Belle II Software  release-08-02-06
SignalInterpolation2 Struct Reference

Interpolation of signal shape using function values and the first derivative. More...

#include <ECLWaveformFit.h>

Public Member Functions

 SignalInterpolation2 ()
 Default constructor.
 
 SignalInterpolation2 (const std::vector< double > &)
 Constructor with parameters with the parameter layout as in ECLDigitWaveformParameters.
 
void getShape (double t0, double *function, double *derivatives) const
 Returns signal shape and derivatives in 31 equidistant time points starting from t0. More...
 

Public Attributes

double m_FunctionInterpolation [c_nt *c_ndt+c_ntail]
 Function values.
 
double m_DerivativeInterpolation [c_nt *c_ndt+c_ntail]
 Derivative values.
 
double m_r0
 Assuming exponential drop of the signal function far away from 0, extrapolate it to +inf. More...
 
double m_r1
 See above/.
 

Static Public Attributes

constexpr static int c_nt = 12
 Signal function is sampled in c_nt time steps with c_ndt substeps and c_ntail steps. More...
 
constexpr static int c_ndt = 5
 Number of substeps.
 
constexpr static int c_ntail = 20
 Number of tail steps.
 
constexpr static double c_dt = 0.5
 Time step.
 
constexpr static double c_idt = 1 / c_dt
 Inverted time step.
 
constexpr static double c_dtn = c_dt / c_ndt
 Time substep.
 
constexpr static double c_idtn = c_ndt / c_dt
 Inverted time substep.
 

Detailed Description

Interpolation of signal shape using function values and the first derivative.

Definition at line 57 of file ECLWaveformFit.h.

Member Function Documentation

◆ getShape()

void getShape ( double  t0,
double *  function,
double *  derivatives 
) const

Returns signal shape and derivatives in 31 equidistant time points starting from t0.

Parameters
[in]t0Time.
[out]functionFunction values.
[out]derivativesDerivatives.

Definition at line 664 of file ECLWaveformFit.cc.

666 {
667  /* If before pulse start time (negative times), return 0. */
668  int k = 0;
669  while (t0 < 0) {
670  function[k] = 0;
671  derivatives[k] = 0;
672  t0 += c_dt;
673  ++k;
674  if (k >= c_NFitPoints)
675  return;
676  }
677 
678  /* Function and derivative values. */
679  double function0[c_NFitPoints], function1[c_NFitPoints];
680  double derivative0[c_NFitPoints], derivative1[c_NFitPoints];
681 
682  /* Interpolate first c_nt points (short time steps). */
683  double x = t0 * c_idtn;
684  double ix = floor(x);
685  double w = x - ix;
686  int j = ix;
687  double w2 = w * w;
688  double hw2 = 0.5 * w2;
689  double tw3 = ((1. / 6) * w) * w2;
690 
691  /* Number of interpolation points. */
692  int iMax = k + c_nt;
693  if (iMax > c_NFitPoints)
694  iMax = c_NFitPoints;
695 
696  /* Fill interpolation points. */
697  for (int i = k; i < iMax; ++i) {
698  function0[i] = m_FunctionInterpolation[j];
699  function1[i] = m_FunctionInterpolation[j + 1];
700  derivative0[i] = m_DerivativeInterpolation[j];
701  derivative1[i] = m_DerivativeInterpolation[j + 1];
702  j = j + c_ndt;
703  }
704 
705  /* Interpolation. */
706  #pragma omp simd
707  for (int i = k; i < iMax; ++i) {
708  double a[4];
709  double dfdt = (function1[i] - function0[i]) * c_idtn;
710  double fp = derivative1[i] + derivative0[i];
711  a[0] = function0[i];
712  a[1] = derivative0[i];
713  a[2] = -((fp + derivative0[i]) - 3 * dfdt);
714  a[3] = fp - 2 * dfdt;
715  double b2 = 2 * a[2];
716  double b3 = 6 * a[3];
717  function[i] = a[0] + c_dtn * (a[1] * w + b2 * hw2 + b3 * tw3);
718  derivatives[i] = a[1] + b2 * w + b3 * hw2;
719  }
720  t0 = t0 + c_dt * c_nt;
721  if (iMax == c_NFitPoints)
722  return;
723  k = iMax;
724 
725  /* Interpolate next c_ntail points (long time steps). */
726  x = t0 * c_idt;
727  ix = floor(x);
728  w = x - ix;
729  w2 = w * w;
730  hw2 = 0.5 * w2;
731  tw3 = ((1. / 6) * w) * w2;
732 
733  /* Number of interpolation points. */
734  iMax = k + c_ntail - 1;
735  if (iMax > c_NFitPoints)
736  iMax = c_NFitPoints;
737 
738  /* Interpolation. */
739  #pragma omp simd
740  for (int i = k; i < iMax; ++i) {
741  j = c_nt * c_ndt + i - k;
742  /*
743  * The interpolation step is the same as the distance between
744  * the fit points. It is possible to load the values in the interpolation
745  * loop while keeping its vectorization.
746  */
747  double f0 = m_FunctionInterpolation[j];
748  double f1 = m_FunctionInterpolation[j + 1];
749  double fp0 = m_DerivativeInterpolation[j];
750  double fp1 = m_DerivativeInterpolation[j + 1];
751  double a[4];
752  double dfdt = (f1 - f0) * c_idt;
753  double fp = fp1 + fp0;
754  a[0] = f0;
755  a[1] = fp0;
756  a[2] = -((fp + fp0) - 3 * dfdt);
757  a[3] = fp - 2 * dfdt;
758  double b2 = 2 * a[2];
759  double b3 = 6 * a[3];
760  function[i] = a[0] + c_dt * (a[1] * w + b2 * hw2 + b3 * tw3);
761  derivatives[i] = a[1] + b2 * w + b3 * hw2;
762  }
763  if (iMax == c_NFitPoints)
764  return;
765  k = iMax;
766 
767  /* Exponential tail. */
768  while (k < c_NFitPoints) {
769  function[k] = function[k - 1] * m_r0;
770  derivatives[k] = derivatives[k - 1] * m_r1;
771  ++k;
772  }
773 }
double m_r0
Assuming exponential drop of the signal function far away from 0, extrapolate it to +inf.
double m_FunctionInterpolation[c_nt *c_ndt+c_ntail]
Function values.
constexpr static double c_idt
Inverted time step.
constexpr static int c_ntail
Number of tail steps.
constexpr static double c_dtn
Time substep.
constexpr static double c_idtn
Inverted time substep.
double m_DerivativeInterpolation[c_nt *c_ndt+c_ntail]
Derivative values.
constexpr static int c_nt
Signal function is sampled in c_nt time steps with c_ndt substeps and c_ntail steps.
constexpr static double c_dt
Time step.
constexpr static int c_ndt
Number of substeps.

Member Data Documentation

◆ c_nt

constexpr static int c_nt = 12
staticconstexpr

Signal function is sampled in c_nt time steps with c_ndt substeps and c_ntail steps.

c_dt is the time step.

Definition at line 63 of file ECLWaveformFit.h.

◆ m_r0

double m_r0

Assuming exponential drop of the signal function far away from 0, extrapolate it to +inf.

f(i_last + i) = f(i_last)*m_r0^i f'(i_last + i) = f'(i_last)*m_r1^i where i_last is the last point within sampled values in m_FunctionInterpolation (m_DerivativeInterpolation).

Definition at line 97 of file ECLWaveformFit.h.


The documentation for this struct was generated from the following files: