Belle II Software development
CDCDedxHadBGAlgorithm Class Reference

A calibration algorithm for beta gamma curve and resolution fitting and save payloads. More...

#include <CDCDedxHadBGAlgorithm.h>

Inheritance diagram for CDCDedxHadBGAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 CDCDedxHadBGAlgorithm ()
 Constructor: Sets the description, the properties and the parameters of the algorithm.
 
virtual ~CDCDedxHadBGAlgorithm ()
 Destructor.
 
void setMonitoringPlots (bool value)
 function to enable monitoring plots
 
void setNumIterations (int value)
 function to set number of iteration
 
void setProtonCut (double value)
 function to set the cut to clean protons
 
void setBGPars (const std::string &particle, double nbin, double min, double max)
 function to set beta gamma parameters for particle
 
void setInjectionPars (const std::string &particle, double nbin, double min, double max)
 function to set inection time parameters for particle
 
void setCosBin (const std::string &particle, double nbin)
 function to set cosine bins for particle
 
void setCosPars (double min, double max)
 function to set cos parameters for particle
 
void getExpRunInfo ()
 function to get exp/run information (payload object, plotting)
 
void createPayload ()
 function to store payloads after full calibration
 
void SigmaFits (std::vector< std::string > particles, const std::string &sfx, const std::string &svar)
 function to do the sigma vs nhit or cos fits and store parameters
 
void prepareSample (std::vector< std::string > particles, const std::string &filename, const std::string &sfx)
 function to prepare sample for bgcurve fitting, sigma vs ionzation fitting and monitoring plots
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

virtual EResult calibrate () override
 CDC dE/dx Beta Gamma curve and resolution algorithm.
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::map< std::string, std::array< double, 3 > > m_bgpar
 bg bins, min, max for different particles
 
std::map< std::string, std::array< double, 3 > > m_injpar
 injection time bins, min, max for different particles
 
std::map< std::string, double > m_cospar
 cos bins for different particles
 
double m_cosMin = -0.84
 min range of cosine
 
double m_cosMax = 0.96
 max range of cosine
 
int m_nhitBins = 10
 bins for nhits
 
double m_nhitMin = 7
 min range of nhits
 
double m_nhitMax = 39
 max range of nhits
 
double m_cut = 0.5
 cut to clean protons
 
bool m_ismakePlots
 produce plots for monitoring
 
std::string m_bgsigma
 string for sigma parameter file names
 
std::string m_bgcurve
 string for mean parameter file names
 
std::string m_suffix
 string suffix for object names
 
int m_iter = 5
 set number of iteration
 
DBObjPtr< CDCDedxMeanParsm_DBMeanPars
 db object for dE/dx mean parameters
 
DBObjPtr< CDCDedxSigmaParsm_DBSigmaPars
 db object for dE/dx resolution parameters
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

A calibration algorithm for beta gamma curve and resolution fitting and save payloads.

Definition at line 39 of file CDCDedxHadBGAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ CDCDedxHadBGAlgorithm()

Constructor: Sets the description, the properties and the parameters of the algorithm.

Definition at line 16 of file CDCDedxHadBGAlgorithm.cc.

16 :
17 CalibrationAlgorithm("CDCDedxHadronCollector"),
18 m_ismakePlots(true),
19 m_suffix("")
20{
21 // Set module properties
22 setDescription("A calibration algorithm for CDC dE/dx hadron Beta Gamma curve and resolution fitting");
23}
bool m_ismakePlots
produce plots for monitoring
std::string m_suffix
string suffix for object names
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)

◆ ~CDCDedxHadBGAlgorithm()

virtual ~CDCDedxHadBGAlgorithm ( )
inlinevirtual

Destructor.

Definition at line 51 of file CDCDedxHadBGAlgorithm.h.

51{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

CDC dE/dx Beta Gamma curve and resolution algorithm.

Implements CalibrationAlgorithm.

Definition at line 28 of file CDCDedxHadBGAlgorithm.cc.

29{
30
31 gROOT->SetBatch();
33
34 //existing hadron bg mean and reso payload for merging
35 if (!m_DBMeanPars.isValid() || !m_DBSigmaPars.isValid())
36 B2FATAL("There is no valid payload for Beta-Gamma saturation");
37
38 // particle list
39 std::vector< std::string > particles = {"muon", "kaon", "proton", "pion", "electron"};
40
41 // check we have enough data
42 for (int i = 0; i < int(particles.size()); i++) {
43 std::string p = particles[i];
44 auto tree = getObjectPtr<TTree>(Form("%s", p.data()));
45 if (!tree) return c_NotEnoughData;
46 }
47
48 gSystem->Exec("mkdir -p plots/HadronPrep");
49 gSystem->Exec("mkdir -p plots/HadronCal/BGfits");
50 gSystem->Exec("mkdir -p plots/HadronCal/Resofits");
51 gSystem->Exec("mkdir -p plots/HadronCal/Monitoring");
52
53 // Write beta-gamma curve mean and resolution parameters in text file
55 mg.setParameters();
56 mg.printParameters("parameters.inital.curve");
57
59 sg.setParameters();
60 sg.printParameters("parameters.inital.sigma");
61
62 m_bgcurve = "parameters.inital.curve";
63 m_bgsigma = "parameters.inital.sigma";
64
65 HadronCalibration hadcal;
66 std::string filename = " ";
67
68 for (int iter = 0; iter < m_iter; ++iter) {
69
70 std::string sfx = Form("%s_iter%d", m_suffix.data(), iter);
71 filename = Form("widget_corrected_NewHSpars_1D_%s.root", sfx.data());
72
73 // prepare sample to perform bg curve fittting and draw the monitoring plots
74 prepareSample(particles, filename, sfx);
75
76 // create the HadronCalibration object and fit the prepared samples
77 hadcal.plotBGMonitoring(particles, filename, sfx);
78
79 //bg fit
80 hadcal.fitBGCurve(particles, filename, m_bgcurve, sfx);
81 m_bgcurve = "parameters.bgcurve.fit";
82
83 //dedx reso vs ionz fit
84 hadcal.fitSigmavsIonz(particles, filename, m_bgsigma, sfx);
85 m_bgsigma = "parameters.ionz.fit";
86
87 //dedx reso vs nHits fit
88 SigmaFits(particles, sfx, "nhit");
89 m_bgsigma = "parameters.sigmanhit.fit";
90
91 //dedx reso vs costh fit
92 SigmaFits(particles, sfx, "costh");
93 m_bgsigma = "parameters.sigmacos.fit";
94
95 }
96
97 filename = Form("widget_corrected_NewHSpars_1D_%s_final.root", m_suffix.data());
98 prepareSample(particles, filename, Form("%s_final", m_suffix.data()));
99 hadcal.plotBGMonitoring(particles, filename, Form("%s_final", m_suffix.data()));
100
101 B2INFO("Saving calibration for: " << m_suffix << "");
103
104 return c_OK;
105}
void SigmaFits(std::vector< std::string > particles, const std::string &sfx, const std::string &svar)
function to do the sigma vs nhit or cos fits and store parameters
DBObjPtr< CDCDedxMeanPars > m_DBMeanPars
db object for dE/dx mean parameters
void getExpRunInfo()
function to get exp/run information (payload object, plotting)
std::string m_bgcurve
string for mean parameter file names
int m_iter
set number of iteration
DBObjPtr< CDCDedxSigmaPars > m_DBSigmaPars
db object for dE/dx resolution parameters
std::string m_bgsigma
string for sigma parameter file names
void createPayload()
function to store payloads after full calibration
void prepareSample(std::vector< std::string > particles, const std::string &filename, const std::string &sfx)
function to prepare sample for bgcurve fitting, sigma vs ionzation fitting and monitoring plots
Class to hold the prediction of mean as a function of beta-gamma (bg)
void printParameters(std::string infile)
write the parameters in file
void setParameters(std::string infile)
set the parameters from file
Class to hold the prediction of resolution depending dE/dx, nhit, and cos(theta)
void printParameters(std::string infile)
write the parameters in file
void setParameters(std::string infile)
set the parameters from file
Class to perform the fitting in beta gamma bins.
void fitBGCurve(std::vector< std::string > particles, const std::string &filename, const std::string &paramfile, const std::string &suffx)
fit the beta-gamma curve
void plotBGMonitoring(std::vector< std::string > particles, const std::string &filename, const std::string &suffix)
plots mean and width after fitting
void fitSigmavsIonz(std::vector< std::string > particles, const std::string &filename, const std::string &paramfile, const std::string &suffix)
fit sigma vs.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:41
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:140

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ createPayload()

void createPayload ( )

function to store payloads after full calibration

Definition at line 128 of file CDCDedxHadBGAlgorithm.cc.

129{
130
131 std::ifstream fins("parameters.sigmacos.fit"), fin("parameters.bgcurve.fit");
132
133 if (!fin.good()) B2FATAL("\t WARNING: CANNOT FIND parameters.bgcurve.fit!");
134 if (!fins.good()) B2FATAL("\tWARNING: CANNOT FIND parameters.sigmacos.fit!");
135
136 int par;
137 double meanpars, sigmapars;
138 std::vector<double> v_meanpars, v_sigmapars;
139
140 B2INFO("\t --> Curve parameters");
141 for (int i = 0; i < 15; ++i) {
142 fin >> par >> meanpars;
143 v_meanpars.push_back(meanpars);
144 B2INFO("\t\t (" << i << ")" << v_meanpars[i]);
145 }
146
147 fin.close();
148
149 B2INFO("\t --> Sigma parameters");
150 for (int i = 0; i < 17; ++i) {
151 fins >> par >> sigmapars;
152 v_sigmapars.push_back(sigmapars);
153 B2INFO("\t\t (" << i << ")" << v_sigmapars[i]);
154 }
155 fins.close();
156
157 B2INFO("dE/dx Calibration done for " << v_meanpars.size() << " CDC Beta Gamma curve");
158 CDCDedxMeanPars* gains = new CDCDedxMeanPars(0, v_meanpars);
159 saveCalibration(gains, "CDCDedxMeanPars");
160
161
162 B2INFO("dE/dx Calibration done for " << v_sigmapars.size() << " CDC Beta Gamma resolution");
163 CDCDedxSigmaPars* sgains = new CDCDedxSigmaPars(0, v_sigmapars);
164 saveCalibration(sgains, "CDCDedxSigmaPars");
165}
dE/dx mean (curve versus beta-gamma) parameterization constants
dE/dx sigma (versus beta-gamma) parameterization constants
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunInfo()

void getExpRunInfo ( )

function to get exp/run information (payload object, plotting)

Definition at line 109 of file CDCDedxHadBGAlgorithm.cc.

110{
111 int cruns = 0;
112 for (auto expRun : getRunList()) {
113 if (cruns == 0)B2INFO("CDCDedxHadBGAlgorithm: start exp " << expRun.first << " and run " << expRun.second << "");
114 cruns++;
115 }
116
117 const auto erStart = getRunList()[0];
118 int estart = erStart.first;
119 int rstart = erStart.second;
120
121 updateDBObjPtrs(1, erStart.second, erStart.first);
122
123 m_suffix = Form("e%dr%d", estart, rstart);
124 B2INFO("tool exp = " << estart << ", run = " << rstart << ", m_suffix = " << m_suffix << "");
125}
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ prepareSample()

void prepareSample ( std::vector< std::string >  particles,
const std::string &  filename,
const std::string &  sfx 
)

function to prepare sample for bgcurve fitting, sigma vs ionzation fitting and monitoring plots

Definition at line 167 of file CDCDedxHadBGAlgorithm.cc.

168{
169
170 TFile* outfile = new TFile(filename.data(), "RECREATE");
171
172 for (int i = 0; i < int(particles.size()); ++i) {
173
174 std::string p = particles[i];
175 auto tree = getObjectPtr<TTree>(Form("%s", p.data()));
176
177 HadronBgPrep prep(m_bgpar[p][0], m_bgpar[p][1], m_bgpar[p][2], 8, -1.0, 1.0, m_injpar[p][0], m_injpar[p][1],
179
180 prep.prepareSample(tree, outfile, sfx, m_bgcurve, m_bgsigma, p, m_ismakePlots);
181 }
182 outfile->Close();
183
184}
std::map< std::string, std::array< double, 3 > > m_bgpar
bg bins, min, max for different particles
double m_nhitMax
max range of nhits
double m_cut
cut to clean protons
double m_nhitMin
min range of nhits
std::map< std::string, std::array< double, 3 > > m_injpar
injection time bins, min, max for different particles
Class to prepare sample for fitting in beta gamma bins.
Definition: HadronBgPrep.h:43

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:150

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setBGPars()

void setBGPars ( const std::string &  particle,
double  nbin,
double  min,
double  max 
)
inline

function to set beta gamma parameters for particle

Definition at line 71 of file CDCDedxHadBGAlgorithm.h.

72 {
73 m_bgpar[particle][0] = nbin;
74 m_bgpar[particle][1] = min;
75 m_bgpar[particle][2] = max;
76 }

◆ setCosBin()

void setCosBin ( const std::string &  particle,
double  nbin 
)
inline

function to set cosine bins for particle

Definition at line 91 of file CDCDedxHadBGAlgorithm.h.

91{ m_cospar[particle] = nbin; }
std::map< std::string, double > m_cospar
cos bins for different particles

◆ setCosPars()

void setCosPars ( double  min,
double  max 
)
inline

function to set cos parameters for particle

Definition at line 96 of file CDCDedxHadBGAlgorithm.h.

96{ m_cosMin = min; m_cosMax = max; }
double m_cosMax
max range of cosine
double m_cosMin
min range of cosine

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setInjectionPars()

void setInjectionPars ( const std::string &  particle,
double  nbin,
double  min,
double  max 
)
inline

function to set inection time parameters for particle

Definition at line 81 of file CDCDedxHadBGAlgorithm.h.

82 {
83 m_injpar[particle][0] = nbin;
84 m_injpar[particle][1] = min;
85 m_injpar[particle][2] = max;
86 }

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setMonitoringPlots()

void setMonitoringPlots ( bool  value)
inline

function to enable monitoring plots

Definition at line 56 of file CDCDedxHadBGAlgorithm.h.

56{m_ismakePlots = value;}

◆ setNumIterations()

void setNumIterations ( int  value)
inline

function to set number of iteration

Definition at line 61 of file CDCDedxHadBGAlgorithm.h.

61{m_iter = value;}

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ setProtonCut()

void setProtonCut ( double  value)
inline

function to set the cut to clean protons

Definition at line 66 of file CDCDedxHadBGAlgorithm.h.

66{m_cut = value;}

◆ SigmaFits()

void SigmaFits ( std::vector< std::string >  particles,
const std::string &  sfx,
const std::string &  svar 
)

function to do the sigma vs nhit or cos fits and store parameters

Definition at line 186 of file CDCDedxHadBGAlgorithm.cc.

187{
188 // only the muon samples are used for the sigma fits
189 HadronCalibration hadcal;
190
191 std::string filename = Form("widget_%s_1D_%s.root", svar.data(), sfx.data());
192
193 TFile* outfile = new TFile(filename.data(), "RECREATE");
194 outfile->cd();
195
196 for (int ip = 0; ip < int(particles.size()); ++ip) {
197
198 std::string particle = particles[ip];
199 auto hadron = getObjectPtr<TTree>(Form("%s", particle.data()));
200
201 HadronBgPrep prep(m_bgpar[particle][0], m_bgpar[particle][1], m_bgpar[particle][2], m_cospar[particle], m_cosMin, m_cosMax,
202 m_injpar[particle][0],
203 m_injpar[particle][1], m_injpar[particle][2], m_nhitBins, m_nhitMin, m_nhitMax, m_cut);
204
205 double mass = prep.getParticleMass(particle);
206 if (mass == 0.0) B2FATAL("Mass of particle " << particle.data() << " is zero");
207 // --------------------------------------------------
208 // INITIALIZE CONTAINERS
209 // --------------------------------------------------
210 double dedxnosat; // dE/dx without hadron saturation correction
211 double p; // track momentum
212 double costh; // cosine of track polar angle
213 double timereso;
214 int nhits; // number of hits on this track
215
216 hadron->SetBranchAddress("dedxnosat", &dedxnosat);
217 hadron->SetBranchAddress("p", &p);
218 hadron->SetBranchAddress("costh", &costh);
219 hadron->SetBranchAddress("timereso", &timereso);
220 hadron->SetBranchAddress("nhits", &nhits);
221
222 int nbins = m_nhitBins;
223 double lower = m_nhitMin;
224 double upper = m_nhitMax;
225 double nstep = (upper - lower + 1) / nbins;
226
227 if (svar == "costh") {
228 nbins = m_cospar[particle];
229 lower = m_cosMin, upper = m_cosMax;
230 nstep = (upper - lower) / nbins;
231 }
232
233 // Create the histograms to be fit
234 std::vector<TH1F*> hdedx_var;
235
236 //define histograms
237 prep.defineHisto(hdedx_var, "chi", svar, particle.data());
238
239 // Create some containers to calculate averages
240 std::vector<double> sumvar(nbins);
241 std::vector<int> sumsize(nbins);
242 for (int i = 0; i < nbins; ++i) {
243 sumvar[i] = 0;
244 sumsize[i] = 0;
245 }
246
247 // get the hadron saturation parameters
248 CDCDedxMeanPred mgpar;
249 CDCDedxSigmaPred sgpar;
250
251 mgpar.setParameters(m_bgcurve.data());
252 sgpar.setParameters(m_bgsigma.data());
253
254 CDCDedxHadSat had;
255 had.setParameters("sat-pars.fit.txt");
256 // --------------------------------------------------
257 // LOOP OVER EVENTS AND FILL CONTAINERS
258 // --------------------------------------------------
259 // Fill the histograms to be fitted
260
261 for (unsigned int index = 0; index < hadron->GetEntries(); ++index) {
262
263 hadron->GetEvent(index);
264 double bg; // track beta-gamma
265 bg = fabs(p) / mass;
266
267 if (fabs(p) > 8.0)continue; //unphysical tracks
268
269 // clean up bad events and restrict the momentum range
270 if (svar == "nhit") {if (nhits < lower || nhits > upper) continue;}
271 else if (svar == "costh") {if (costh > upper || costh < lower)continue;}
272
273 if (dedxnosat <= 0)continue;
274 if (costh != costh)continue;
275
276 if (particle == "proton") {if ((dedxnosat - 0.45)*abs(p)*abs(p) < m_cut) continue;}
277
278 if (particle == "electron" || particle == "muon") {if (fabs(p) > 2.0) continue;}
279
280 double dedx_new = had.D2I(costh, had.I2D(costh, 1.0) * dedxnosat);
281
282 double dedx_cur = mgpar.getMean(bg);
283
284 if (svar == "nhit") {
285 double res_cor = sgpar.cosPrediction(costh) * sgpar.ionzPrediction(dedx_cur) * timereso;
286 int nhitBin = (int)((fabs(nhits) - lower) / nstep);
287 if (res_cor != 0) hdedx_var[nhitBin]->Fill((dedx_new - dedx_cur) / res_cor);
288 sumvar[nhitBin] += nhits;
289 sumsize[nhitBin] += 1;
290 } else if (svar == "costh") {
291
292 double res_cor = sgpar.nhitPrediction(nhits) * sgpar.ionzPrediction(dedx_cur) * timereso;
293 int cosBin = (int)((costh - lower) / (upper - lower) * nbins);
294
295 if (res_cor != 0) hdedx_var[cosBin]->Fill((dedx_new - dedx_cur) / res_cor);
296
297 sumvar[cosBin] += costh;
298 sumsize[cosBin] += 1;
299 }
300 }// end of event loop
301
302 // --------------------------------------------------
303 // FIT IN BINS OF NHIT
304 // --------------------------------------------------
305 // fit the histograms with Gaussian functions
306 // and extract the means and errors
307
308
309 TTree* tTree = new TTree(Form("%s_%s", particle.data(), svar.data()), "chi m_means and m_errors");
310 double avg, mean, mean_err, sigma, sigma_err;
311
312 tTree->Branch("avg", &avg, "avg/D");
313 tTree->Branch("chimean", &mean, "chimean/D");
314 tTree->Branch("chimean_err", &mean_err, "chimean_err/D");
315 tTree->Branch("chisigma", &sigma, "chisigma/D");
316 tTree->Branch("chisigma_err", &sigma_err, "chisigma_err/D");
317
318 double avg_sigma = 0.0;
319 std::vector<double> var(nbins), varres(nbins), varreserr(nbins);
320
321 int count_bins = 0;
322 for (int i = 0; i < nbins; ++i) {
323
324 varres[i] = 0.0;
325 varreserr[i] = 0.0;
326 var[i] = sumvar[i] / sumsize[i];
327
328 // fit the dE/dx distribution in bins of injection time'
329 if (hdedx_var[i]->Integral() > 100) {
330 prep.fit(hdedx_var[i], particle.data());
331 varres[i] = hdedx_var[i]->GetFunction("gaus")->GetParameter(2);;
332 varreserr[i] = hdedx_var[i]->GetFunction("gaus")->GetParError(2);
333 count_bins++;
334 avg_sigma += varres[i];
335
336 }
337 }
338 if (count_bins > 0) avg_sigma = avg_sigma / count_bins;
339 for (int i = 0; i < nbins; ++i) {
340
341 if (avg_sigma > 0) {
342 sigma = varres[i] = varres[i] / avg_sigma;
343 sigma_err = varreserr[i] = varreserr[i] / avg_sigma;
344 }
345 mean = hdedx_var[i]->GetFunction("gaus")->GetParameter(1);
346 mean_err = hdedx_var[i]->GetFunction("gaus")->GetParError(1);
347 avg = var[i];
348 tTree->Fill();
349 }
350
351 tTree->Write();
352
353 prep.plotDist(hdedx_var, Form("fits_chi_%s_%s_%s", svar.data(), sfx.data(), particle.data()), nbins);
354
355 prep.deleteHistos(hdedx_var);
356 }
357 outfile->Close();
358
359 if (svar == "costh") hadcal.fitSigmaVsCos(particles, filename, m_bgsigma, sfx);
360 else hadcal.fitSigmaVsNHit(particles, filename, m_bgsigma, sfx);
361
362}
Class to hold the hadron saturation functions.
Definition: CDCDedxHadSat.h:31
double I2D(double cosTheta, double I) const
hadron saturation parameterization part 2
double D2I(double cosTheta, double D) const
hadron saturation parameterization part 1
void setParameters()
set the parameters
double getMean(double bg)
Return the predicted mean value as a function of beta-gamma (bg)
double ionzPrediction(double dedx)
Return sigma from the ionization parameterization.
double cosPrediction(double cos)
Return sigma from the cos parameterization.
double nhitPrediction(double nhit)
Return sigma from the nhit parameterization.
void fitSigmaVsCos(std::vector< std::string > particles, const std::string &filename, const std::string &paramfile, const std::string &suffx)
fit sigma vs.
void fitSigmaVsNHit(std::vector< std::string > particles, const std::string &filename, const std::string &paramsigma, const std::string &suffx)
fit sigma vs.

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:26
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:140
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:77

Member Data Documentation

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_bgcurve

std::string m_bgcurve
private

string for mean parameter file names

Definition at line 163 of file CDCDedxHadBGAlgorithm.h.

◆ m_bgpar

std::map<std::string, std::array<double, 3> > m_bgpar
private
Initial value:
= {
{"muon", {12, 2.85, 28.85}},
{"pion", {12, 0.9, 14.90}},
{"kaon", {11, 1.0, 6.5}},
{"proton", {20, 0.33, 0.85}},
{"electron", {60, 500.0, 12500.0}}
}

bg bins, min, max for different particles

Definition at line 127 of file CDCDedxHadBGAlgorithm.h.

◆ m_bgsigma

std::string m_bgsigma
private

string for sigma parameter file names

Definition at line 162 of file CDCDedxHadBGAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_cosMax

double m_cosMax = 0.96
private

max range of cosine

Definition at line 152 of file CDCDedxHadBGAlgorithm.h.

◆ m_cosMin

double m_cosMin = -0.84
private

min range of cosine

Definition at line 151 of file CDCDedxHadBGAlgorithm.h.

◆ m_cospar

std::map<std::string, double> m_cospar
private
Initial value:
= {
{"electron", 24},
{"pion", 18},
{"kaon", 18},
{"muon", 24},
{"proton", 20}
}

cos bins for different particles

Definition at line 143 of file CDCDedxHadBGAlgorithm.h.

◆ m_cut

double m_cut = 0.5
private

cut to clean protons

Definition at line 158 of file CDCDedxHadBGAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_DBMeanPars

DBObjPtr<CDCDedxMeanPars> m_DBMeanPars
private

db object for dE/dx mean parameters

Definition at line 168 of file CDCDedxHadBGAlgorithm.h.

◆ m_DBSigmaPars

DBObjPtr<CDCDedxSigmaPars> m_DBSigmaPars
private

db object for dE/dx resolution parameters

Definition at line 169 of file CDCDedxHadBGAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_injpar

std::map<std::string, std::array<double, 3> > m_injpar
private
Initial value:
= {
{"electron", {40, 0, 80000}},
{"pion", {10, 0, 48000}},
{"kaon", {6, 0, 48000}},
{"muon", {40, 0, 80000}},
{"proton", {20, 0, 80000}}
}

injection time bins, min, max for different particles

Definition at line 135 of file CDCDedxHadBGAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_ismakePlots

bool m_ismakePlots
private

produce plots for monitoring

Definition at line 160 of file CDCDedxHadBGAlgorithm.h.

◆ m_iter

int m_iter = 5
private

set number of iteration

Definition at line 166 of file CDCDedxHadBGAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_nhitBins

int m_nhitBins = 10
private

bins for nhits

Definition at line 154 of file CDCDedxHadBGAlgorithm.h.

◆ m_nhitMax

double m_nhitMax = 39
private

max range of nhits

Definition at line 156 of file CDCDedxHadBGAlgorithm.h.

◆ m_nhitMin

double m_nhitMin = 7
private

min range of nhits

Definition at line 155 of file CDCDedxHadBGAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_suffix

std::string m_suffix
private

string suffix for object names

Definition at line 164 of file CDCDedxHadBGAlgorithm.h.


The documentation for this class was generated from the following files: