test_file = find_file("mva/test_D0toKpipi.root", "examples")
35 
36  training_data = basf2_mva.vector(train_file)
37  testing_data = basf2_mva.vector(test_file)
38 
39  general_options = basf2_mva.GeneralOptions()
40  general_options.m_datafiles = training_data
41  general_options.m_treename = "tree"
42  general_options.m_identifier = "XGBoost"
43  general_options.m_variables = basf2_mva.vector(*variables)
44  general_options.m_target_variable = "isSignal"
45 
46  specific_options = basf2_mva.PythonOptions()
47  specific_options.m_steering_file = 'mva/examples/python/xgboost_default.py'
48  specific_options.m_framework = "xgboost"
49  param = ('{"max_depth": 3, "eta": 0.1, "silent": 1, "objective": "binary:logistic",'
50  '"subsample": 0.5, "nthread": 1, "nTrees": 100}')
51  specific_options.m_config = param
52 
53  training_start = time.time()
54  basf2_mva.teacher(general_options, specific_options)
55  training_stop = time.time()
56  training_time = training_stop - training_start
57  method = basf2_mva_util.Method(general_options.m_identifier)
58  inference_start = time.time()
59  p, t = method.apply_expert(testing_data, general_options.m_treename)
60  inference_stop = time.time()
61  inference_time = inference_stop - inference_start
63  print("XGBoost", training_time, inference_time, auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)