Belle II Software  release-08-02-06
eclAutocovarianceCalibrationC3Algorithm.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 /* Own header. */
10 #include <ecl/calibration/eclAutocovarianceCalibrationC3Algorithm.h>
11 
12 /* ECL headers. */
13 #include <ecl/dataobjects/ECLElementNumbers.h>
14 #include <ecl/dbobjects/ECLAutoCovariance.h>
15 
16 /* ROOT headers. */
17 #include <TFile.h>
18 #include <TGraph.h>
19 #include <TH2I.h>
20 #include"TMatrixDSym.h"
21 #include"TDecompChol.h"
22 
23 using namespace Belle2;
24 using namespace ECL;
25 
28  CalibrationAlgorithm("eclAutocovarianceCalibrationC3Collector")
29 {
31  "Computes the covariance matrix for each crystal"
32  );
33 }
34 
36 {
37 
38 
40  gROOT->SetBatch();
41 
43  std::vector<double> cryIDs;
44  std::vector<double> noiseMatrix00Vector;
45  std::vector<double> totalCountsVector;
46  std::vector<double> invertAttempts;
47 
50  auto CovarianceMatrixInfoVsCrysID = getObjectPtr<TH2F>("CovarianceMatrixInfoVsCrysID");
51 
52  ECLAutoCovariance* Autocovariances = new ECLAutoCovariance();
53 
54  for (int ID = 0; ID < ECLElementNumbers::c_NCrystals; ID++) {
55 
56  double totalCounts = CovarianceMatrixInfoVsCrysID->GetBinContent(CovarianceMatrixInfoVsCrysID->GetBin(ID + 1,
57  m_numberofADCPoints + 1));
58 
59  if (totalCounts < m_TotalCountsThreshold) {
60  B2INFO("eclAutocovarianceCalibrationC3Algorithm: warning total entries for cell ID " << ID + 1 << " is only: " << totalCounts <<
61  " Requirement is m_TotalCountsThreshold: " << m_TotalCountsThreshold);
63  return c_NotEnoughData;
64  }
65 
66  TMatrixDSym NoiseMatrix;
67  NoiseMatrix.ResizeTo(m_numberofADCPoints, m_numberofADCPoints);
68  for (int i = 0; i < m_numberofADCPoints; i++) {
69  for (int j = 0; j < m_numberofADCPoints; j++) {
70  int index = abs(i - j);
71  NoiseMatrix(i, j) = double(CovarianceMatrixInfoVsCrysID->GetBinContent(CovarianceMatrixInfoVsCrysID->GetBin(ID + 1,
72  index + 1))) / (totalCounts - 1) / (double(m_numberofADCPoints - index));
73  }
74  }
75 
76  TMatrixDSym NoiseMatrixReduced(m_numberofADCPoints);
77  for (int i = 0; i < m_numberofADCPoints; i++) {
78  for (int j = 0; j < m_numberofADCPoints; j++) {
79  NoiseMatrixReduced(i, j) = (NoiseMatrix(0, abs(i - j)));
80  }
81  }
82 
83  bool invert_successful = 0;
84  int invert_attempt = 0;
85  double tempAutoCov[m_numberofADCPoints];
86  for (int i = 0; i < m_numberofADCPoints; i++) tempAutoCov[i] = NoiseMatrixReduced(0, i);
87  std::vector<double> buf(m_numberofADCPoints);
88  while (invert_successful == 0) {
89 
90  Autocovariances->setAutoCovariance(ID + 1, tempAutoCov);
91  Autocovariances->getAutoCovariance(ID + 1, buf.data());
92 
93  TMatrixDSym NoiseMatrix_check(m_numberofADCPoints);
94  for (int i = 0; i < m_numberofADCPoints; i++) {
95  for (int j = 0; j < m_numberofADCPoints; j++) {
96  NoiseMatrix_check(i, j) = buf[abs(i - j)];
97  }
98  }
99 
100  TDecompChol dc(NoiseMatrix_check);
101  invert_successful = dc.Invert(NoiseMatrix_check);
102  if (invert_successful == 0) {
103 
104  if (invert_attempt > 4) {
105  B2INFO("eclAutocovarianceCalibrationC3Algorithm iD " << ID << " invert_attempt limit reached " << invert_attempt);
106  B2INFO("eclAutocovarianceCalibrationC3Algorithm setting m_u2 to zero");
107  m_u2 = 0.0;
108  }
109 
110  B2INFO("eclAutocovarianceCalibrationC3Algorithm iD " << ID << " invert_attempt " << invert_attempt);
111 
112  for (int i = 0; i < m_numberofADCPoints; i++) B2INFO("old[" << i << "] = " << tempAutoCov[i]);
113  for (int i = 1; i < m_numberofADCPoints; i++) tempAutoCov[i] *= (m_u2 / (1. + exp((i - m_u0) / m_u1)));
114  for (int i = 0; i < m_numberofADCPoints; i++) B2INFO("new[" << i << "] = " << tempAutoCov[i]);
115 
116  }
117  invert_attempt++;
118  }
119 
120  cryIDs.push_back(ID + 1);
121  noiseMatrix00Vector.push_back(tempAutoCov[0]);
122  totalCountsVector.push_back(totalCounts);
123  invertAttempts.push_back(invert_attempt);
124 
125  }
126 
128  saveCalibration(Autocovariances, "ECLAutoCovariance");
129 
131  auto gnoiseMatrix00Vector = new TGraph(cryIDs.size(), cryIDs.data(), noiseMatrix00Vector.data());
132  gnoiseMatrix00Vector->SetName("gnoiseMatrix00Vector");
133  gnoiseMatrix00Vector->SetMarkerStyle(20);
134  auto gtotalCountsVector = new TGraph(cryIDs.size(), cryIDs.data(), totalCountsVector.data());
135  gtotalCountsVector->SetName("gtotalCountsVector");
136  gtotalCountsVector->SetMarkerStyle(20);
137  auto ginvertAttempts = new TGraph(cryIDs.size(), cryIDs.data(), invertAttempts.data());
138  ginvertAttempts->SetName("ginvertAttempts");
139  ginvertAttempts->SetMarkerStyle(20);
140 
142  TString fName = m_outputName;
143  TDirectory::TContext context;
144  TFile* histfile = new TFile(fName, "recreate");
145  histfile->cd();
146  gnoiseMatrix00Vector->Write();
147  gtotalCountsVector->Write();
148  ginvertAttempts->Write();
149  histfile->Close();
150  delete histfile;
151 
152  return c_OK;
153 }
154 
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfuly =0 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
Covariance matrices for offline ECL waveform fit.
void getAutoCovariance(const int cellID, double acov[31]) const
Get auto covariance for a channel.
void setAutoCovariance(const int cellID, const double acov[31])
Set auto covariance for a channel.
int m_TotalCountsThreshold
min number of counts needed to compute calibration
virtual EResult calibrate() override
..Run algorithm on events
const int c_NCrystals
Number of crystals.
Abstract base class for different kinds of events.