9#include <svd/modules/svdSimulation/SVDDigitizerModule.h>
10#include <vxd/geometry/GeoCache.h>
12#include <framework/dataobjects/EventMetaData.h>
13#include <framework/logging/Logger.h>
14#include <framework/gearbox/Unit.h>
15#include <framework/gearbox/Const.h>
16#include <framework/datastore/DataStore.h>
17#include <framework/datastore/StoreArray.h>
18#include <framework/datastore/StoreObjPtr.h>
19#include <framework/datastore/RelationArray.h>
20#include <framework/datastore/RelationIndex.h>
21#include <mdst/dataobjects/MCParticle.h>
22#include <svd/dataobjects/SVDTrueHit.h>
23#include <svd/dataobjects/SVDShaperDigit.h>
24#include <svd/dataobjects/SVDEventInfo.h>
31#include <root/TMath.h>
32#include <root/TRandom.h>
35using namespace std::placeholders;
47double tree_signal[20];
60 m_currentSensorWaveforms(nullptr),
61 m_mapping(m_xmlFileName)
87 "Zero suppression cut in sigmas of strip noise",
m_SNAdjacent);
89 "FADC mode: if True, ZS cut is rounded to nearest ADU ",
m_roundZS);
91 "Keep digit if numberOfSamples or more samples are over ZS threshold",
100 "Interval between ADC samples in ns, if = -1 taken from HardwareClockSettings payload (default).",
m_samplingTime);
102 "Start of the sampling window, in ns. Used to tune the SVD latency.",
m_startSampling);
106 "Left edge of event time randomization window, ns",
m_minTimeFrame);
108 "Right edge of event time randomization window, ns",
m_maxTimeFrame);
113 "ROOT Filename for statistics generation. If filename is empty, no statistics will be produced",
118 "Store signals (time/charge/tau) in a tab-delimited file",
163 "SVDDigitizer parameters (in default system units, *=cannot be set directly):");
164 B2DEBUG(29,
" DATASTORE COLLECTIONS:");
177 B2DEBUG(29,
" PHYSICS: ");
179 B2DEBUG(29,
" NOISE: ");
180 B2DEBUG(29,
" --> Add Poisson noise " << (
m_applyPoisson ?
"true" :
"false"));
181 B2DEBUG(29,
" --> Zero suppression cut" <<
m_SNAdjacent);
182 B2DEBUG(29,
" --> Round ZS cut: " << (
m_roundZS ?
"true" :
"false"));
185 B2DEBUG(29,
" TIMING: ");
189 B2DEBUG(29,
" REPORTING: ");
201 " 'Diffusion' distance, u", 100, -200, 200);
207 "Lorentz angle, electrons", 100, -0.002, 0.002);
210 "Strip signals vs. TrueHits, holes", 100, -400, 400);
211 m_signalDist_u->GetXaxis()->SetTitle(
"U strip position - TrueHit u [um]");
213 "Strip signals vs. TrueHits, electrons", 100, -400, 400);
214 m_signalDist_v->GetXaxis()->SetTitle(
"V strip position - TrueHit v [um]");
235 30, -0.002, -0.0004);
249 200, -100, 100, 4, -0.5, 3.5);
254 m_waveTree =
new TTree(
"waveTree",
"SVD waveforms");
255 m_waveTree->Branch(
"sensor", &tree_vxdID,
"sensor/I");
256 m_waveTree->Branch(
"u_or_v", &tree_uv,
"u_or_v/I");
257 m_waveTree->Branch(
"strip", &tree_strip,
"strip/I");
258 m_waveTree->Branch(
"signal", tree_signal,
"signal[20]/D");
291 B2WARNING(
"No valid SVDFADCMaskedStrip for the requested IoV -> no strips masked");
293 B2WARNING(
"No valid channel mapping -> all APVs will be enabled");
303 SVDModeByte modeByte = storeSVDEvtInfo->getModeByte();
308 const double systemClockPeriod = 1. /
m_hwClock->getGlobalClockFrequency();
333 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
334 sensorWaveforms.second.first.clear();
335 sensorWaveforms.second.second.clear();
350 unsigned int nSimHits = storeSimHits.
getEntries();
356 for (
unsigned int i = 0; i < nSimHits; ++i) {
372 "Could not find MCParticle which produced SVDSimhit " << i);
378 if (trueRel && trueRel->
weight > 0) {
390 "Sensor Information for Sensor " << sensorID <<
" not found, make sure that the geometry is set up correctly");
397 "Sensor Parameters for Sensor " << sensorID <<
": " << endl
410 "Processing hit " << i <<
" in Sensor " << sensorID <<
", related to MCParticle " <<
m_currentParticle);
436 ROOT::Math::XYZVector direction = stopPoint - startPoint;
437 double trackLength = direction.R();
447 double lastFraction {0};
448 double lastElectrons {0};
450 for (
auto& segment : segments) {
453 const double f = (segment.first + lastFraction) / 2;
454 const double e = segment.second - lastElectrons;
456 std::tie(lastFraction, lastElectrons) = segment;
459 const ROOT::Math::XYZVector position = startPoint + f * direction;
460 driftCharge(position, e, SVD::SensorInfo::electron);
470 bool have_electrons = (carrierType == SVD::SensorInfo::electron);
472 string carrierName = (have_electrons) ?
"electron" :
"hole";
474 "Drifting " << carriers <<
" " << carrierName <<
"s at position (" << position.X() <<
", " << position.Y() <<
", " << position.Z()
476 B2DEBUG(29,
"@@@ driftCharge: drifting " << carriers <<
" " << carrierName <<
"s at position (" << position.X() <<
", " <<
477 position.Y() <<
", " << position.Z()
484 double distanceToPlane = (have_electrons) ?
493 ROOT::Math::XYZVector mean_pos(position.X(), position.Y(), position.Z() + 0.5 * distanceToPlane);
496 ROOT::Math::XYZVector v = info.getVelocity(carrierType, mean_pos);
500 double driftTime = distanceToPlane / v.Z();
504 ROOT::Math::XYZVector center = position + driftTime * v;
505 double mobility = (have_electrons) ?
506 info.getElectronMobility(info.getEField(mean_pos).R()) :
507 info.getHoleMobility(info.getEField(mean_pos).R());
513 double sigma = std::max(1.0e-4,
sqrt(2.0 * D * driftTime));
514 double tanLorentz = (!have_electrons) ? v.X() / v.Z() : v.Y() / v.Z();
517 B2DEBUG(29,
"D = " << D <<
", driftTime = " << driftTime /
Unit::ns <<
" ns");
518 B2DEBUG(29,
"sigma = " << sigma /
Unit::um <<
" um");
519 B2DEBUG(29,
"tan Lorentz = " << tanLorentz);
521 sigma *=
sqrt(1.0 + tanLorentz * tanLorentz);
526 int vID = info.getVCellID(center.Y(),
true);
527 int uID = info.getUCellID(center.X(), center.Y(),
true);
528 int seedStrip = (!have_electrons) ? uID : vID;
529 double seedPos = (!have_electrons) ?
530 info.getUCellPosition(seedStrip, vID) :
531 info.getVCellPosition(seedStrip);
532 double geomPitch = (!have_electrons) ? 0.5 * info.getUPitch(center.Y()) : 0.5 * info.getVPitch();
533 int nCells = (!have_electrons) ? info.getUCells() : info.getVCells();
534 std::deque<double> stripCharges;
535 std::deque<double> strips;
536#define NORMAL_CDF(z) 0.5 * std::erfc( - (z) * 0.707107)
537 double current_pos = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
538 double current_strip = seedStrip;
539 double cdf_low = NORMAL_CDF((current_pos - 0.5 * geomPitch) / sigma);
540 double cdf_high = NORMAL_CDF((current_pos + 0.5 * geomPitch) / sigma);
541 double charge = carriers * (cdf_high - cdf_low);
543 B2DEBUG(29,
"geomPitch = " << geomPitch /
Unit::um <<
" um");
544 B2DEBUG(29,
"charge = " << charge <<
" = " << carriers <<
"(carriers) * (" << cdf_high <<
"(cdf_high) - " << cdf_low <<
547 stripCharges.push_back(charge);
548 strips.push_back(current_strip);
549 while (cdf_low > 1.0e-5) {
550 current_pos -= geomPitch;
551 current_strip -= 0.5;
552 double cdf_current = NORMAL_CDF((current_pos - 0.5 * geomPitch) / sigma);
553 charge = carriers * (cdf_low - cdf_current);
554 stripCharges.push_front(charge);
555 strips.push_front(current_strip);
556 cdf_low = cdf_current;
558 current_pos = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
559 current_strip = seedStrip;
560 while (cdf_high < 1.0 - 1.0e-5) {
561 current_pos += geomPitch;
562 current_strip += 0.5;
563 double cdf_current = NORMAL_CDF((current_pos + 0.5 * geomPitch) / sigma);
564 charge = carriers * (cdf_current - cdf_high);
565 stripCharges.push_back(charge);
566 strips.push_back(current_strip);
567 cdf_high = cdf_current;
572 int npads = (strips.front() - floor(strips.front()) == 0) ? 5 : 4;
573 for (
int i = 0; i < npads; ++i) {
574 strips.push_front(strips.front() - 0.5);
575 stripCharges.push_front(0);
577 npads = (strips.back() - floor(strips.back()) == 0) ? 5 : 4;
578 for (
int i = 0; i < npads; ++i) {
579 strips.push_back(strips.back() + 0.5);
580 stripCharges.push_back(0);
583 B2DEBUG(29,
" --> charge sharing simulation, # strips = " << strips.size());
584 std::deque<double> readoutCharges;
585 std::deque<int> readoutStrips;
587 for (std::size_t index = 3; index < strips.size() - 3; index += 2) {
588 B2DEBUG(29,
" index = " << index <<
", strip = " << strips[index] <<
", stripCharge = " << stripCharges[index]);
589 int currentStrip =
static_cast<int>(strips[index]);
596 B2DEBUG(29,
" current strip = " << currentStrip);
597 B2DEBUG(29,
" index-3 = " << index - 3 <<
", strip = " << strips[index - 3] <<
", stripCharge = " << stripCharges[index - 3]);
598 B2DEBUG(29,
" index-2 = " << index - 2 <<
", strip = " << strips[index - 2] <<
", stripCharge = " << stripCharges[index - 2]);
599 B2DEBUG(29,
" index-1 = " << index - 1 <<
", strip = " << strips[index - 1] <<
", stripCharge = " << stripCharges[index - 1]);
600 B2DEBUG(29,
" index = " << index <<
", strip = " << strips[index] <<
", stripCharge = " << stripCharges[index]);
601 B2DEBUG(29,
" index+1 = " << index + 1 <<
", strip = " << strips[index + 1] <<
", stripCharge = " << stripCharges[index + 1]);
602 B2DEBUG(29,
" index+2 = " << index + 2 <<
", strip = " << strips[index + 2] <<
", stripCharge = " << stripCharges[index + 2]);
603 B2DEBUG(29,
" index+3 = " << index + 3 <<
", strip = " << strips[index + 3] <<
", stripCharge = " << stripCharges[index + 3]);
605 readoutCharges.push_back(c3 * stripCharges[index - 3]
606 + c2 * stripCharges[index - 2]
607 + c1 * stripCharges[index - 1]
608 + c0 * stripCharges[index]
609 + c1 * stripCharges[index + 1]
610 + c2 * stripCharges[index + 2]
611 + c3 * stripCharges[index + 3]
613 readoutStrips.push_back(currentStrip);
614 B2DEBUG(29,
" post simulation: " << index <<
", strip = " << currentStrip <<
", readoutCharge = " <<
615 readoutCharges[readoutCharges.size() - 1]);
619 while (readoutStrips.size() > 0 && readoutStrips.front() < 0) {
620 readoutStrips.pop_front();
621 tail += readoutCharges.front();
622 readoutCharges.pop_front();
624 readoutCharges.front() += tail;
626 while (readoutStrips.size() > 0 && readoutStrips.back() > nCells - 1) {
627 readoutStrips.pop_back();
628 tail += readoutCharges.back();
629 readoutCharges.pop_back();
631 readoutCharges.back() += tail;
634 for (
auto& c : readoutCharges)
635 c = (c <= 0) ? 0 : std::max(0.0, gRandom->Gaus(c, std::sqrt(info.c_fanoFactorSi * c)));
640 double d = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
641 for (std::size_t index = 0; index < readoutStrips.size(); ++ index) {
642 double dist = d + (readoutStrips[index] - seedStrip) * 2 * geomPitch;
643 histo->Fill(dist /
Unit::um, readoutCharges[index]);
649 SVDModeByte modeByte = storeSVDEvtInfo->getModeByte();
664 double recoveredCharge = 0;
665 for (std::size_t index = 0; index < readoutStrips.size(); index ++) {
668 waveforms[readoutStrips[index]].add(
m_currentTime + 0.5 * driftTime, readoutCharges[index],
672 waveforms[readoutStrips[index]].add(
m_currentTime + 0.5 * driftTime, apvCoupling * readoutCharges[index - 1],
675 if (index < readoutStrips.size() - 1)
676 waveforms[readoutStrips[index]].add(
m_currentTime + 0.5 * driftTime, apvCoupling * readoutCharges[index + 1],
678 recoveredCharge += readoutCharges[index];
679 B2DEBUG(29,
"strip: " << readoutStrips[index] <<
" charge: " << readoutCharges[index]);
681 B2DEBUG(29,
"Digitized " << recoveredCharge <<
" of " << carriers <<
" original carriers.");
686 charge += gRandom->Gaus(0., noise);
696 RelationArray relShaperDigitMCParticle(storeShaperDigits, storeMCParticles,
698 RelationArray relShaperDigitTrueHit(storeShaperDigits, storeTrueHits,
707 vector<pair<unsigned int, float> > digit_weights;
710 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
711 int sensorID = sensorWaveforms.first;
715 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
716 short int iStrip = stripWaveform.first;
719 vector<double> samples;
721 digit_weights.clear();
729 B2DEBUG(25,
"start sampling at " <<
m_initTime);
731 samples.push_back(
addNoise(electronWeight * s(t), elNoise));
742 std::transform(samples.begin(), samples.end(), rawSamples.begin(),
743 [&](
double x)->SVDShaperDigit::APVRawSampleType {
744 return SVDShaperDigit::trimToSampleRange(x * gain);
749 if (
m_roundZS) rawThreshold = round(rawThreshold);
750 auto n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
751 std::bind(std::greater<double>(), _1, rawThreshold)
759 if (!
m_map->isAPVinMap(sensorID,
true, iStrip))
continue;
770 n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
771 std::bind(std::greater<double>(), _1, rawThreshold)
778 int digIndex = storeShaperDigits.
getEntries();
779 storeShaperDigits.
appendNew(sensorID,
true, iStrip, rawSamples, 0);
782 if (particles.size() > 0) {
783 relShaperDigitMCParticle.
add(digIndex, particles.begin(), particles.end());
786 if (truehits.size() > 0) {
787 relShaperDigitTrueHit.
add(digIndex, truehits.begin(), truehits.end());
795 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
796 short int iStrip = stripWaveform.first;
799 vector<double> samples;
801 digit_weights.clear();
810 samples.push_back(
addNoise(electronWeight * s(t), elNoise));
820 std::transform(samples.begin(), samples.end(), rawSamples.begin(),
821 [&](
double x)->SVDShaperDigit::APVRawSampleType {
822 return SVDShaperDigit::trimToSampleRange(x * gain);
827 if (
m_roundZS) rawThreshold = round(rawThreshold);
828 auto n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
829 std::bind(std::greater<double>(), _1, rawThreshold)
837 if (!
m_map->isAPVinMap(sensorID,
false, iStrip))
continue;
848 n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
849 std::bind(std::greater<double>(), _1, rawThreshold)
855 int digIndex = storeShaperDigits.
getEntries();
856 storeShaperDigits.
appendNew(sensorID,
false, iStrip, rawSamples, 0);
859 if (particles.size() > 0) {
860 relShaperDigitMCParticle.
add(digIndex, particles.begin(), particles.end());
863 if (truehits.size() > 0) {
864 relShaperDigitTrueHit.
add(digIndex, truehits.begin(), truehits.end());
872 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
873 tree_vxdID = sensorWaveforms.first;
878 double thresholdU = 3.0 * info.getElectronicNoiseU();
879 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
880 tree_strip = stripWaveform.first;
883 if (s.getCharge() < thresholdU)
885 for (
int iTime = 0; iTime < 20; ++iTime) {
886 tree_signal[iTime] = s(10 * iTime);
892 double thresholdV = 3.0 * info.getElectronicNoiseV();
893 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
894 tree_strip = stripWaveform.first;
897 if (s.getCharge() < thresholdV)
899 for (
int iTime = 0; iTime < 20; ++iTime) {
900 tree_signal[iTime] = s(10. * iTime);
910 static size_t recordNo = 0;
911 static const string header(
"Event\tSensor\tSide\tStrip\tContrib\tTime\tCharge\tTau");
912 regex startLine(
"^|\n");
914 if (recordNo == 0) outfile << header << endl;
915 for (Waveforms::value_type& sensorWaveforms :
m_waveforms) {
916 VxdID sensorID(sensorWaveforms.first);
921 double thresholdU = 3.0 * info.getElectronicNoiseU();
922 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
923 size_t strip = stripWaveform.first;
926 if (s.getCharge() < thresholdU)
929 ostringstream preamble;
931 preamble <<
"$&" << recordNo <<
'\t' << sensorID <<
'\t' << isU <<
'\t' << strip <<
'\t';
932 string signalString = s.toString();
933 signalString.pop_back();
934 string tableString = regex_replace(signalString, startLine, preamble.str());
935 outfile << tableString << endl;
939 double thresholdV = 3.0 * info.getElectronicNoiseV();
940 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
941 size_t strip = stripWaveform.first;
944 if (s.getCharge() < thresholdV)
947 ostringstream preamble;
949 preamble <<
"$&" << recordNo <<
'\t' << sensorID <<
'\t' << isU <<
'\t' << strip <<
'\t';
950 string signalString = s.toString();
951 signalString.pop_back();
952 string tableString = regex_replace(signalString, startLine, preamble.str());
953 outfile << tableString << endl;
970 int nTriggerClocks = triggerBin + relativeShift;
971 return floor(nTriggerClocks / 4);
int getPDGCode() const
PDG code.
static const double kBoltzmann
Boltzmann constant in GeV/K.
static const ParticleType photon
photon particle
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
static std::string relationName(const std::string &fromName, const std::string &toName, std::string const &namedRelation="")
Return storage name for a relation between two arrays of the given names.
void setDescription(const std::string &description)
Sets the description of the module.
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
std::string getFileName() const
Get the name of the downloaded payload file.
Low-level class to create/modify relations between StoreArrays.
void add(index_type from, index_type to, weight_type weight=1.0)
Add a new element to the relation.
Provides access to fast ( O(log n) ) bi-directional lookups on a specified relation.
const Element * getFirstElementTo(const TO &to) const
Return a pointer to the first relation Element of the given object.
float getCouplingConstant(const VxdID &sensorID, const bool &isU, const std::string &couplingName) const
Return coupling constant.
float getElectronWeight(const VxdID &sensorID, const bool &isU) const
Return Geant4 electron weight.
float isMasked(const VxdID &sensorID, const bool &isU, const unsigned short &strip) const
This is the method for getting the comprehensive list of masked strips at FADC level.
bool isValid()
returns true if the m_aDBObtPtr is valid in the requested IoV
Class to store SVD mode information.
baseType getTriggerBin() const
Get the triggerBin id.
float getNoiseInElectrons(const VxdID &sensorID, const bool &isU, const unsigned short &strip) const
This method provides the correct noise conversion into electrons, taking into account that the noise ...
double getChargeFromADC(const Belle2::VxdID &sensorID, const bool &isU, const unsigned short &strip, const double &pulseADC) const
Return the charge (number of electrons/holes) collected on a specific strip, given the number of ADC ...
static void setAPVMode(size_t mode, size_t firstSample)
set APV mode for the event
static const std::size_t c_nAPVSamples
Number of APV samples stored.
std::array< APVRawSampleType, c_nAPVSamples > APVRawSamples
array of APVRawSamplesType objects
double m_startSampling
Time window start, excluding trigger bin effect.
TH1D * m_histHitTime
Histogram showing the hit time.
TH1D * m_histDistanceToPlane_e
Histogram showing the distance to plane for e.
TH1D * m_histChargeSharing_u
Histogram showing the charge sharing + diffusion in u (r-phi).
double m_sensorThickness
Thickness of current sensor (read from m_currentSensorInfo)
void processHit()
Process one SVDSimHit by dividing the step in smaller steps and drifting the charge.
TH1D * m_histVelocity_h
Histogram showing the velocity of h.
SVDFADCMaskedStrips m_MaskedStr
FADC masked strip payload.
TH1D * m_histVelocity_e
Histogram showing the velocity of e-.
Waveforms m_waveforms
Structure containing waveforms in all existing sensors.
SVDDigitizerModule()
Constructor.
double m_samplingTime
Interval between two waveform samples, by default taken from HardwareClockSettings.
std::string m_relTrueHitSimHitName
Name of the relation between SVDTrueHits and SVDSimHits.
TH1D * m_histLorentz_v
Histogram showing the Lorentz angles in v (z).
void saveDigits()
Save digits to the DataStore Saves samples of generated waveforms.
bool m_randomizeEventTimes
Randomize event times? If set to true, event times will be randomized uniformly from m_minTimeFrame t...
int getFirstSample(int triggerBin, int relativShift)
return the starting sample
int m_startingSample
Starting sample for the selection of 3 samples in 3-mixed-6.
int m_currentParticle
Index of the particle which caused the current hit.
std::string m_relShaperDigitMCParticleName
Name of the relation between SVDShaperDigits and MCParticles.
int m_nSamplesOverZS
Keep digit if at least m_nSamplesOverZS are over threshold.
TH1D * m_histChargeSharing_v
Histogram showing the charge sharing + diffusion in v (z).
TH1D * m_histMobility_h
Histogram showing the mobility of h.
virtual void initialize() override
Initialize the module and check module parameters.
bool m_roundZS
Round ZS cut to nearest ADU.
std::string m_storeShaperDigitsName
Name of the collection for the SVDShaperDigits.
virtual void event() override
Digitize one event.
bool m_is3sampleEvent
True if the event should be simulated with 3 sample.
double m_SNAdjacent
Zero-suppression cut.
double m_currentTime
Time of the current SimHit.
TFile * m_rootFile
Pointer to the ROOT filename for statistics.
SVDNoiseCalibrations m_NoiseCal
SVDNoise calibrations db object.
SensorWaveforms * m_currentSensorWaveforms
Pointer to the sensor in which the current hit occurred.
std::string m_storeTrueHitsName
Name of the collection for the SVDTrueHits.
TH1D * m_signalDist_u
Histogram showing the distribution of digit signals in u (r-phi).
DBObjPtr< PayloadFile > m_mapping
channel mapping payload
virtual void terminate() override
Terminate the module.
void saveSignals()
Save signals to a root-delimited file (to be analyzed in Python).
std::string m_storeMCParticlesName
Name of the collection for the MCParticles.
TH1D * m_signalDist_v
Histogram showing the distribution of digit signals in v (z).
double m_noiseFraction
(derived from SNAdjacent) Fraction of noisy strips per sensor.
static std::string m_xmlFileName
< channel mapping xml filename
double m_betaPrimeDecayTimeU
Decay time of betaprime waveform U-side.
SVDPulseShapeCalibrations m_PulseShapeCal
SVDPulseShapeCalibrations calibrations db object.
TH1D * m_histMobility_e
Histogram showing the mobility of e-.
std::string m_relShaperDigitTrueHitName
Name of the relation between SVDShaperDigits and SVDTrueHits.
SVDChargeSimulationCalibrations m_ChargeSimCal
SVDChargeSimulationCalibrations calibrations db object.
int m_nAPV25Samples
number of digitized samples read from SVDEventInfo
TTree * m_waveTree
Tree for waveform storage.
bool m_applyPoisson
Whether or not to apply poisson fluctuation of charge (Fano factor)
virtual void beginRun() override
Initialize the list of existing SVD Sensors.
TH1D * m_histDistanceToPlane_h
Histogram showing the distance to plane for h.
TH1D * m_histDriftTime_e
Histogram showing the drift time of e.
DBObjPtr< HardwareClockSettings > m_hwClock
Hardware Clocks.
std::string m_svdEventInfoName
Name of the SVDEventInfo object.
std::string m_signalsList
Name of the tab-delimited listing of waveforms.
double addNoise(double charge, double noise)
Calculate the noise contribution to one strip with given charge.
const SensorInfo * m_currentSensorInfo
Pointer to the SensorInfo of the current sensor.
TH1D * m_histLorentz_u
Histogram showing the Lorentz angles in u (r-phi).
int m_relativeShift
relative shift in SVDEventInfo obj
TH2F * m_histHitTimeTB
Histogram showing the hit time vs TB.
bool m_storeWaveforms
Store waveform data in the reporting file?
void driftCharge(const ROOT::Math::XYZVector &position, double carriers, SVD::SensorInfo::CarrierType carrierType)
Drift the charge inside the silicon.
void saveWaveforms()
Save waveforms to the statistics file.
std::unique_ptr< SVDOnlineToOfflineMap > m_map
channel mapping map
float m_maxTimeFrame
High edge of randomization time frame.
TH1D * m_histDriftTime_h
Histogram showing the drift time of h.
double m_initTime
Time window start, including the triggerBin effect.
int m_currentTrueHit
Index of the TrueHit the current hit belongs to.
float m_minTimeFrame
Low edge of randomization time frame.
const SVDSimHit * m_currentHit
Pointer to the SVDSimhit currently digitized.
std::string m_relMCParticleSimHitName
Name of the relation between MCParticles and SVDSimHits.
double m_betaPrimeDecayTimeV
Decay time of betaprime waveform V-side.
double m_segmentLength
Max.
std::string m_rootFilename
Name of the ROOT filename to output statistics.
std::string m_storeSimHitsName
Name of the collection for the SVDSimhits.
float m_currentEventTime
Current event time.
Specific implementation of SensorInfo for SVD Sensors which provides additional sensor specific infor...
CarrierType
Enum to flag charge carriers.
double getBiasVoltage() const
Return the bias voltage on the sensor.
double getDepletionVoltage() const
Return the depletion voltage of the sensor.
virtual unsigned short getBackgroundTag() const
Get background tag.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Accessor to arrays stored in the data store.
T * appendNew()
Construct a new T object at the end of the array.
int getEntries() const
Get the number of objects in the array.
bool registerRelationTo(const StoreArray< TO > &toArray, DataStore::EDurability durability=DataStore::c_Event, DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut, const std::string &namedRelation="") const
Register a relation to the given StoreArray.
Type-safe access to single objects in the data store.
static const double mm
[millimeters]
static const double e
Standard of [electric charge].
static const double um
[micrometers]
static const double ns
Standard of [time].
float getGlobalTime() const override
Return the time of the electron deposition.
int getPDGcode() const
Return the PDG code of the particle causing the electron deposition.
ROOT::Math::XYZVector getPosOut() const
Return the end point of the electron deposition in local coordinates.
std::vector< std::pair< float, float > > getElectronsConstantDistance(double length) const
Get the electron deposition along constant stepsize.
float getElectrons() const
Return the number of created electrons.
ROOT::Math::XYZVector getPosIn() const
Return the start point of the electron deposition in local coordinates.
VxdID getSensorID() const
Return the sensorID of the sensor the electron was deposited in.
Class to faciliate easy access to sensor information of the VXD like coordinate transformations or pi...
const std::set< Belle2::VxdID > getLayers(SensorInfoBase::SensorType sensortype=SensorInfoBase::VXD)
Return a set of all known Layers.
const SensorInfoBase & getSensorInfo(Belle2::VxdID id) const
Return a referecne to the SensorInfo of a given SensorID.
const std::set< Belle2::VxdID > & getSensors(Belle2::VxdID ladder) const
Return a set of all sensor IDs belonging to a given ladder.
static GeoCache & getInstance()
Return a reference to the singleton instance.
const std::set< Belle2::VxdID > & getLadders(Belle2::VxdID layer) const
Return a set of all ladder IDs belonging to a given layer.
double getUPitch(double v=0) const
Return the pitch of the sensor.
double getWidth(double v=0) const
Return the width of the sensor.
VxdID getID() const
Return the ID of the Sensor.
double getVPitch(double v=0) const
Return the pitch of the sensor.
double getThickness() const
Return the thickness of the sensor.
double getLength() const
Return the length of the sensor.
Class to uniquely identify a any structure of the PXD and SVD.
void addParam(const std::string &name, T ¶mVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
double sqrt(double a)
sqrt for double
Namespace to encapsulate code needed for simulation and reconstrucion of the SVD.
double w_adjacentU(double t)
Adjacent-channel waveform U-side.
double w_betaprime(double t)
Beta-prime waveform shape, x^alpha/(1+x)^beta.
std::pair< StripWaveforms, StripWaveforms > SensorWaveforms
Waveforms of u- and v- channels in one sensor.
std::function< double(double)> WaveformShape
WaveformShape type.
double w_adjacentV(double t)
Adjacent-channel waveform V-side.
std::map< short int, SVDWaveform > StripWaveforms
Map of all channels' waveforms in one sensor side.
Abstract base class for different kinds of events.
Element type for the index.
RelationElement::index_type indexFrom
index of the element from which the relation points.
RelationElement::weight_type weight
weight of the relation.