Belle II Software development
BelleLathe.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9/* Own header. */
10#include <ecl/geometry/BelleLathe.h>
11
12/* Geant4 headers. */
13#include <G4AffineTransform.hh>
14#include <G4VoxelLimits.hh>
15#include <G4VGraphicsScene.hh>
16#include <G4VPVParameterisation.hh>
17
18/* CLHEP headers. */
19#include <CLHEP/Random/RandFlat.h>
20
21using namespace std;
22using namespace Belle2;
23using namespace ECL;
24
25#define COMPARE 0
26#define PERFCOUNTER 0
27#if PERFCOUNTER==1
28typedef int counter_t[6];
29map<string, counter_t> counterl;
30#define COUNTER(x) counterl[GetName()][x]++
31//#define MATCHOUT(x) //if(GetName().find("sv_crystalcontainersolid")==0) cout<<x<<endl;
32#else
33#define COUNTER(x)
34//
35#endif
36
37//#define MATCHOUT(x) G4cout<<GetName()<<" "<<x<<G4endl;
38#define MATCHOUT(x)
39
41struct Plane_t {
42 G4ThreeVector n;
43 double d;
44 // => n.x*x + n.y*y + n.z*z + d = 0
45};
46
47namespace Belle2 {
52 namespace ECL {
53 inline double dotxy(const G4ThreeVector& p, const G4ThreeVector& n)
54 {
55 return p.x() * n.x() + p.y() * n.y();
56 }
57 }
59}
60
61ostream& operator <<(ostream& o, const zr_t& v)
62{
63 return o << "{" << v.z << ", " << v.r << "}";
64}
65
67struct curl_t {
68 G4ThreeVector v;
70 explicit curl_t(const G4ThreeVector& _v): v(_v) {}
71};
72
73ostream& operator <<(ostream& o, const curl_t& c)
74{
75 return o << "{" << c.v.x() << ", " << c.v.y() << ", " << c.v.z() << "}, ";
76}
77
78
79BelleLathe::BelleLathe(const G4String& pName, double phi0, double dphi, const vector<zr_t>& c)
80 : G4CSGSolid(pName)
81{
82 Init(c, phi0, dphi);
83}
84
85BelleLathe::BelleLathe(const G4String& pName, double phi0, double dphi, int n, double* z, double* rin, double* rout)
86 : G4CSGSolid(pName)
87{
88 vector<zr_t> contour;
89 for (int i = 0; i < n; i++) {
90 zr_t t = {z[i], rin[i]};
91 contour.push_back(t);
92 }
93 for (int i = n - 1; i >= 0; i--) {
94 zr_t t = {z[i], rout[i]};
95 contour.push_back(t);
96 }
97
98 Init(contour, phi0, dphi);
99}
100
101void BelleLathe::Init(const vector<zr_t>& c, double phi0, double dphi)
102{
103 vector<zr_t> contour = c;
104 // remove duplicated vertices
105 do {
106 vector<zr_t>::iterator it0 = contour.begin(), it1 = it0 + 1;
107 for (; it1 != contour.end();) {
108 const zr_t& s0 = *it0, &s1 = *it1;
109 if (abs(s0.z - s1.z) < kCarTolerance && abs(s0.r - s1.r) < kCarTolerance)
110 it1 = contour.erase(it1);
111 else {
112 ++it0; ++it1;
113 }
114 }
115 const zr_t& s0 = *it0, &s1 = contour[0]; // cppcheck-suppress invalidContainer ; contour should be valid here
116 if (abs(s0.z - s1.z) < kCarTolerance && abs(s0.r - s1.r) < kCarTolerance) contour.erase(it0);
117 } while (0);
118
119 // remove vertices on the same line
120 do {
121 vector<zr_t>::iterator it0 = contour.begin(), it1 = it0 + 1, it2 = it1 + 1;
122 for (; it0 != contour.end();) {
123 const zr_t& s0 = *it0, &s1 = *it1, &s2 = *it2;
124 double dr2 = s2.r - s0.r, dz2 = s2.z - s0.z;
125 double d = (s1.z - s0.z) * dr2 - (s1.r - s0.r) * dz2;
126
127 if (d * d < kCarTolerance * kCarTolerance * (dr2 * dr2 + dz2 * dz2)) {
128 it1 = contour.erase(it1);
129 it2 = it1;
130 if (++it2 >= contour.end()) it2 = contour.begin();
131 it0 = it1;
132 if (--it0 < contour.begin()) it0 = (++contour.rbegin()).base();
133
134 } else {
135 ++it0;
136 if (++it1 >= contour.end()) it1 = contour.begin();
137 if (++it2 >= contour.end()) it2 = contour.begin();
138 }
139
140 }
141 } while (0);
142
143 double sum = 0;
144 zr_t p0 = contour[0];
145 for (int i = 1, imax = contour.size(); i < imax; i++) {
146 zr_t p1 = contour[i];
147 sum += (p1.z - p0.z) * (p1.r + p0.r);
148 p0 = p1;
149 }
150 zr_t p1 = contour[0];
151 sum += (p1.z - p0.z) * (p1.r + p0.r);
152
153 // If contour is Clockwise: reverse contour
154 if (sum > 0)
155 std::reverse(contour.begin(), contour.end());
156
157 fcontour = contour;
158
159 auto convexside = [this](cachezr_t& s, double eps) -> void {
160 s.isconvex = false;
161 if (s.dz > 0) return;
162 vector<zr_t>::const_iterator it = fcontour.begin();
163 double a = s.dz * s.is, b = s.dr * s.is, cc = b * s.z - a * s.r;
164 bool dp = false, dm = false;
165 s.isconvex = true;
166 do
167 {
168 const zr_t& p = *it;
169 double d = a * p.r - b * p.z + cc; // distance to line
170 dm = dm || (d < -eps);
171 dp = dp || (d > eps);
172 if (dm && dp) {s.isconvex = false; return;}
173 } while (++it != fcontour.end());
174 };
175
176 frmin = kInfinity;
177 frmax = -kInfinity;
178 fzmin = kInfinity;
179 fzmax = -kInfinity;
180 fcache.reserve(fcontour.size());
181 for (int i = 0, n = fcontour.size(); i < n; i++) {
182 const zr_t& s0 = fcontour[i], &s1 = fcontour[(i + 1) % n];
183 cachezr_t t;
184 t.z = s0.z;
185 t.r = s0.r;
186 t.dz = s1.z - s0.z;
187 t.dr = s1.r - s0.r;
188 t.s2 = t.dz * t.dz + t.dr * t.dr;
189 t.is2 = 1 / t.s2;
190 t.is = sqrt(t.is2);
191 t.zmin = min(s0.z, s1.z);
192 t.zmax = max(s0.z, s1.z);
193 t.r2min = pow(min(s0.r, s1.r), 2);
194 t.r2max = pow(max(s0.r, s1.r), 2);
195 t.ta = (s1.r - s0.r) / (s1.z - s0.z);
196 convexside(t, kCarTolerance);
197 fcache.push_back(t);
198
199 frmax = max(frmax, s0.r);
200 frmin = min(frmin, s0.r);
201 fzmax = max(fzmax, s0.z);
202 fzmin = min(fzmin, s0.z);
203 }
204
205 fphi = phi0;
206 fdphi = dphi;
207
208 fdphi = std::min(2 * M_PI, fdphi);
209 fdphi = std::max(0.0, fdphi);
210 fc0 = cos(fphi);
211 fs0 = sin(fphi);
212 fc1 = cos(fphi + fdphi);
213 fs1 = sin(fphi + fdphi);
214
215 fn0x = fs0;
216 fn0y = -fc0;
217 fn1x = -fs1;
218 fn1y = fc1;
219 fgtpi = fdphi > M_PI;
220 ftwopi = abs(fdphi - 2 * M_PI) < kCarTolerance;
221
222 // cout << ftwopi << " " << fgtpi << " " << fn0y << " " << fn0x << " " << fn1y << " " << fn1x << endl;
223
224 for (int i = 0, n = fcontour.size(); i < n; i++) {
225 const zr_t& s = fcontour[i];
226 fz.push_back(s.z);
227 }
228 sort(fz.begin(), fz.end());
229 fz.erase(std::unique(fz.begin(), fz.end()), fz.end());
230
231 for (int i = 1, ni = fz.size(); i < ni; i++) {
232 double a = fz[i - 1], b = fz[i];
233 findx.push_back(fseg.size());
234 for (int j = 0, nj = fcache.size(); j < nj; j++) {
235 const cachezr_t& sj = fcache[j];
236 double cc = sj.zmin, d = sj.zmax;
237 if (cc != d and b > cc and d > a) { // overlap
238 fseg.push_back(j);
239 }
240 }
241 }
242 findx.push_back(fseg.size());
243
244 getvolarea();
245
246#if COMPARE>0
247 auto getpolycone = [](const G4String & pName, double phi0, double dphi, const vector<zr_t>& c) -> G4GenericPolycone* {
248 vector<double> r, z;
249 r.reserve(c.size());
250 z.reserve(c.size());
251 for (int i = 0, imax = c.size(); i < imax; i++)
252 {
253 r.push_back(c[i].r);
254 z.push_back(c[i].z);
255 }
256 return new G4GenericPolycone(pName, phi0, dphi, c.size(), r.data(), z.data());
257 };
258 fshape = getpolycone(GetName(), phi0, dphi, fcontour);
259#else
260 fshape = nullptr;
261#endif
262// StreamInfo(G4cout);
263}
264
265// Nominal constructor for BelleLathe whose parameters are to be set by
266// a G4VParamaterisation later. Check and set half-widths as well as
267// angles: final check of coplanarity
268BelleLathe::BelleLathe(const G4String& pName)
269 : G4CSGSolid(pName)
270{
271 vector<zr_t> a;
272 Init(a, 0, 2 * M_PI);
273}
274
275// Fake default constructor - sets only member data and allocates memory
276// for usage restricted to object persistency.
278 : G4CSGSolid(a)
279{
280 vector<zr_t> b;
281 Init(b, 0, 2 * M_PI);
282}
283
284// Destructor
286{
287#if PERFCOUNTER==1
288 cout << GetName() << " ";
289 for (int i = 0; i < 6; i++) cout << counterl[GetName()][i] << " "; cout << endl;
290#endif
291}
292
293// Copy constructor
295 : G4CSGSolid(rhs), fcontour(rhs.fcontour), fcache(rhs.fcache), fz(rhs.fz),
296 findx(rhs.findx), fseg(rhs.fseg), farea(rhs.farea), ftlist(rhs.ftlist),
297 fphi(rhs.fphi), fdphi(rhs.fdphi), fs0(rhs.fs0), fc0(rhs.fc0), fs1(rhs.fs1),
298 fc1(rhs.fc1), fn0x(rhs.fn0x), fn0y(rhs.fn0y), fn1x(rhs.fn1x), fn1y(rhs.fn1y),
299 frmin(rhs.frmin), frmax(rhs.frmax), fzmin(rhs.fzmin), fzmax(rhs.fzmax),
300 fgtpi(rhs.fgtpi), ftwopi(rhs.ftwopi), fshape(rhs.fshape), fsurf(rhs.fsurf)
301{
302}
303
304// Assignment operator
306{
307 // Check assignment to self
308 if (this == &rhs) { return *this; }
309
310 // Copy base class data
311 G4CSGSolid::operator=(rhs);
312
313 // Copy data
314 fcontour = rhs.fcontour;
315 fcache = rhs.fcache;
316 fz = rhs.fz;
317 findx = rhs.findx;
318 fseg = rhs.fseg;
319 farea = rhs.farea;
320 ftlist = rhs.ftlist;
321 fphi = rhs.fphi;
322 fdphi = rhs.fdphi;
323 fs0 = rhs.fs0;
324 fc0 = rhs.fc0;
325 fs1 = rhs.fs1;
326 fc1 = rhs.fc1;
327 fn0x = rhs.fn0x;
328 fn0y = rhs.fn0y;
329 fn1x = rhs.fn1x;
330 fn1y = rhs.fn1y;
331 frmin = rhs.frmin;
332 frmax = rhs.frmax;
333 fzmin = rhs.fzmin;
334 fzmax = rhs.fzmax;
335 fgtpi = rhs.fgtpi;
336 ftwopi = rhs.ftwopi;
337 fshape = rhs.fshape;
338 fsurf = rhs.fsurf;
339 return *this;
340}
341
342
343// Dispatch to parameterisation for replication mechanism dimension
344// computation & modification.
345void BelleLathe::ComputeDimensions(G4VPVParameterisation*,
346 const G4int,
347 const G4VPhysicalVolume*)
348{
349 G4Exception("BelleLathe::ComputeDimensions()",
350 "GeomSolids0001", FatalException,
351 "BelleLathe does not support Parameterisation.");
352 // std::cout<<"ComputeDimensions"<<std::endl;
353 // p->ComputeDimensions(*this,n,pRep);
354}
355
356vector<double> quadsolve(double a, double b, double c)
357{
358 // solve equation a*t^2 + b*t + c = 0 taking care intermediate rounding errors
359 vector<double> t(2);
360 b *= 0.5;
361 double D = b * b - a * c;
362 if (D >= 0) {
363 double sD = sqrt(D);
364 double sum = b + ((b > 0) ? sD : -sD);
365 double t0 = -c / sum;
366 double t1 = -sum / a;
367 t[0] = t0;
368 t[1] = t1;
369 } else {
370 t.clear();
371 }
372
373 return t;
374}
375
376inline int quadsolve(double a, double b, double c, double& t0, double& t1)
377{
378 // solve equation a*t^2 + b*t + c = 0 taking care intermediate rounding errors
379 b *= 0.5;
380 double D = b * b - a * c;
381 if (D >= 0) {
382 double sD = sqrt(D);
383 double sum = b + ((b > 0) ? sD : -sD);
384 t0 = -c / sum;
385 t1 = -sum / a;
386 return 2;
387 }
388 return 0;
389}
390
393 double t;
394 double s;
395};
396vector<solution_t> extremum(double A, double B, double C, double D, double E, double F)
397{
398 // extremum of Fun(t,s) = A*t*t + B*t*s + C*s*s + D*t + E*s + F => dFun/ds = 0
399 vector<solution_t> res;
400 if (abs(B) < abs(A)) {
401 double a = 4 * A * C - B * B;
402 double b = 2 * (2 * A * E - B * D);
403 double c = 4 * A * F - D * D;
404 vector<double> ss = quadsolve(a, b, c);
405 for (auto s : ss) {
406 if (fpclassify(s) == FP_INFINITE) continue;
407 double t = -(s * B + D) / (2 * A);
408 solution_t r = {t, s};
409 res.push_back(r);
410 }
411 } else {
412 double B2 = B * B, CD = C * D, BE = B * E;
413 double a = A * (4 * A * C - B2);
414 double b = 2 * A * (2 * CD - BE);
415 double c = D * (CD - BE) + B2 * F;
416 vector<double> ts = quadsolve(a, b, c);
417 for (auto t : ts) {
418 if (fpclassify(t) == FP_INFINITE) continue;
419 double s = -(2 * t * A + D) / B;
420 solution_t r = {t, s};
421 res.push_back(r);
422 }
423 }
424 return res;
425}
426
427// calculate all ray solid's surface intersection return ordered vector
428vector<double> BelleLathe::linecross(const G4ThreeVector& p, const G4ThreeVector& n) const
429{
430 auto hitside = [this, &p, &n](double t, double zmin, double zmax) -> bool {
431 double z = p.z() + n.z() * t;
432 bool k = zmin < z && z <= zmax;
433 if (k && !ftwopi)
434 {
435 double x = p.x() + n.x() * t;
436 double y = p.y() + n.y() * t;
437 k = k && insector(x, y);
438 }
439 return k;
440 };
441
442 auto hitzside = [this, &p, &n](double t, double r2min, double r2max) -> bool {
443 double x = p.x() + n.x() * t;
444 double y = p.y() + n.y() * t;
445 double r2 = x * x + y * y;
446 bool k = r2min <= r2 && r2 < r2max;
447 if (k && !ftwopi)
448 {
449 k = k && insector(x, y);
450 }
451 return k;
452 };
453
454 vector<double> tc;
455 double inz = 1 / n.z();
456 double nn = Belle2::ECL::dotxy(n, n), np = dotxy(n, p), pp = dotxy(p, p);
457 for (const cachezr_t& s : fcache) { // loop over sides
458 if (s.dz == 0.0) { // z-plane
459 double t = (s.z - p.z()) * inz;
460 if (hitzside(t, s.r2min, s.r2max)) { tc.push_back(t); }
461 } else {
462 double ta = s.ta;
463 double A, B, R2;
464 if (s.dr == 0.0) { // cylinder
465 double R = s.r;
466 R2 = R * R;
467
468 A = -nn;
469 B = np;
470 } else { // cone
471 double taz = ta * (p.z() - s.z);
472 double R = taz + s.r;
473 R2 = R * R;
474
475 double nzta = n.z() * ta;
476 A = nzta * nzta - nn;
477 B = np - nzta * R;
478 }
479 double D = B * B + (pp - R2) * A;
480 if (D > 0) {
481 double sD = sqrt(D), iA = 1 / A;
482 double t0 = (B + sD) * iA, t1 = (B - sD) * iA;
483 if (hitside(t0, s.zmin, s.zmax)) tc.push_back(t0);
484 if (hitside(t1, s.zmin, s.zmax)) tc.push_back(t1);
485 }
486 }
487 }
488
489 if (!ftwopi) {
490 do { // side at phi0
491 double d = fn0x * p.x() + fn0y * p.y();
492 double vn = fn0x * n.x() + fn0y * n.y();
493 double t = -d / vn;
494 G4ThreeVector r = p + n * t;
495 zr_t zr = {r.z(), fc0 * r.x() + fs0 * r.y()};
496 if (vn != 0 && wn_poly(zr) == 2) tc.push_back(t);
497 } while (0);
498
499 do { // side at phi0+dphi
500 double d = fn1x * p.x() + fn1y * p.y();
501 double vn = fn1x * n.x() + fn1y * n.y();
502 double t = -d / vn;
503 G4ThreeVector r = p + n * t;
504 zr_t zr = {r.z(), fc1 * r.x() + fs1 * r.y()};
505 if (vn != 0 && wn_poly(zr) == 2) tc.push_back(t);
506 } while (0);
507 }
508
509 sort(tc.begin(), tc.end());
510 return tc;
511}
512
513// Calculate extent under transform and specified limit
514G4bool BelleLathe::CalculateExtent(const EAxis A,
515 const G4VoxelLimits& bb,
516 const G4AffineTransform& T,
517 G4double& pMin, G4double& pMax) const
518{
519 auto maxdist = [this](const G4ThreeVector & n) -> G4ThreeVector {
520 G4ThreeVector r;
521 int i = 0, nsize = fcache.size();
522 if (ftwopi || insector(n.x(), n.y())) // n in sector
523 {
524 double nr = hypot(n.x(), n.y()), nz = n.z();
525 double dmax = -kInfinity, R = 0, Z = 0;
526 do {
527 const cachezr_t& s = fcache[i];
528 double d1 = nz * s.z + nr * s.r;
529 if (dmax < d1) { R = s.r; Z = s.z; dmax = d1;}
530 } while (++i < nsize);
531 if (nr > 0) {
532 R /= nr;
533 r.set(R * n.x(), R * n.y(), Z);
534 } else {
535 double phi = fphi + 0.5 * fdphi;
536 r.set(R * cos(phi), R * sin(phi), Z);
537 }
538 } else
539 {
540 double dmax = -kInfinity;
541 do {
542 const cachezr_t& s = fcache[i];
543 // check both sides
544 G4ThreeVector rf(-fn0y * s.r, fn0x * s.r, s.z), rl(fn1y * s.r, -fn1x * s.r, s.z);
545 double d0 = rf * n, d1 = rl * n;
546 // cout<<rf<<" "<<rl<<endl;
547 if (dmax < d0) { r = rf; dmax = d0;}
548 if (dmax < d1) { r = rl; dmax = d1;}
549 } while (++i < nsize);
550 }
551 return r;
552 };
553
554 struct seg_t {int i0, i1;};
555 auto clip = [](vector<G4ThreeVector>& vlist, vector<seg_t>& slist, const G4ThreeVector & n, double dist) {
556 vector<seg_t> snew;
557 vector<int> lone;
558
559 vector<double> d;
560 for (const G4ThreeVector& v : vlist) d.push_back(v * n + dist);
561
562 for (seg_t s : slist) {
563 double prod = d[s.i0] * d[s.i1];
564 // cout<<d[s.i0]<<" "<<d[s.i1]<<endl;
565 if (prod < 0) { // segment crosses plane - break it
566 G4ThreeVector rn = (vlist[s.i0] * d[s.i1] - vlist[s.i1] * d[s.i0]) * (1 / (d[s.i1] - d[s.i0]));
567 lone.push_back(vlist.size()); vlist.push_back(rn);
568 if (d[s.i0] < 0) {
569 s = {lone.back(), s.i1};
570 } else {
571 s = {s.i0, lone.back()};
572 }
573 } else if (prod == 0) { // segment end on plane
574 if (d[s.i0] == 0 && d[s.i1] > 0) {
575 lone.push_back(s.i0);
576 } else if (d[s.i0] > 0 && d[s.i1] == 0) {
577 lone.push_back(s.i1);
578 } else continue;
579 } else {
580 if (d[s.i0] < 0) continue; // segment below plane
581 }
582 snew.push_back(s);
583 }
584
585 double dmax = -1e99;
586 int imax = -1, jmax = -1;
587 // search for the most distant points on the clipping plane
588 for (unsigned int i = 0; i < lone.size(); i++) {
589 for (unsigned int j = i + 1; j < lone.size(); j++) {
590 double d2 = (vlist[lone[i]] - vlist[lone[j]]).mag2();
591 if (d2 > dmax) { imax = lone[i]; jmax = lone[j];}
592 }
593 }
594
595 // close the new polygon by creating new segments
596 if (imax >= 0) {
597 G4ThreeVector k = vlist[jmax] - vlist[imax];
598 sort(lone.begin(), lone.end(), [&k, &vlist, &imax](int i, int j) {return k * (vlist[i] - vlist[imax]) < k * (vlist[j] - vlist[imax]);});
599
600 for (unsigned int i = 0; i < lone.size(); i += 2) {
601 seg_t t = {lone[i], lone[i + 1]};
602 for (const seg_t& s : snew) {
603 if (t.i1 == s.i0) { snew.push_back(t); break;}
604 if (t.i0 == s.i0) { swap(t.i0, t.i1); snew.push_back(t); break;}
605 }
606 }
607 }
608 swap(slist, snew);
609 };
610
611 auto PhiCrossN = [this, clip](const vector<Plane_t>& planes) {
612 // unordered clipped phi-sides vertices within
613 // limiting planes
614 vector<G4ThreeVector> vlist; // vertex list
615 vector<seg_t> slist; // segment list
616 vector<G4ThreeVector> res;
617
618 int nsize = fcache.size();
619 vlist.reserve(nsize);
620 slist.reserve(nsize);
621 for (int iphi = 0; iphi < 2; iphi++) {
622 vlist.clear();
623 slist.clear();
624 // phi-side directional vector is (kx,ky)
625 double kx = iphi ? -fn0y : fn1y, ky = iphi ? fn0x : -fn1x;
626 do {
627 int i = 0;
628 do {
629 const cachezr_t& s = fcache[i];
630 G4ThreeVector r(kx * s.r, ky * s.r, s.z);
631 vlist.push_back(r);
632 seg_t t = {i, i + 1};
633 slist.push_back(t);
634 } while (++i < nsize - 1);
635 const cachezr_t& s = fcache[nsize - 1];
636 G4ThreeVector r(kx * s.r, ky * s.r, s.z);
637 vlist.push_back(r);
638 seg_t t = {nsize - 1, 0};
639 slist.push_back(t);
640 } while (0);
641
642 // clip phi-side polygon by limiting planes
643 for (const Plane_t& p : planes) {
644 // cout<<p.n<<" "<<p.d<<endl;
645 clip(vlist, slist, p.n, p.d);
646 // for(auto t:vlist) cout<<t<<" "; cout<<endl;
647 }
648 vector<bool> bv(vlist.size(), false);
649
650 for (vector<seg_t>::const_iterator it = slist.begin(); it != slist.end(); ++it) {
651 bv[(*it).i0] = true;
652 bv[(*it).i1] = true;
653 }
654
655 for (unsigned int i = 0; i < vlist.size(); i++) {
656 if (!bv[i]) continue;
657 res.push_back(vlist[i]);
658 }
659 }
660 return res;
661 };
662
663 auto RCross = [this](const G4ThreeVector & op, const G4ThreeVector & k, const G4ThreeVector & u) {
664 // plane with origin at op and normal vector n = [k x u], k and u are orthogonal k*u = 0
665 // plane equation r = t*k + s*u + op
666 vector<solution_t> ts;
667 int nsize = fcache.size();
668 int i = 0;
669 do {
670 const cachezr_t& seg = fcache[i];
671 // r0 -- cone radius at z0, c -- cone axis
672 // cone equation is (r0 + tg * ((r-c0)*c))^2 = (r-c0)^2 - ((r-c0)*c)^2
673 double r0 = seg.r, z0 = seg.z, tg = seg.ta, tg2 = tg * tg;
674 double rtg = r0 * tg;
675
676 G4ThreeVector o(op.x(), op.y(), op.z() - z0);
677
678 double ko = k * o, uo = u * o, ck = k.z(), cu = u.z(), co = o.z();
679 double k2 = 1, u2 = 1, o2 = o * o;
680 double ck2 = ck * ck, cu2 = cu * cu, co2 = co * co;
681 double dr2 = r0 * r0 - o2;
682 if (seg.dz != 0.0) {
683 double q0 = 1 + tg2;
684 double q1 = co * q0 + rtg;
685
686 double F00 = co2 * q0 + 2 * co * rtg + dr2;
687 double F10 = 2 * (ck * q1 - ko);
688 double F20 = ck2 * q0 - k2;
689 double F01 = 2 * (cu * q1 - uo);
690 double F11 = 2 * ck * cu * q0;
691 double F02 = cu2 * q0 - u2;
692
693 vector<solution_t> res = extremum(F02, F11, F20, F01, F10, F00);
694 for (const solution_t& r : res) {
695 double t = r.s, s = r.t;
696 G4ThreeVector p = t * k + s * u + op;
697 if (seg.zmin < p.z() && p.z() < seg.zmax) {
698 solution_t e = {t, s};
699 if (ftwopi || insector(p.x(), p.y()))
700 ts.push_back(e);
701 }
702 }
703 }
704 double a = -(ck2 * u2 + cu2 * k2);
705 if (a != 0) {
706 if (abs(cu) > abs(ck)) {
707 double b = 2 * (ck * (cu * uo - co * u2) - cu2 * ko);
708 double c = co * (2 * cu * uo - co * u2) + cu2 * dr2;
709 vector<double> tv = quadsolve(a, b, c);
710 for (double t : tv) {
711 double s = -(co + ck * t) / cu;
712 G4ThreeVector p = t * k + s * u + op;
713 if (ftwopi || insector(p.x(), p.y())) {
714 solution_t e = {t, s};
715 ts.push_back(e);
716 }
717 }
718 } else {
719 double b = 2 * (cu * (ck * ko - co * k2) - ck2 * uo);
720 double c = co * (2 * ck * ko - co * k2) + ck2 * dr2;
721 vector<double> sv = quadsolve(a, b, c);
722 for (double s : sv) {
723 double t = -(co + cu * s) / ck;
724 G4ThreeVector p = t * k + s * u + op;
725 if (ftwopi || insector(p.x(), p.y())) {
726 solution_t e = {t, s};
727 ts.push_back(e);
728 }
729 }
730 }
731 }
732 } while (++i < nsize);
733 return ts;
734 };
735
736 bool b1 = false, b2 = false;
737 G4ThreeVector n0, n1, n2;
738 switch (A) {
739 case kXAxis: n0.set(1, 0, 0); n1.set(0, 1, 0); n2.set(0, 0, 1); b1 = bb.IsYLimited(); b2 = bb.IsZLimited(); break;
740 case kYAxis: n0.set(0, 1, 0); n1.set(1, 0, 0); n2.set(0, 0, 1); b1 = bb.IsXLimited(); b2 = bb.IsZLimited(); break;
741 case kZAxis: n0.set(0, 0, 1); n1.set(1, 0, 0); n2.set(0, 1, 0); b1 = bb.IsXLimited(); b2 = bb.IsYLimited(); break;
742 default: break;
743 }
744
745 double dmin1 = -kInfinity, dmax1 = kInfinity;
746 if (b1) {
747 switch (A) {
748 case kXAxis: dmin1 = bb.GetMinYExtent(); dmax1 = bb.GetMaxYExtent(); break;
749 case kYAxis: dmin1 = bb.GetMinXExtent(); dmax1 = bb.GetMaxXExtent(); break;
750 case kZAxis: dmin1 = bb.GetMinXExtent(); dmax1 = bb.GetMaxXExtent(); break;
751 default: break;
752 }
753 }
754
755 double dmin2 = -kInfinity, dmax2 = kInfinity;
756 if (b2) {
757 switch (A) {
758 case kXAxis: dmin2 = bb.GetMinZExtent(); dmax2 = bb.GetMaxZExtent(); break;
759 case kYAxis: dmin2 = bb.GetMinZExtent(); dmax2 = bb.GetMaxZExtent(); break;
760 case kZAxis: dmin2 = bb.GetMinYExtent(); dmax2 = bb.GetMaxYExtent(); break;
761 default: break;
762 }
763 }
764
765 G4AffineTransform iT = T.Inverse();
766 // axis to solid coordinates
767 G4ThreeVector n0t = iT.TransformAxis(n0);
768 G4ThreeVector smin = n0t * kInfinity, smax = (-kInfinity) * n0t; // extremum points in solid coordinate system
769 double pmin = kInfinity, pmax = -pmin;
770 if (b1 && b2) {
771 G4ThreeVector corners[] = {n1* dmin1 + n2 * dmin2, n1* dmax1 + n2 * dmin2, n1* dmax1 + n2 * dmax2, n1* dmin1 + n2 * dmax2};
772 for (G4ThreeVector& c : corners) iT.ApplyPointTransform(c); // to solid coordinates
773
774 vector<Plane_t> planes;
775 for (int i = 0; i < 4; i++) {
776 const G4ThreeVector& c0 = corners[i], &c1 = corners[(i + 1) % 4];
777 vector<double> dists = linecross(c0, n0t);
778 // cout<<"c0 "<<c0<<endl;
779 for (double t : dists) {
780 G4ThreeVector p = n0t * t + c0;
781 double tt = t + c0 * n0t;
782 // cout<<p<<" "<<tt<<endl;
783 if (pmax < tt) { pmax = tt; smax = p;}
784 if (pmin > tt) { pmin = tt; smin = p;}
785 }
786
787 G4ThreeVector u = c1 - c0, un = u.unit();
788 vector<solution_t> ts = RCross(c0, n0t, un);
789 double umax = u.mag();
790 for (solution_t r : ts) {
791 if (0 < r.s && r.s < umax) {
792 double tt = r.t + c0 * n0t;
793 G4ThreeVector p = n0t * r.t + un * r.s + c0;
794 // cout<<r.t<<" "<<r.s<<" "<<smax<<endl;
795 if (pmax < tt) { pmax = tt; smax = p;}
796 if (pmin > tt) { pmin = tt; smin = p;}
797 }
798 }
799 planes.push_back({ -un, un * c1});
800 }
801
802 vector<G4ThreeVector> vside = PhiCrossN(planes);
803 for (G4ThreeVector& p : vside) {
804 // cout<<p<<endl;
805 double tt = n0t * p;
806 if (pmax < tt) { pmax = tt; smax = p;}
807 if (pmin > tt) { pmin = tt; smin = p;}
808 }
809
810 } else if (b1 || b2) {
811 G4ThreeVector limits[2], u;
812 if (b1) {
813 limits[0] = n1 * dmin1;
814 limits[1] = n1 * dmax1;
815 u = iT.TransformAxis(n2);
816 } else {
817 limits[0] = n2 * dmin2;
818 limits[1] = n2 * dmax2;
819 u = iT.TransformAxis(n1);
820 }
821
822 for (G4ThreeVector& c : limits) iT.ApplyPointTransform(c); // to solid coordinates
823 for (int i = 0; i < 2; i++) {
824 vector<solution_t> ts = RCross(limits[i], n0t, u);
825 for (solution_t r : ts) {
826 double tt = r.t + limits[i] * n0t;
827 G4ThreeVector p = n0t * r.t + u * r.s + limits[i];
828 // cout<<r.t<<" "<<r.s<<" "<<endl;
829 if (pmax < tt) { pmax = tt; smax = p;}
830 if (pmin > tt) { pmin = tt; smin = p;}
831 }
832 }
833
834 vector<Plane_t> planes(2);
835 G4ThreeVector n;
836 if (b1) {
837 n = iT.TransformAxis(n1);
838 } else {
839 n = iT.TransformAxis(n2);
840 }
841 planes[0] = { n, -limits[0]* n};
842 planes[1] = { -n, limits[1]* n};
843 vector<G4ThreeVector> vside = PhiCrossN(planes);
844
845 for (G4ThreeVector& p : vside) {
846 // double t = n0t*(p-limits[0]);
847 double tt = n0t * p;
848 // cout<<tt<<" "<<p<<" "<<endl;
849 if (pmax < tt) { pmax = tt; smax = p;}
850 if (pmin > tt) { pmin = tt; smin = p;}
851 }
852 }
853 // maximal distance in +- directions
854 G4ThreeVector rp = maxdist(n0t), rm = maxdist(-n0t);
855 if (bb.Inside(T.TransformPoint(rm))) {
856 double tt = rm * n0t;
857 if (pmin > tt) {pmin = tt; smin = rm;}
858 }
859 if (bb.Inside(T.TransformPoint(rp))) {
860 double tt = rp * n0t;
861 if (pmax < tt) {pmax = tt; smax = rp;}
862 }
863
864 // to mother volume coordinate system
865 T.ApplyPointTransform(smin);
866 T.ApplyPointTransform(smax);
867 pmin = n0 * smin;
868 pmax = n0 * smax;
869
870 pmin -= kCarTolerance;
871 pmax += kCarTolerance;
872 // bool hit = pmin > -kInfinity && pmax < kInfinity;
873 bool hit = pmin < pmax;
874
875#if COMPARE==10
876 auto surfhit = [this, &bb, &T, &n0, &n0t](double & pmin, double & pmax, bool print = false)->bool {
877 const int N = 1000 * 1000;
878 if (fsurf.size() == 0) for (int i = 0; i < N; i++) fsurf.push_back(GetPointOnSurface());
879
880 int umin = -1, umax = -1;
881 double wmin = 1e99, wmax = -1e99;
882 for (int i = 0; i < N; i++)
883 {
884 if (bb.Inside(T.TransformPoint(fsurf[i]))) {
885 double w = n0t * fsurf[i];
886 if (wmin > w) {wmin = w; umin = i;}
887 if (wmax < w) {wmax = w; umax = i;}
888 }
889 }
890 if (print)cout << umin << " " << umax << " " << wmin << " " << wmax << endl;
891 if (umin >= 0 && umax >= 0)
892 {
893 G4ThreeVector qmin = fsurf[umin], qmax = fsurf[umax];
894 T.ApplyPointTransform(qmin);
895 T.ApplyPointTransform(qmax);
896 pmin = n0 * qmin, pmax = n0 * qmax;
897 return true;
898 }
899 return false;
900 };
901
902 bool res = fshape->CalculateExtent(A, bb, T, pMin, pMax);
903 double srfmin = kInfinity, srfmax = -srfmin;
904 bool sHit = surfhit(srfmin, srfmax);
905 double diff = kCarTolerance;
906 diff = 10;
907 // if (abs(pmin - pMin) > diff || abs(pmax - pMax) > diff || hit != res) {
908 if ((abs(pmin - srfmin) > diff || abs(pmax - srfmax) > diff) && sHit) {
909 cout << "===================================\n";
910 cout << GetName() << " " << fcache.size() << " " << fphi << " " << fdphi << " " << ftwopi << "\n";
911 cout << hit << " " << res << " " << b1 << " " << b2 << "\n";
912 if (sHit) {
913 cout << "ss " << srfmin << " " << srfmax << "\n";
914 } else {
915 cout << "ss : not in bounding box" << "\n";
916 }
917 cout << "my " << pmin << " " << pmax << "\n";
918 cout << "tc " << pMin << " " << pMax << "\n";
919 cout << "df " << pmin - pMin << " " << pmax - pMax << "\n";
920 G4ThreeVector bmin(bb.GetMinXExtent(), bb.GetMinYExtent(), bb.GetMinZExtent());
921 G4ThreeVector bmax(bb.GetMaxXExtent(), bb.GetMaxYExtent(), bb.GetMaxZExtent());
922 cout << "Axis=" << A << " " << bmin << " " << bmax << " " << T << "\n";
923 cout << rp << " " << rm << "\n";
924 cout << smin << " " << smax << "\n";
925 cout << flush;
926 // _exit(0);
927 }
928 // cout<<endl;
929#endif
930 pMin = pmin;
931 pMax = pmax;
932
933 return hit;
934}
935
936// True if (x,y) is within the shape rotation
937inline bool BelleLathe::insector(double x, double y) const
938{
939 double d0 = fn0x * x + fn0y * y;
940 double d1 = fn1x * x + fn1y * y;
941 bool b0 = d0 < 0, b1 = d1 < 0;
942 return fgtpi ? b0 || b1 : b0 && b1;
943}
944
945int BelleLathe::wn_poly(const zr_t& r) const
946{
947 int wn = 0;
948 vector<double>::const_iterator it = upper_bound(fz.begin(), fz.end(), r.z);
949 // cout<<r<<" "<<fz.size()<<" "<<it-fz.begin()<<endl;
950 if (it != fz.begin() && it != fz.end()) {
951 int k = it - fz.begin();
952 for (int i = findx[k - 1]; i != findx[k]; i++) {
953 const cachezr_t& s = fcache[fseg[i]];
954 double dz = r.z - s.z, dr = r.r - s.r;
955 double crs = s.dr * dz - s.dz * dr;
956 wn -= (crs > 0) - (crs < 0);
957 }
958 }
959 return wn;
960}
961
962double BelleLathe::mindist(const zr_t& r) const
963{
964 double d = kInfinity;
965 int i = 0, n = fcache.size();
966 do {
967 const cachezr_t& s = fcache[i];
968 double dz = r.z - s.z, dr = r.r - s.r;
969 double dot = s.dz * dz + s.dr * dr; // projection of the point on the segment
970 if (dot < 0) {
971 d = min(d, dz * dz + dr * dr); // distance to the first point of the segment
972 } else if (dot <= s.s2) { // point should be within the segment
973 double crs = s.dr * dz - s.dz * dr;
974 d = min(d, crs * crs * s.is2);
975 }
976 } while (++i < n);
977 d = sqrt(d);
978 d = (wn_poly(r) == 2) ? -d : d;
979 return d;
980}
981
982// Return whether point inside/outside/on surface, using tolerance
983EInside BelleLathe::Inside(const G4ThreeVector& p) const
984{
985 COUNTER(0);
986 const double delta = 0.5 * kCarTolerance;
987 EInside res = kInside;
988 if (!ftwopi) {
989 double d0 = fn0x * p.x() + fn0y * p.y();
990 double d1 = fn1x * p.x() + fn1y * p.y();
991 if (fgtpi) {
992 if (d0 > delta && d1 > delta) { res = kOutside;}
993 else if (d0 > -delta && d1 > -delta) { res = kSurface;}
994 } else {
995 if (d0 > delta || d1 > delta) { res = kOutside;}
996 else if (d0 > -delta || d1 > -delta) { res = kSurface;}
997 }
998 }
999 if (res != kOutside) {
1000 zr_t r = {p.z(), p.perp()};
1001 double d = mindist(r);
1002 if (res == kSurface && d < delta) res = kSurface;
1003 else if (d > delta) res = kOutside;
1004 else if (d > -delta) res = kSurface;
1005 else res = kInside;
1006 }
1007
1008#if COMPARE==1
1009 EInside dd = fshape->Inside(p);
1010 if (1 || dd != res) {
1011 double d0 = fn0x * p.x() + fn0y * p.y();
1012 double d1 = fn1x * p.x() + fn1y * p.y();
1013 // if (abs(d0) > kCarTolerance && abs(d1) > kCarTolerance) {
1014 int oldprec = cout.precision(16);
1015 zr_t r = {p.z(), p.perp()};
1016 cout << GetName() << " Inside(p) " << p << " " << r << " my=" << res << " tc=" << dd <<
1017 " dist=" << mindist(r) << " " << d0 << " " << d1 << endl;
1018 cout.precision(oldprec);
1019 // }
1020 }
1021#endif
1022 MATCHOUT("BelleLathe::Inside(p) " << p << " res= " << res);
1023 return res;
1024}
1025
1026zr_t BelleLathe::normal(const zr_t& r, double& d2) const
1027{
1028 double d = std::numeric_limits<double>::infinity(), t = 0;
1029 int iseg = -1;
1030 for (int i = 0, imax = fcache.size(); i < imax; i++) {
1031 const cachezr_t& s = fcache[i];
1032 double dz = r.z - s.z, dr = r.r - s.r;
1033 double dot = s.dz * dz + s.dr * dr; // projection of the point on the segment
1034 if (dot < 0) {
1035 double dist = dz * dz + dr * dr; // distance to the first point of the segment
1036 if (dist < d) { d = dist; t = dot * s.is2; iseg = i;}
1037 } else if (dot <= s.s2) { // point should be within the segment
1038 double crs = s.dr * dz - s.dz * dr;
1039 double dist = crs * crs * s.is2;
1040 if (dist < d) { d = dist; t = dot * s.is2; iseg = i;}
1041 }
1042 }
1043 d2 = d;
1044
1045 auto getn = [this](int i)->zr_t{
1046 int imax = fcache.size();
1047 int i0 = i;
1048 if (i == -1) i0 = imax;
1049 const cachezr_t& s = fcache[i0];
1050 double is = sqrt(s.is2);
1051 return {s.dr * is, -s.dz * is};
1052 };
1053 return getn(iseg);
1054
1055 if (t < 0.0) {
1056 const cachezr_t& s = fcache[iseg];
1057 zr_t dist = {r.z - s.z, r.r - s.r};
1058 double dist2 = dist.z * dist.z + dist.r * dist.r;
1059 if (dist2 > 1e-18) {
1060 double q = 1 / sqrt(dist2);
1061 if (wn_poly(r) == 2) q = -q;
1062 return {dist.z * q, dist.r * q};
1063 } else {
1064 zr_t n = getn(iseg), np = getn(iseg - 1);
1065 n.z += np.z; n.r += np.r;
1066 double n2 = n.z * n.z + n.r * n.r;
1067 double q = 1 / sqrt(n2);
1068 n.z *= q, n.r *= q;
1069 return n;
1070 }
1071 }
1072 return getn(iseg);
1073}
1074
1075// Calculate side nearest to p, and return normal
1076// If 2+ sides equidistant, first side's normal returned (arbitrarily)
1077G4ThreeVector BelleLathe::SurfaceNormal(const G4ThreeVector& p) const
1078{
1079 COUNTER(1);
1080
1081 auto side = [this](const zr_t & r, double d, int iside) {
1082 double nx = (iside) ? fn1x : fn0x, ny = (iside) ? fn1y : fn0y;
1083 if (wn_poly(r) == 2) return G4ThreeVector(nx, ny, 0);
1084 double cphi = (iside) ? fc1 : fc0, sphi = (iside) ? fs1 : fc0;
1085
1086 double d2; zr_t n = normal(r, d2);
1087 double x = cphi * n.r, y = sphi * n.r;
1088 double u = sqrt(d2);
1089 d2 += d * d;
1090 G4ThreeVector res;
1091 if (d2 > 0) {
1092 double q = 1 / sqrt(d2);
1093 double cpsi = u * q, spsi = d * q;
1094 res.set(x * cpsi - y * spsi, x * spsi + y * cpsi, n.z);
1095 }
1096 res.set(x, y, n.z);
1097 return res;
1098 };
1099
1100 G4ThreeVector res;
1101 zr_t r = {p.z(), p.perp()};
1102 double d2; zr_t n = normal(r, d2);
1103 double d = sqrt(d2);
1104 double pt = hypot(p.x(), p.y());
1105
1106 if (pt > 0) {
1107 double ir = n.r / pt;
1108 res = G4ThreeVector(ir * p.x(), ir * p.y(), n.z);
1109 } else
1110 res = G4ThreeVector(n.r, 0, n.z);
1111
1112 if (!ftwopi) {
1113 double d0 = fn0x * p.x() + fn0y * p.y();
1114 double d1 = fn1x * p.x() + fn1y * p.y();
1115 zr_t r0 = {p.z(), fc0 * p.x() + fs0 * p.y()}; // projection on plane phi
1116 zr_t r1 = {p.z(), fc1 * p.x() + fs1 * p.y()}; // projection on plane phi+dphi
1117 if (fgtpi) {
1118 if (d0 > 0 && d1 > 0) { // outside sector
1119 if (d0 < d1) {
1120 res = side(r0, d0, 0); goto exit;
1121 } else {
1122 res = side(r1, -d1, 1); goto exit;
1123 }
1124 } else {// inside sector
1125 if (wn_poly(r) == 2) { // point p inside the solid
1126 if (abs(d0) < d && abs(d0) < abs(d1)) { res = G4ThreeVector(fn0x, fn0y, 0); goto exit;}
1127 if (abs(d1) < d && abs(d1) < abs(d0)) { res = G4ThreeVector(fn1x, fn1y, 0); goto exit;}
1128 }
1129 }
1130 } else {
1131 if (d0 > 0 || d1 > 0) { // outside sector
1132 if (d0 < 0) {
1133 res = side(r1, -d1, 1); goto exit;
1134 } else {
1135 res = side(r0, d0, 0); goto exit;
1136 }
1137 } else {
1138 if (wn_poly(r) == 2) { // point p inside the solid
1139 if (abs(d0) < d && abs(d0) < abs(d1)) { res = G4ThreeVector(fn0x, fn0y, 0); goto exit;}
1140 if (abs(d1) < d && abs(d1) < abs(d0)) { res = G4ThreeVector(fn1x, fn1y, 0); goto exit;}
1141 }
1142 }
1143 }
1144 }
1145exit:
1146#if COMPARE==1
1147 G4ThreeVector dd = fshape->SurfaceNormal(p);
1148 if ((res - dd).mag() > 1e-11) {
1149 int oldprec = cout.precision(16);
1150 EInside inside = fshape->Inside(p);
1151 cout << GetName() << " SurfaceNormal(p) " << p << " " << res << " " << dd << " " << res - dd << " " << inside << endl;
1152 cout.precision(oldprec);
1153 // _exit(0);
1154 }
1155#endif
1156 MATCHOUT("BelleLathe::SurfaceNormal(p,n) " << p << " res= " << res);
1157 return res;
1158}
1159
1160// Calculate exact shortest distance to any boundary from outside
1161// This is the best fast estimation of the shortest distance to trap
1162// - Returns 0 is ThreeVector inside
1163G4double BelleLathe::DistanceToIn(const G4ThreeVector& p) const
1164{
1165 COUNTER(2);
1166 double d = 0;
1167 // int sector = 0, plane = 0;
1168 if (ftwopi) {
1169 zr_t r = {p.z(), p.perp()};
1170 d = max(mindist(r), 0.0);
1171 } else {
1172 double d0 = fn0x * p.x() + fn0y * p.y();
1173 double d1 = fn1x * p.x() + fn1y * p.y();
1174
1175 if (fgtpi) {
1176 if (d0 > 0 && d1 > 0) { // outside sector
1177 if (d0 < d1) {
1178 zr_t r = {p.z(), -fn0y * p.x() + fn0x * p.y()}; // projection on plane
1179 d = sqrt(pow(max(mindist(r), 0.0), 2) + d0 * d0);
1180 } else {
1181 zr_t r = {p.z(), fn1y * p.x() - fn1x * p.y()}; // projection on plane
1182 d = sqrt(pow(max(mindist(r), 0.0), 2) + d1 * d1);
1183 }
1184 } else {
1185 zr_t r = {p.z(), p.perp()};
1186 d = max(mindist(r), 0.0);
1187 }
1188 } else {
1189 if (d0 > 0 || d1 > 0) { // outside sector
1190 if (d0 < 0) {
1191 zr_t r = {p.z(), fn1y * p.x() - fn1x * p.y()}; // projection on plane
1192 d = sqrt(pow(max(mindist(r), 0.0), 2) + d1 * d1);
1193 } else {
1194 zr_t r = {p.z(), -fn0y * p.x() + fn0x * p.y()}; // projection on plane
1195 d = sqrt(pow(max(mindist(r), 0.0), 2) + d0 * d0);
1196 }
1197 } else {
1198 zr_t r = {p.z(), p.perp()};
1199 d = max(mindist(r), 0.0);
1200 }
1201 }
1202 }
1203#if COMPARE==1
1204 // double dd = fshape->Inside(p) == 2 ? 0.0 : fshape->DistanceToIn(p);
1205 double dd = fshape->DistanceToIn(p);
1206 // if (abs(d - dd) > kCarTolerance) {
1207 if (dd > d && abs(d - dd) > kCarTolerance) {
1208 int oldprec = cout.precision(16);
1209 EInside inside = fshape->Inside(p);
1210 zr_t r = {p.z(), p.perp()};
1211 cout << GetName() << " DistanceToIn(p) " << p << " " << r << " " << d << " " << dd << " " << d - dd << " " << inside << endl;
1212 cout.precision(oldprec);
1213 // exit(0);
1214 }
1215#endif
1216 MATCHOUT("BelleLathe::DistanceToIn(p) " << p << " res= " << d);
1217 return d;
1218}
1219
1220// Calculate exact shortest distance to any boundary from inside
1221// - Returns 0 is ThreeVector outside
1222G4double BelleLathe::DistanceToOut(const G4ThreeVector& p) const
1223{
1224 // return ref->DistanceToOut(p);
1225 COUNTER(3);
1226 zr_t r = {p.z(), p.perp()};
1227 double d = mindist(r);
1228 if (!ftwopi) {
1229 double d0 = fn0x * p.x() + fn0y * p.y();
1230 double d1 = fn1x * p.x() + fn1y * p.y();
1231 if (fgtpi) {
1232 d = max(d, min(d0, d1));
1233 } else {
1234 d = max(d, max(d0, d1));
1235 }
1236 }
1237 d = max(-d, 0.0);
1238#if COMPARE==1
1239 double dd = fshape->Inside(p) == 0 ? 0.0 : fshape->DistanceToOut(p);
1240 if (abs(d - dd) > kCarTolerance) {
1241 int oldprec = cout.precision(16);
1242 zr_t r = {p.z(), p.perp()};
1243 // cout<<r<<endl;
1244 cout << GetName() << " DistanceToOut(p) " << p << " " << r << " " << d << " " << dd << " " << d - dd << endl;
1245 cout.precision(oldprec);
1246 }
1247#endif
1248 MATCHOUT("BelleLathe::DistanceToOut(p) " << p.x() << " " << p.y() << " " << p.z() << " res= " << d);
1249 return d;
1250}
1251
1252// Calculate distance to shape from outside - return kInfinity if no intersection
1253G4double BelleLathe::DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& n) const
1254{
1255 // return fshape->DistanceToIn(p, n);
1256 auto getnormal = [this, &p, &n](int i, double t) ->G4ThreeVector{
1257 const int imax = fcache.size();
1258 G4ThreeVector o;
1259 if (i < 0)
1260 {
1261 } else if (i < imax)
1262 {
1263 const cachezr_t& s = fcache[i];
1264 if (s.dz == 0.0) {
1265 o.setZ(copysign(1, s.dr));
1266 } else {
1267 double x = p.x() + n.x() * t;
1268 double y = p.y() + n.y() * t;
1269 double sth = s.dr * s.is, cth = -s.dz * s.is;
1270 double ir = cth / sqrt(x * x + y * y);
1271 o.set(x * ir, y * ir, sth);
1272 }
1273 } else if (i == imax)
1274 {
1275 o.setX(fn0x), o.setY(fn0y);
1276 } else
1277 {
1278 o.setX(fn1x), o.setY(fn1y);
1279 }
1280 return o;
1281 };
1282
1283 auto hitside = [this, &p, &n](double t, const cachezr_t& s) -> bool {
1284 double z = p.z() + n.z() * t;
1285 // cout<<t<<" "<<x<<" "<<y<<" "<<z<<endl;
1286 bool k = s.zmin < z && z <= s.zmax;
1287 if (k && !ftwopi)
1288 {
1289 double x = p.x() + n.x() * t;
1290 double y = p.y() + n.y() * t;
1291 k = k && insector(x, y);
1292 }
1293 return k;
1294 };
1295
1296 auto hitzside = [this, &p, &n](double t, const cachezr_t& s) -> bool {
1297 double x = p.x() + n.x() * t;
1298 double y = p.y() + n.y() * t;
1299 double r2 = x * x + y * y;
1300 bool k = s.r2min <= r2 && r2 < s.r2max;
1301 if (k && !ftwopi)
1302 {
1303 k = k && insector(x, y);
1304 }
1305 return k;
1306 };
1307
1308 auto hitphi0side = [this, &p, &n](double t) -> bool {
1309 double x = p.x() + n.x() * t;
1310 double y = p.y() + n.y() * t;
1311 double r = x * fc0 + y * fs0;
1312 if (r >= frmin)
1313 {
1314 double z = p.z() + n.z() * t;
1315 zr_t zr = {z, r};
1316 return wn_poly(zr) == 2;
1317 }
1318 return false;
1319 };
1320
1321 auto hitphi1side = [this, &p, &n](double t) -> bool {
1322 double x = p.x() + n.x() * t;
1323 double y = p.y() + n.y() * t;
1324 double r = x * fc1 + y * fs1;
1325 if (r >= frmin)
1326 {
1327 double z = p.z() + n.z() * t;
1328 zr_t zr = {z, r};
1329 return wn_poly(zr) == 2;
1330 }
1331 return false;
1332 };
1333
1334 double tmin = kInfinity;
1335 const int imax = fcache.size();
1336 int iseg = -1, isurface = -1;
1337 const double delta = 0.5 * kCarTolerance;
1338 double inz = 1 / n.z();
1339 double nn = dotxy(n, n), np = dotxy(n, p), pp = dotxy(p, p);
1340 double pz = p.z(), pr = sqrt(pp);
1341 for (int i = 0; i < imax; i++) { // loop over sides
1342 const cachezr_t& s = fcache[i];
1343 double dz = pz - s.z, dr = pr - s.r;
1344 double d = dz * s.dr - dr * s.dz;
1345 bool surface = false;
1346 if (abs(d * s.is) < delta) {
1347 double dot = dz * s.dz + dr * s.dr;
1348 if (dot >= 0 && dot <= s.s2) {
1349 surface = true;
1350 isurface = i;
1351 }
1352 }
1353 if (s.dz == 0.0) { // z-plane
1354 if (!surface) {
1355 double t = -dz * inz;
1356 if (0 < t && t < tmin && hitzside(t, s)) { tmin = t; iseg = i;}
1357 }
1358 } else {
1359 double A, B, R2;
1360 if (s.dr == 0.0) { // cylinder
1361 double R = s.r;
1362 R2 = R * R;
1363
1364 A = -nn;
1365 B = np;
1366 } else { // cone
1367 double taz = s.ta * dz;
1368 double R = taz + s.r;
1369 R2 = R * R;
1370
1371 double nzta = n.z() * s.ta;
1372 A = nzta * nzta - nn;
1373 B = np - nzta * R;
1374 }
1375 double C = pp - R2;
1376 double D = B * B + C * A;
1377 if (D > 0) {
1378 // double sD = sqrt(D), iA = 1 / A;
1379 // double t0 = (B + sD) * iA, t1 = (B - sD) * iA;
1380 double sD = sqrt(D), sum = B + copysign(sD, B);
1381 double t0 = -C / sum, t1 = sum / A;
1382 if (surface) { // exclude solution on surface
1383 if (abs(t0) > abs(t1)) {
1384 if (t0 > 0 && t0 < tmin && hitside(t0, s)) { tmin = t0; iseg = i;}
1385 } else {
1386 if (t1 > 0 && t1 < tmin && hitside(t1, s)) { tmin = t1; iseg = i;}
1387 }
1388 } else {
1389 if (t0 > 0 && t0 < tmin && hitside(t0, s)) { tmin = t0; iseg = i;}
1390 if (t1 > 0 && t1 < tmin && hitside(t1, s)) { tmin = t1; iseg = i;}
1391 }
1392 }
1393 }
1394 }
1395
1396 if (!ftwopi) {
1397 do { // side at phi0
1398 double vn = fn0x * n.x() + fn0y * n.y();
1399 if (vn < 0) {
1400 double d = fn0x * p.x() + fn0y * p.y();
1401 double t = -d / vn;
1402 if (hitphi0side(t)) {
1403 bool surface = std::abs(d) < delta;
1404 if (surface) {
1405 tmin = 0; iseg = imax + 0;
1406 } else {
1407 if (0 < t && t < tmin) {tmin = t; iseg = imax + 0;}
1408
1409 }
1410 }
1411 }
1412 } while (0);
1413
1414 do { // side at phi0+dphi
1415 double vn = fn1x * n.x() + fn1y * n.y();
1416 if (vn < 0) {
1417 double d = fn1x * p.x() + fn1y * p.y();
1418 double t = -d / vn;
1419 if (hitphi1side(t)) {
1420 bool surface = std::abs(d) < delta;
1421 if (surface) {
1422 tmin = 0; iseg = imax + 1;
1423 } else {
1424 if (0 < t && t < tmin) { tmin = t; iseg = imax + 1;}
1425 }
1426 }
1427 }
1428 } while (0);
1429 }
1430
1431 if (iseg >= 0) {
1432 if (getnormal(iseg, tmin)*n > 0) tmin = 0;
1433 // if (getnormal(iseg, tmin)*n > 0) tmin = kInfinity; // mimic genericpolycone
1434 }
1435
1436 auto convex = [this, imax](int i) -> bool{
1437 if (i < imax)
1438 return fcache[i].isconvex;
1439 else
1440 return !fgtpi;
1441 };
1442
1443 if (tmin >= 0 && tmin < kInfinity) {
1444 if (isurface >= 0) if (convex(isurface) && getnormal(isurface, 0)*n >= 0) tmin = kInfinity;
1445 } else {
1446 if (Inside(p) == kSurface) {
1447 if (isurface >= 0) {
1448 tmin = (getnormal(isurface, 0) * n >= 0) ? kInfinity : 0; // mimic genericpolycone
1449 }
1450 }
1451 }
1452
1453#if COMPARE==1
1454 // double dd = fshape->Inside(p) == 2 ? 0.0 : fshape->DistanceToIn(p, n);
1455 double dd = fshape->DistanceToIn(p, n);
1456 if (abs(tmin - dd) > 1e-10) {
1457 int oldprec = cout.precision(16);
1458 EInside inside = fshape->Inside(p);
1459 cout << GetName() << " DistanceToIn(p,v) " << p << " " << n << " " << tmin << " " << dd << " " << tmin - dd << " " << inside << " "
1460 << Inside(p) << " iseg = " << iseg << " " << isurface << endl;
1461 if (isurface >= 0) cout << getnormal(isurface, 0) << endl;
1462 cout.precision(oldprec);
1463 }
1464#endif
1465 tmin = max(0.0, tmin);
1466 MATCHOUT("BelleLathe::DistanceToIn(p,n) " << p << " " << n << " res= " << tmin);
1467 return tmin;
1468}
1469
1470// Calculate distance to surface of shape from inside
1471G4double BelleLathe::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& n,
1472 const G4bool calcNorm, G4bool* IsValid, G4ThreeVector* _n) const
1473{
1474 // return fshape->DistanceToOut(p, n, calcNorm, IsValid, _n);
1475 auto getnormal = [this, &p, &n](int i, double t)->G4ThreeVector{
1476 const int imax = fcache.size();
1477 G4ThreeVector o;
1478 if (i < 0)
1479 {
1480 } else if (i < imax)
1481 {
1482 const cachezr_t& s = fcache[i];
1483 if (s.dz == 0.0) {
1484 o.setZ(copysign(1, s.dr));
1485 } else {
1486 double x = p.x() + n.x() * t;
1487 double y = p.y() + n.y() * t;
1488 double sth = s.dr * s.is, cth = -s.dz * s.is;
1489 double ir = cth / sqrt(x * x + y * y);
1490 o.set(x * ir, y * ir, sth);
1491 }
1492 } else if (i == imax)
1493 {
1494 o.setX(fn0x), o.setY(fn0y);
1495 } else
1496 {
1497 o.setX(fn1x), o.setY(fn1y);
1498 }
1499 return o;
1500 };
1501
1502 double nn = dotxy(n, n), np = dotxy(n, p), pp = dotxy(p, p);
1503 auto hitside = [this, &p, &n, nn, np, pp](double t, const cachezr_t& s) -> bool {
1504 double z = p.z() + n.z() * t;
1505 // cout<<t<<" "<<x<<" "<<y<<" "<<z<<endl;
1506 double dot = n.z() * s.dr * sqrt(pp + ((np + np) + nn * t) * t) - s.dz * (np + nn * t);
1507 bool k = s.zmin < z && z <= s.zmax && dot > 0;
1508 if (k && !ftwopi)
1509 {
1510 double x = p.x() + n.x() * t;
1511 double y = p.y() + n.y() * t;
1512
1513 k = k && insector(x, y);
1514 }
1515 return k;
1516 };
1517
1518 auto hitzside = [this, &p, &n](double t, const cachezr_t& s) -> bool {
1519 double x = p.x() + n.x() * t;
1520 double y = p.y() + n.y() * t;
1521 double r2 = x * x + y * y;
1522 bool k = s.dr * n.z() > 0 && s.r2min <= r2 && r2 < s.r2max;
1523 if (k && !ftwopi)
1524 {
1525 k = k && insector(x, y);
1526 }
1527 return k;
1528 };
1529
1530 auto hitphi0side = [this, &p, &n](double t) -> bool {
1531 double x = p.x() + n.x() * t;
1532 double y = p.y() + n.y() * t;
1533 double r = x * fc0 + y * fs0;
1534 if (r >= frmin)
1535 {
1536 double z = p.z() + n.z() * t;
1537 zr_t zr = {z, r};
1538 return wn_poly(zr) == 2;
1539 }
1540 return false;
1541 };
1542
1543 auto hitphi1side = [this, &p, &n](double t) -> bool {
1544 double x = p.x() + n.x() * t;
1545 double y = p.y() + n.y() * t;
1546 double r = x * fc1 + y * fs1;
1547 if (r >= frmin)
1548 {
1549 double z = p.z() + n.z() * t;
1550 zr_t zr = {z, r};
1551 return wn_poly(zr) == 2;
1552 }
1553 return false;
1554 };
1555
1556 COUNTER(5);
1557 double tmin = kInfinity;
1558
1559 const int imax = fcache.size();
1560 int iseg = -1, isurface = -1;
1561
1562 const double delta = 0.5 * kCarTolerance;
1563 double inz = 1 / n.z();
1564 double pz = p.z(), pr = sqrt(pp);
1565
1566 for (int i = 0; i < imax; i++) {
1567 const cachezr_t& s = fcache[i];
1568
1569 double d = (pz - s.z) * s.dr - (pr - s.r) * s.dz;
1570 bool surface = abs(d * s.is) < delta;
1571 if (surface) isurface = i;
1572 if (s.dz == 0.0) {
1573 double t = (s.z - p.z()) * inz;
1574 if (surface) {
1575 if (hitzside(t, s)) {tmin = 0; iseg = i; break;}
1576 } else {
1577 if (0 < t && t < tmin && hitzside(t, s)) {tmin = t; iseg = i;}
1578 }
1579 } else {
1580 double A, B, R2;
1581 if (s.dr == 0.0) { // cylinder
1582 double R = s.r;
1583 R2 = R * R;
1584
1585 A = -nn;
1586 B = np;
1587 } else { // cone
1588 double taz = s.ta * (p.z() - s.z);
1589 double R = taz + s.r;
1590 R2 = R * R;
1591
1592 double nzta = n.z() * s.ta;
1593 A = nzta * nzta - nn;
1594 B = np - nzta * R;
1595 }
1596 double C = pp - R2;
1597 double D = B * B + C * A;
1598 if (D > 0) {
1599 double sD = sqrt(D);
1600 double sum = B + copysign(sD, B);
1601 double t0 = -C / sum, t1 = sum / A;
1602 // cout<<t0<<" "<<t1<<" "<<endl;
1603 if (surface) { //exclude solution on surface
1604 if (abs(t0) < abs(t1)) {
1605 if (hitside(t0, s)) { tmin = 0; iseg = i; break;}
1606 if (0 < t1 && t1 < tmin && hitside(t1, s)) { tmin = t1; iseg = i;}
1607 } else {
1608 if (hitside(t1, s)) { tmin = 0; iseg = i; break;}
1609 if (0 < t0 && t0 < tmin && hitside(t0, s)) { tmin = t0; iseg = i;}
1610 }
1611 } else { // check both solutions
1612 if (0 < t0 && t0 < tmin && hitside(t0, s)) { tmin = t0; iseg = i;}
1613 if (0 < t1 && t1 < tmin && hitside(t1, s)) { tmin = t1; iseg = i;}
1614 }
1615 }
1616 }
1617 // cout<<i<<" "<<iseg<<" "<<sqrt(d*d*s.is2)<<" "<<tmin<<" "<<s.zmin<<" "<<s.zmax<<endl;
1618 }
1619
1620 if (!ftwopi) {
1621 do { // side at phi0
1622 double vn = fn0x * n.x() + fn0y * n.y();
1623 if (vn > 0) {
1624 double d = fn0x * p.x() + fn0y * p.y();
1625 double t = -d / vn;
1626 if (hitphi0side(t)) {
1627 bool surface = std::abs(d) < delta;
1628 if (surface) {
1629 tmin = 0; iseg = imax + 0;
1630 } else {
1631 if (0 < t && t < tmin) {tmin = t; iseg = imax + 0;}
1632
1633 }
1634 }
1635 }
1636 } while (0);
1637
1638 do { // side at phi0+dphi
1639 double vn = fn1x * n.x() + fn1y * n.y();
1640 if (vn > 0) {
1641 double d = fn1x * p.x() + fn1y * p.y();
1642 double t = -d / vn;
1643 if (hitphi1side(t)) {
1644 bool surface = std::abs(d) < delta;
1645 if (surface) {
1646 tmin = 0; iseg = imax + 1;
1647 } else {
1648 if (0 < t && t < tmin) { tmin = t; iseg = imax + 1;}
1649 }
1650 }
1651 }
1652 } while (0);
1653 }
1654
1655 auto convex = [this, imax](int i) -> bool{
1656 if (i < imax)
1657 return fcache[i].isconvex;
1658 else
1659 return !fgtpi;
1660 };
1661
1662 if (calcNorm) {
1663 if (tmin >= 0 && tmin < kInfinity) {
1664 *_n = getnormal(iseg, tmin);
1665 *IsValid = convex(iseg);
1666 } else {
1667 if (Inside(p) == kSurface) {
1668 if (isurface >= 0) {
1669 *_n = getnormal(isurface, tmin);
1670 *IsValid = convex(isurface);
1671 tmin = 0;
1672 }
1673 } else {
1674 *IsValid = false;
1675 }
1676 }
1677 }
1678 // cout<<"tmin "<<tmin<<endl;
1679#if COMPARE==1
1680 do {
1681 // G4ThreeVector p0(1210.555046, -292.9578965, -36.71671492);
1682 // if ((p - p0).mag() > 1e-2)continue;
1683 bool isvalid;
1684 G4ThreeVector norm;
1685 double dd = fshape->DistanceToOut(p, n, calcNorm, &isvalid, &norm);
1686 if (abs(tmin - dd) > 1e-10 || (calcNorm && *IsValid != isvalid)) {
1687 int oldprec = cout.precision(16);
1688 cout << GetName() << " DistanceToOut(p,v) p,n =" << curl_t(p) << curl_t(n) << " calcNorm=" << calcNorm
1689 << " myInside=" << Inside(p) << " tmin=" << tmin << " dd=" << dd << " d=" << tmin - dd << " iseg=" << iseg << " isurf=" << isurface
1690 << " ";
1691 if (calcNorm) cout << "myIsValid = " << *IsValid << " tIsValid=" << isvalid << " myn=" << (*_n) << " tn=" << (norm);
1692 cout << endl;
1693 cout.precision(oldprec);
1694 // _exit(0);
1695 }
1696 } while (0);
1697#endif
1698 MATCHOUT("BelleLathe::DistanceToOut(p,n) " << p << " " << n << " res= " << tmin);
1699 return tmin;
1700}
1701
1703{
1704 ftlist.clear();
1705 unsigned int n = fcontour.size();
1706 vector<int> indx;
1707 for (unsigned int i = 0; i < n; i++) indx.push_back(i);
1708 int count = 0;
1709 while (indx.size() > 3 && ++count < 200) {
1710 unsigned int ni = indx.size();
1711 for (unsigned int i = 0; i < ni; i++) {
1712 int i0 = indx[i], i1 = indx[(i + 1) % ni], i2 = indx[(i + 2) % ni];
1713 double nx = fcontour[i2].z - fcontour[i0].z;
1714 double ny = fcontour[i2].r - fcontour[i0].r;
1715 double d1 = nx * (fcontour[i1].r - fcontour[i0].r) - ny * (fcontour[i1].z - fcontour[i0].z);
1716 bool ear = true;
1717 for (unsigned int j = 0; j < ni - 3; j++) {
1718 int k = indx[(i + 3 + j) % ni];
1719 double d = nx * (fcontour[k].r - fcontour[i0].r) - ny * (fcontour[k].z - fcontour[i0].z);
1720 if (d * d1 > 0) {
1721 ear = false;
1722 break;
1723 }
1724 }
1725 if (ear) {
1726 triangle_t t = {i0, i1, i2};
1727 ftlist.push_back(t);
1728 indx.erase(indx.begin() + (i + 1) % ni);
1729 break;
1730 }
1731 }
1732 }
1733 if (indx.size() == 3) {
1734 triangle_t t = {indx[0], indx[1], indx[2]};
1735 ftlist.push_back(t);
1736 }
1737}
1738
1740{
1741 double vol = 0;
1742 for (const cachezr_t& s : fcache) vol += s.dz * ((3 * s.r) * (s.r + s.dr) + s.dr * s.dr);
1743 fCubicVolume = -fdphi * vol / 6;
1744
1745 double totalarea = 0;
1746 if (!ftwopi) {
1747 eartrim();
1748 for (const triangle_t& t : ftlist) {
1749 const zr_t& p0 = fcontour[t.i0], &p1 = fcontour[t.i1], &p2 = fcontour[t.i2];
1750 double area = (p1.z - p0.z) * (p2.r - p0.r) - (p1.r - p0.r) * (p2.z - p0.z);
1751 totalarea += abs(area);
1752 farea.push_back(totalarea);
1753 }
1754 }
1755
1756 for (const cachezr_t& s : fcache) {
1757 double area = fdphi * (s.r + 0.5 * s.dr) * sqrt(s.dz * s.dz + s.dr * s.dr);
1758 totalarea += area;
1759 farea.push_back(totalarea);
1760 }
1761 fSurfaceArea = farea.back();
1762}
1763
1765{
1766 auto GetPointOnTriangle = [this](const triangle_t& t)-> G4ThreeVector{
1767 // barycentric coordinates
1768 double a1 = CLHEP::RandFlat::shoot(0., 1.), a2 = CLHEP::RandFlat::shoot(0., 1.);
1769 if (a1 + a2 > 1) { a1 = 1 - a1; a2 = 1 - a2;}
1770 double a0 = 1 - (a1 + a2);
1771 const zr_t& p0 = fcontour[t.i0], &p1 = fcontour[t.i1], &p2 = fcontour[t.i2];
1772 zr_t p = {p0.z* a0 + p1.z* a1 + p2.z * a2, p0.r* a0 + p1.r* a1 + p2.r * a2};
1773 double c, s;
1774 if (CLHEP::RandFlat::shoot(0., 1.) > 0.5) // select phi side
1775 {
1776 c = -fn0y; s = fn0x;
1777 } else
1778 {
1779 c = fn1y; s = -fn1x;
1780 }
1781 G4ThreeVector r1(p.r * c, p.r * s, p.z);
1782 return r1;
1783 };
1784
1785 double rnd = CLHEP::RandFlat::shoot(0., farea.back());
1786 std::vector<double>::const_iterator it = std::lower_bound(farea.begin(), farea.end(), rnd);
1787 unsigned int i = it - farea.begin();
1788
1789 if (!ftwopi) {
1790 if (i < ftlist.size()) {
1791 return GetPointOnTriangle(ftlist[i]);
1792 } else {
1793 i -= ftlist.size();
1794 }
1795 }
1796
1797 const cachezr_t& s = fcache[i];
1798 double I = 2 * s.r + s.dr;
1799 double Iw = CLHEP::RandFlat::shoot(0., I);
1800 double q = sqrt(Iw * s.dr + s.r * s.r);
1801 double t = Iw / (q + s.r);
1802 double z = s.z + s.dz * t;
1803 double r = s.r + s.dr * t;
1804 double phi = CLHEP::RandFlat::shoot(fphi, fphi + fdphi);
1805 double x = r * cos(phi), y = r * sin(phi);
1806 return G4ThreeVector(x, y, z);
1807}
1808
1809// GetEntityType
1810G4GeometryType BelleLathe::GetEntityType() const
1811{
1812 return G4String("BelleLathe");
1813}
1814
1815// Make a clone of the object
1816G4VSolid* BelleLathe::Clone() const
1817{
1818 return new BelleLathe(*this);
1819}
1820
1821// Stream object contents to an output stream
1822std::ostream& BelleLathe::StreamInfo(std::ostream& os) const
1823{
1824 G4int oldprc = os.precision(16);
1825 os << "-----------------------------------------------------------\n"
1826 << " *** Dump for solid - " << GetName() << " ***\n"
1827 << " ===================================================\n"
1828 << " Solid type: BelleLathe\n"
1829 << " Contour: " << fcontour.size() << " sides, {z, r} points \n";
1830 for (int i = 0, imax = fcontour.size(); i < imax; i++) {
1831 os << fcontour[i] << ", ";
1832 }
1833 os << "\n";
1834 for (int i = 0, imax = fcontour.size(); i < imax; i++) {
1835 os << fcache[i].isconvex << ", ";
1836 }
1837 os << "\n";
1838 os << "phi0 = " << fphi << ", dphi = " << fdphi << ", Full Circle = " << (ftwopi ? "yes" : "no") << "\n";
1839 double xmin = fzmin - 0.05 * (fzmax - fzmin), xmax = fzmax + 0.05 * (fzmax - fzmin);
1840 double ymin = frmin - 0.05 * (frmax - frmin), ymax = frmax + 0.05 * (frmax - frmin);
1841 os << " BB: " << xmin << ", " << xmax << ", " << ymin << ", " << ymax << endl;
1842 os << "-----------------------------------------------------------\n";
1843 os.precision(oldprc);
1844
1845 return os;
1846}
1847
1848// Methods for visualisation
1849void BelleLathe::DescribeYourselfTo(G4VGraphicsScene& scene) const
1850{
1851 scene.AddSolid(*this);
1852}
1853
1854// Function to define the bounding box
1855void BelleLathe::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
1856{
1857 std::vector<vector_t> points;
1858 vector_t point;
1859
1860 // Placeholder vectors
1861 const double inf = std::numeric_limits<double>::infinity();
1862 G4ThreeVector minimum(inf, inf, inf), maximum(-inf, -inf, -inf);
1863
1864 // Outer vertices
1865 if (fdphi < 2 * M_PI) { // Only axis-crossings are relevant if the shape is a full circle
1866 point.x = frmax * cos(fphi); point.y = frmax * sin(fphi);
1867 points.push_back(point);
1868 point.x = frmax * cos(fphi + fdphi); point.y = frmax * sin(fphi + fdphi);
1869 points.push_back(point);
1870 }
1871
1872 // Inner vertices
1873 point.x = frmin * cos(fphi); point.y = frmin * sin(fphi);
1874 points.push_back(point);
1875 if (frmin != 0) { // Avoid duplicate (0,0)
1876 point.x = frmin * cos(fphi + fdphi); point.y = frmin * sin(fphi + fdphi);
1877 points.push_back(point);
1878 }
1879
1880 // Check if shape crosses an axis
1881 // Because the inside is concave, extremums will always be at vertices
1882 // Because the outside is convex, extremums may be at an axis-crossing
1883 if (insector(0, 1)) {
1884 point.x = 0; point.y = frmax;
1885 points.push_back(point);
1886 }
1887 if (insector(-1, 0)) {
1888 point.x = -frmax; point.y = 0;
1889 points.push_back(point);
1890 }
1891 if (insector(0, -1)) {
1892 point.x = 0; point.y = -frmax;
1893 points.push_back(point);
1894 }
1895 if (insector(1, 0)) {
1896 point.x = frmax; point.y = 0;
1897 points.push_back(point);
1898 }
1899
1900 for (std::vector<vector_t>::size_type i = 0; i != points.size(); i++) {
1901 // global min in x
1902 if (points[i].x < minimum.x())
1903 minimum.setX(points[i].x);
1904
1905 // global min in y
1906 if (points[i].y < minimum.y())
1907 minimum.setY(points[i].y);
1908
1909 // global max in x
1910 if (points[i].x > maximum.x())
1911 maximum.setX(points[i].x);
1912
1913 // global max in y
1914 if (points[i].y > maximum.y())
1915 maximum.setY(points[i].y);
1916 }
1917
1918 // Set z extremum values
1919 minimum.setZ(fzmin);
1920 maximum.setZ(fzmax);
1921
1922 // Assign
1923 pMin = minimum;
1924 pMax = maximum;
1925}
1926
1927void takePolyhedron(const HepPolyhedron& p)
1928{
1929 int i, nnode, iNodes[5], iVis[4], iFaces[4];
1930
1931 for (int iface = 1; iface <= p.GetNoFacets(); iface++) {
1932 p.GetFacet(iface, nnode, iNodes, iVis, iFaces);
1933 for (i = 0; i < nnode; i++) {
1934 if (iNodes[i] < 1 || iNodes[i] > p.GetNoVertices()) { //G.Barrand
1935 // processor_error = 1;
1936 G4cerr
1937 << "BooleanProcessor::takePolyhedron : problem 1."
1938 << G4endl;
1939 }
1940 if (iFaces[i] < 1 || iFaces[i] > p.GetNoFacets()) { //G.Barrand
1941 // processor_error = 1;
1942 G4cerr
1943 << "BooleanProcessor::takePolyhedron : problem 2. "
1944 << i << " " << iFaces[i] << " " << p.GetNoFacets() << G4endl;
1945 }
1946 }
1947 }
1948}
1949
1950PolyhedronBelleLathe::PolyhedronBelleLathe(const std::vector<zr_t>& v, const std::vector<triangle_t>& t, double phi, double dphi)
1951{
1952 int nphi = GetNumberOfRotationSteps();
1953 bool twopi = abs(dphi - 2 * M_PI) < 1e-6;
1954 int n = v.size();
1955 if (twopi) {
1956 int nv = n * nphi;
1957 int nf = nv;
1958 AllocateMemory(nv, nf);
1959
1960 auto vnum = [nphi, n](int iphi, int ip) {
1961 return (iphi % nphi) * n + (ip % n) + 1;
1962 };
1963
1964 int fcount = 1;
1965 double dfi = dphi / nphi;
1966 for (int i = 0; i < nphi; i++) {
1967 double fi = phi + i * dfi;
1968 double cf = cos(fi), sf = sin(fi);
1969 for (int j = 0; j < n; j++) pV[vnum(i, j)].set(v[j].r * cf, v[j].r * sf, v[j].z);
1970 for (int j = 0; j < n; j++) pF[fcount++ ] = G4Facet(vnum(i, j), 0, vnum(i, j + 1), 0, vnum(i + 1, j + 1), 0, vnum(i + 1, j), 0);
1971 }
1972 } else {
1973 // cout<<"NPHI = "<<nphi<<" "<<phi<<" "<<dphi<<endl;
1974 nphi = int(nphi * (dphi / (2 * M_PI)) + 0.5);
1975 nphi = nphi > 3 ? nphi : 3;
1976
1977 // cout<<"NPHI = "<<nphi<<endl;
1978
1979 int nv = n * nphi;
1980 int nf = n * (nphi - 1) + 2 * t.size();
1981 AllocateMemory(nv, nf);
1982
1983 auto vnum = [n](int iphi, int ip) {
1984 return iphi * n + (ip % n) + 1;
1985 };
1986
1987 int fcount = 1;
1988 double dfi = dphi / (nphi - 1);
1989 for (int i = 0; i < nphi; i++) {
1990 double fi = phi + i * dfi;
1991 double cf = cos(fi), sf = sin(fi);
1992 for (int j = 0; j < n; j++) pV[vnum(i, j)].set(v[j].r * cf, v[j].r * sf, v[j].z);
1993 if (i == nphi - 1) break;
1994 for (int j = 0; j < n; j++) pF[fcount++] = G4Facet(vnum(i, j), 0, vnum(i, j + 1), 0, vnum(i + 1, j + 1), 0, vnum(i + 1, j), 0);
1995 }
1996
1997 for (const triangle_t& k : t) pF[fcount++] = G4Facet(vnum(0, k.i0), 0, vnum(0, k.i2), 0, vnum(0, k.i1), 0, 0, 0);
1998 int i = nphi - 1;
1999 for (const triangle_t& k : t) pF[fcount++] = G4Facet(vnum(i, k.i0), 0, vnum(i, k.i1), 0, vnum(i, k.i2), 0, 0, 0);
2000
2001 }
2002 SetReferences();
2003 // takePolyhedron(*this);
2004}
2005
2007
2008G4Polyhedron* BelleLathe::CreatePolyhedron() const
2009{
2010 eartrim();
2012}
2013
2014#if 0
2015#include <immintrin.h>
2016double mindistsimd(const zr_t& r, const vector<cachezr_t>& contour)
2017{
2018 double d = kInfinity;
2019 int i = 0, n = contour.size();
2020 __m128d zero = _mm_set_sd(0);
2021 __m128d one = _mm_set_sd(1);
2022 double wn = 0;
2023 do {
2024 const cachezr_t& s = contour[i];
2025 double dz = r.z - s.z, dr = r.r - s.r;
2026 double crs = s.dr * dz - s.dz * dr;
2027 double dot = s.dz * dz + s.dr * dr; // projection of the point on the segment
2028 // if(s.zmin<=r.z&&r.z<s.zmax) wn -= (crs>0) - (crs<0);
2029 __m128d crssd = _mm_set_sd(crs);
2030 __m128d maskgt = _mm_cmpgt_sd(crssd, zero);
2031 __m128d masklt = _mm_cmplt_sd(crssd, zero);
2032 __m128d left = _mm_sub_sd(_mm_and_pd(maskgt, one), _mm_and_pd(masklt, one));
2033 __m128d z = _mm_set_sd(s.z);
2034 __m128d mask = _mm_and_pd(_mm_cmple_sd(_mm_set_sd(s.zmin), z), _mm_cmplt_sd(z, _mm_set_sd(s.zmax)));
2035 left = _mm_and_pd(mask, left);
2036 double du = dz * dz + dr * dr;
2037 double dv = crs * crs * s.is2;
2038
2039 masklt = _mm_cmplt_sd(_mm_set_sd(dot), zero);
2040 maskgt = _mm_cmpgt_sd(_mm_set_sd(dot), _mm_set_sd(s.s2));
2041
2042 __m128d uu = _mm_or_pd(_mm_and_pd(maskgt, _mm_set_sd(kInfinity)), _mm_andnot_pd(maskgt, _mm_set_sd(dv)));
2043 __m128d vv = _mm_or_pd(_mm_and_pd(masklt, _mm_set_sd(min(d, du))), _mm_andnot_pd(masklt, _mm_set_sd(min(d, uu[0]))));
2044 wn -= left[0];
2045 d = vv[0];
2046 } while (++i < n);
2047 d = sqrt(d);
2048 d = (wn == 2) ? -d : d;
2049 // cout<<wn<<" "<<d<<endl;
2050 // cout<<sqrt(dp)<<" "<<sqrt(dm)<<endl;
2051 return d;
2052}
2053inline int left(const zr_t& r0, const zr_t& r1, const zr_t& r)
2054{
2055 double d = (r1.z - r0.z) * (r.r - r0.r) - (r.z - r0.z) * (r1.r - r0.r);
2056 return (d > 0) - (d < 0);
2057}
2058
2059inline int checkside(const zr_t& s0, const zr_t& s1, const zr_t& r)
2060{
2061 double zmin = min(s0.z, s1.z), zmax = max(s0.z, s1.z);
2062 if (zmin <= r.z && r.z < zmax) return left(s0, s1, r);
2063 return 0;
2064}
2065
2066int wn_poly(const zr_t& r, const vector<zr_t>& contour)
2067{
2068 int wn = 0; // the winding number counter
2069 int i = 0, n = contour.size() - 1;
2070 do {
2071 wn += checkside(contour[i], contour[i + 1], r);
2072 } while (++i < n);
2073 wn += checkside(contour[n], contour[0], r);
2074 return wn;
2075}
2076
2077double mindist(const zr_t& r, const vector<zr_t>& contour)
2078{
2079 int wn = 0;
2080 double d = kInfinity;
2081 auto dist = [&contour, &d, &r, &wn](int i0, int i1)->void {
2082 const zr_t& s0 = contour[i0], &s1 = contour[i1];
2083 double zmin = min(s0.z, s1.z), zmax = max(s0.z, s1.z);
2084 double sz = s1.z - s0.z, sr = s1.r - s0.r;
2085 double dz = r.z - s0.z, dr = r.r - s0.r;
2086 double crs = dz * sr - sz * dr;
2087 if (zmin <= r.z && r.z < zmax) wn -= (crs > 0) - (crs < 0);
2088 double dot = sz * dz + sr * dr; // projection of the point on the segment
2089 double s2 = sz * sz + sr * sr;
2090 if (dot > s2) return; // point should be within the segment
2091 if (dot < 0)
2092 {
2093 double d2 = dz * dz + dr * dr; // distance to the first point of the segment
2094 d = min(d, d2);
2095 } else
2096 {
2097 d = min(d, crs * crs / s2);
2098 }
2099 // cout<<i0<<" "<<s0.z<<" "<<s0.r<<" "<<d<<" "<<wn<<endl;
2100 };
2101 int i = 0, n = contour.size() - 1;
2102 do {dist(i, i + 1);} while (++i < n);
2103 dist(n, 0);
2104 d = sqrt(d);
2105 d = (wn == 2) ? -d : d;
2106 // cout<<wn<<" "<<d<<endl;
2107 // cout<<sqrt(dp)<<" "<<sqrt(dm)<<endl;
2108 return d;
2109}
2110
2111double mindist(const zr_t& r, const vector<cachezr_t>& contour)
2112{
2113 double d = kInfinity;
2114 int wn = 0, i = 0, n = contour.size();
2115 do {
2116 const cachezr_t& s = contour[i];
2117 double dz = r.z - s.z, dr = r.r - s.r;
2118 double crs = s.dr * dz - s.dz * dr;
2119 double dot = s.dz * dz + s.dr * dr; // projection of the point on the segment
2120 if (s.zmin <= r.z && r.z < s.zmax) wn -= (crs > 0) - (crs < 0);
2121 if (dot > s.s2) continue; // point should be within the segment
2122 if (dot < 0) {
2123 d = min(d, dz * dz + dr * dr); // distance to the first point of the segment
2124 } else {
2125 d = min(d, crs * crs * s.is2);
2126 }
2127 // cout<<i<<" "<<s.z<<" "<<s.r<<" "<<d<<" "<<wn<<endl;
2128 // cout<<i<<" "<<d<<" "<<wn<<endl;
2129 } while (++i < n);
2130 d = sqrt(d);
2131 d = (wn == 2) ? -d : d;
2132 // cout<<wn<<" "<<d<<endl;
2133 return d;
2134}
2135
2136
2137#endif
R E
internal precision of FFTW codelets
double R
typedef autogenerated by FFTW
BelleLathe class.
Definition: BelleLathe.h:67
double fzmax
maximal z value
Definition: BelleLathe.h:192
void getvolarea()
get volume area
Definition: BelleLathe.cc:1739
double fphi
starting angle
Definition: BelleLathe.h:179
std::vector< double > fz
vector of z values
Definition: BelleLathe.h:173
G4GeometryType GetEntityType() const
Get entity type.
Definition: BelleLathe.cc:1810
std::vector< int > findx
vector of indices
Definition: BelleLathe.h:174
std::vector< triangle_t > ftlist
vector of triangle structs
Definition: BelleLathe.h:177
void DescribeYourselfTo(G4VGraphicsScene &scene) const
Visualisation function.
Definition: BelleLathe.cc:1849
void Init(const std::vector< zr_t > &, double, double)
initialize
Definition: BelleLathe.cc:101
bool ftwopi
bound within +- 2pi?
Definition: BelleLathe.h:194
std::vector< double > farea
vector of area values
Definition: BelleLathe.h:176
G4Polyhedron * CreatePolyhedron() const
create polyhedron
Definition: BelleLathe.cc:2008
std::vector< int > fseg
vector of segments
Definition: BelleLathe.h:175
G4VSolid * fshape
shape
Definition: BelleLathe.h:196
double fdphi
finishing angle
Definition: BelleLathe.h:180
std::vector< double > linecross(const G4ThreeVector &, const G4ThreeVector &) const
calculate all ray solid's surface intersection return ordered vector
Definition: BelleLathe.cc:428
BelleLathe & operator=(const BelleLathe &rhs)
assignment operator
Definition: BelleLathe.cc:305
void BoundingLimits(G4ThreeVector &pMin, G4ThreeVector &pMax) const
Two vectors define an axis-parallel bounding box for the shape.
Definition: BelleLathe.cc:1855
virtual ~BelleLathe()
Destructor.
Definition: BelleLathe.cc:285
std::vector< zr_t > fcontour
vector of zr structs
Definition: BelleLathe.h:171
bool fgtpi
greater than pi?
Definition: BelleLathe.h:193
std::vector< cachezr_t > fcache
vector of cached zr structs
Definition: BelleLathe.h:172
double mindist(const zr_t &) const
minimal distance
Definition: BelleLathe.cc:962
BelleLathe(const G4String &pName)
Constructor for "nominal" BelleLathe whose parameters are to be set by a G4VPVParamaterisation later.
Definition: BelleLathe.cc:268
double fzmin
minimal z value
Definition: BelleLathe.h:191
zr_t normal(const zr_t &, double &) const
return normal
Definition: BelleLathe.cc:1026
bool insector(double, double) const
True if (x,y) is within the shape rotation.
Definition: BelleLathe.cc:937
G4ThreeVector GetPointOnSurface() const
Get point on surface.
Definition: BelleLathe.cc:1764
double frmax
maximal r value
Definition: BelleLathe.h:190
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pMin, G4double &pMax) const
calculate the extent of the volume
Definition: BelleLathe.cc:514
G4ThreeVector SurfaceNormal(const G4ThreeVector &p) const
Calculate side nearest to p, and return normal.
Definition: BelleLathe.cc:1077
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
Calculate distance to shape from outside - return kInfinity if no intersection.
Definition: BelleLathe.cc:1253
double frmin
minimal r value
Definition: BelleLathe.h:189
void eartrim() const
ear trim
Definition: BelleLathe.cc:1702
std::vector< G4ThreeVector > fsurf
vector of surfaces
Definition: BelleLathe.h:197
G4VSolid * Clone() const
Make a clone of the object.
Definition: BelleLathe.cc:1816
std::ostream & StreamInfo(std::ostream &os) const
Stream object contents to an output stream.
Definition: BelleLathe.cc:1822
int wn_poly(const zr_t &) const
wn_poly
Definition: BelleLathe.cc:945
EInside Inside(const G4ThreeVector &p) const
Return whether point inside/outside/on surface, using tolerance.
Definition: BelleLathe.cc:983
void ComputeDimensions(G4VPVParameterisation *p, const G4int n, const G4VPhysicalVolume *pRep)
compute the dimensions
Definition: BelleLathe.cc:345
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=0, G4ThreeVector *n=0) const
Calculate distance to surface of shape from inside.
Definition: BelleLathe.cc:1471
Belle lathe polyhedron.
Definition: BelleLathe.h:201
virtual ~PolyhedronBelleLathe()
destructor
Definition: BelleLathe.cc:2006
PolyhedronBelleLathe(const std::vector< zr_t > &, const std::vector< triangle_t > &, double, double)
constructor
Definition: BelleLathe.cc:1950
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
T dot(GeneralVector< T > a, GeneralVector< T > b)
dot product of two general vectors
Definition: beamHelpers.h:163
TString rn()
Get random string.
Definition: tools.h:38
Abstract base class for different kinds of events.
STL namespace.
struct for plane
Definition: BelleCrystal.h:24
cached z-r struct
Definition: BelleLathe.h:31
double dz
difference in z
Definition: BelleLathe.h:34
double r
r coordinate
Definition: BelleLathe.h:33
double zmin
minimal z value
Definition: BelleLathe.h:39
double z
z coordinate
Definition: BelleLathe.h:32
double ta
ratio of dr over dz
Definition: BelleLathe.h:43
double zmax
maximal z value
Definition: BelleLathe.h:40
struct for a triangle
Definition: BelleLathe.h:55
struct for a three vector
Definition: BelleLathe.h:48
double y
y coordinate
Definition: BelleLathe.h:50
double x
x coordinate
Definition: BelleLathe.h:49
simple struct with z and r coordinates
Definition: BelleLathe.h:25
double r
r coordinate
Definition: BelleLathe.h:27
double z
z coordinate
Definition: BelleLathe.h:26
define plane struct
Definition: BelleLathe.cc:41
G4ThreeVector n
Normal unit vector (x,y,z)
Definition: BelleLathe.cc:42
double d
offset (d)
Definition: BelleLathe.cc:43
curl struct
Definition: BelleLathe.cc:67
curl_t(const G4ThreeVector &_v)
constructor
Definition: BelleLathe.cc:70
G4ThreeVector v
vector
Definition: BelleLathe.cc:68
solution struct
Definition: BelleLathe.cc:392
double t
t
Definition: BelleLathe.cc:393
double s
s
Definition: BelleLathe.cc:394