Belle II Software development
EnergyLossEstimator.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8#include <tracking/trackFindingCDC/eventdata/utils/EnergyLossEstimator.h>
9
10#include <tracking/trackFindingCDC/eventdata/trajectories/CDCBFieldUtil.h>
11
12#include <tracking/trackFindingCDC/numerics/ESign.h>
13
14#include <geometry/GeometryManager.h>
15
16#include <framework/gearbox/Unit.h>
17#include <framework/gearbox/Const.h>
18#include <framework/logging/Logger.h>
19
20#include "G4ThreeVector.hh"
21#include "G4Navigator.hh"
22#include "G4VPhysicalVolume.hh"
23#include "G4Material.hh"
24
25using namespace Belle2;
26using namespace TrackFindingCDC;
27
29{
30
31 // Look up material properties from the Belle2 geometry
32 G4Navigator g4Nav;
33 G4VPhysicalVolume* g4World = geometry::GeometryManager::getInstance().getTopVolume();
34 g4Nav.SetWorldVolume(g4World);
35
36 // Choose position well inside the CDC
37 double posX = 0;
38 double posY = 50;
39 double posZ = 0;
40
41 G4ThreeVector g4Pos(posX * CLHEP::cm, posY * CLHEP::cm, posZ * CLHEP::cm);
42 const G4VPhysicalVolume* g4Volume = g4Nav.LocateGlobalPointAndSetup(g4Pos);
43 const G4Material* g4Mat = g4Volume->GetLogicalVolume()->GetMaterial();
44
45 double A = 0;
46 double Z = 0;
47
48 if (g4Mat->GetNumberOfElements() == 1) {
49 A = g4Mat->GetA() * CLHEP::mole / CLHEP::g;
50 Z = g4Mat->GetZ();
51 } else {
52 // Calculate weight-averaged A, Z
53 for (unsigned i = 0; i < g4Mat->GetNumberOfElements(); ++i) {
54 const G4Element* element = (*g4Mat->GetElementVector())[i];
55 const double elementA = element->GetA() * CLHEP::mole / CLHEP::g;
56 const double elementZ = element->GetZ();
57 const double frac = g4Mat->GetFractionVector()[i];
58 B2RESULT("Part " << i << " Z=" << elementZ << " A=" << elementA << " (" << frac << ")");
59 Z += elementZ * frac;
60 A += elementA * frac;
61 }
62 }
63
64 // Make sure to translate to Belle units from the Geant4 / CLHEP units
65 // Z has correct units (is unitless)
66 const double density = g4Mat->GetDensity() / CLHEP::g * CLHEP::cm3;
67 const double radiationLength = g4Mat->GetRadlen() / CLHEP::cm;
68 const double mEE = g4Mat->GetIonisation()->GetMeanExcitationEnergy() / CLHEP::GeV;
69
70 B2RESULT("Received Z " << Z);
71 B2RESULT("Received A " << A);
72 B2RESULT("Received density " << density);
73 B2RESULT("Received radiation length " << radiationLength);
74 B2RESULT("Received mean excitation energy " << mEE);
75
76 const double eDensity = Z * density / A;
77 B2RESULT("Received electron density " << eDensity);
78
79 const double bZ = CDCBFieldUtil::getBFieldZ();
80
81 return EnergyLossEstimator(eDensity, mEE, bZ);
82}
83
85{
86 if (std::abs(pdgCode) == Const::electron.getPDGCode()) {
87 const double electronMass = 0.511 * Unit::MeV;
88 return electronMass;
89 } else if (std::abs(pdgCode) == Const::muon.getPDGCode()) {
90 const double muonMass = 105.658 * Unit::MeV;
91 return muonMass;
92 } else if (std::abs(pdgCode) == Const::kaon.getPDGCode()) {
93 const double kaonMass = 0.493677;
94 return kaonMass;
95 } else if (std::abs(pdgCode) == Const::pion.getPDGCode()) {
96 const double pionMass = 0.13957;
97 return pionMass;
98 } else if (std::abs(pdgCode) == Const::proton.getPDGCode()) {
99 const double protonMass = 0.938272;
100 return protonMass;
101 }
102 return NAN;
103}
104
106{
107 if (std::abs(pdgCode) == Const::electron.getPDGCode()) {
108 return -sign(pdgCode);
109 } else if (std::abs(pdgCode) == Const::muon.getPDGCode()) {
110 return -sign(pdgCode);
111 } else if (std::abs(pdgCode) == Const::kaon.getPDGCode()) {
112 return sign(pdgCode);
113 } else if (std::abs(pdgCode) == Const::pion.getPDGCode()) {
114 return sign(pdgCode);
115 } else if (std::abs(pdgCode) == Const::proton.getPDGCode()) {
116 return sign(pdgCode);
117 }
118 return 0;
119}
120
121EnergyLossEstimator::EnergyLossEstimator(double eDensity, double I, double bZ)
122 : m_eDensity(eDensity)
123 , m_I(I)
124 , m_bZ(bZ)
125{
126}
127
128double EnergyLossEstimator::getBetheStoppingPower(double p, int pdgCode) const
129{
130 static const double eMass = getMass(11);
131
132 const double M = getMass(pdgCode);
133
134 const double E = std::sqrt(p * p + M * M);
135 const double gamma = E / M;
136 const double beta = p / E;
137
138 const double beta2 = beta * beta;
139 const double gamma2 = gamma * gamma;
140
141 const double Wmax = 2 * eMass * beta2 * gamma2 / (1 + 2 * gamma * eMass / M);
142 const double I2 = m_I * m_I;
143
144 static const double K = 0.307075 * Unit::MeV * Unit::cm2;
145 const double dEdx = K * m_eDensity / beta2 *
146 (1.0 / 2.0 * std::log(2 * eMass * beta2 * gamma2 * Wmax / I2) - beta2);
147 return dEdx;
148}
149
150double EnergyLossEstimator::getEnergyLoss(double p, int pdgCode, double arcLength) const
151{
152 const double dEdx = getBetheStoppingPower(p, pdgCode);
153 const double eLoss = arcLength * dEdx;
154 return eLoss;
155}
156
157double EnergyLossEstimator::getMomentumLossFactor(double p, int pdgCode, double arcLength) const
158{
159 const double eLoss = getEnergyLoss(p, pdgCode, arcLength);
160 return (p - eLoss) / p;
161
162 const double mass = getMass(pdgCode);
163
164 const double eBefore = std::sqrt(p * p + mass * mass);
165 const double eAfter = eBefore - eLoss;
166 const double pAfter = std::sqrt(eAfter * eAfter - mass * mass);
167 return pAfter / p;
168}
169
170double EnergyLossEstimator::getLossDist2D(double pt, int pdgCode, double arcLength2D) const
171{
172 const double eLoss = getEnergyLoss(pt, pdgCode, arcLength2D);
173
174 const int q = getCharge(pdgCode);
175 const double radius = q * CDCBFieldUtil::absMom2DToBendRadius(pt, m_bZ);;
176 return radius * eLoss / (pt - eLoss);
177
178 // const double pFactor = getMomentumLossFactor(p, pdgCode, arcLength2D);
179 // return radius * (1 / pFactor - 1);
180}
R E
internal precision of FFTW codelets
#define K(x)
macro autogenerated by FFTW
static const ChargedStable muon
muon particle
Definition: Const.h:660
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
static const ChargedStable proton
proton particle
Definition: Const.h:663
static const ChargedStable kaon
charged kaon particle
Definition: Const.h:662
static const ChargedStable electron
electron particle
Definition: Const.h:659
static double getBFieldZ()
Getter for the signed magnetic field strength in z direction at the origin ( in Tesla )
static double absMom2DToBendRadius(double absMom2D, double bZ)
Conversion helper for momenta to two dimensional (absolute) bend radius.
Helper struct to provide consistent energy loss estimation throughout the CDC track finding.
double getLossDist2D(double pt, int pdgCode, double arcLength2D) const
Calculates a correction term for the two dimensional distance undoing the energy loss after the given...
double getMomentumLossFactor(double p, int pdgCode, double arcLength) const
Calculates a factor applicable scaling the current momentum to the momentum after traveling given arc...
static EnergyLossEstimator forCDC()
Create an energy loss estimator with the material properties of the CDC.
double m_eDensity
Electron density in mol / cm^3.
double m_bZ
B field to be used for the distance translation.
static int getCharge(int pdgCode)
Lookup the charge for the given pdg code.
double getEnergyLoss(double p, int pdgCode, double arcLength) const
Calculates the total energy loss after travelling the given distance.
static double getMass(int pdgCode)
Lookup the mass for the given pdg code.
double m_I
Mean excitation energy in GeV.
EnergyLossEstimator(double eDensity, double I, double bZ=NAN)
Constructor from the material properties.
double getBetheStoppingPower(double p, int pdgCode) const
Stopping power aka energy loss / arc length.
static const double MeV
[megaelectronvolt]
Definition: Unit.h:114
static const double cm2
[square centimeters]
Definition: Unit.h:78
G4VPhysicalVolume * getTopVolume()
Return a pointer to the top volume.
static GeometryManager & getInstance()
Return a reference to the instance.
Abstract base class for different kinds of events.