Belle II Software development
Helix Class Reference

Helix parameter class. More...

#include <Helix.h>

Inheritance diagram for Helix:
CDCTriggerTrack UncertainHelix

Public Member Functions

 Helix (const HepPoint3D &pivot, const HepVector &a, const HepSymMatrix &Ea)
 Constructor with pivot, helix parameter a, and its error matrix.
 
 Helix (const HepPoint3D &pivot, const HepVector &a)
 Constructor without error matrix.
 
 Helix (const HepPoint3D &position, const Hep3Vector &momentum, double charge)
 Constructor with position, momentum, and charge.
 
virtual ~Helix ()
 Destructor.
 
const HepPoint3Dcenter (void) const
 returns position of helix center(z = 0.);
 
const HepPoint3Dpivot (void) const
 returns pivot position.
 
double radius (void) const
 returns radious of helix.
 
HepPoint3D x (double dPhi=0.) const
 returns position after rotating angle dPhi in phi direction.
 
double * x (double dPhi, double p[3]) const
 returns position after rotating angle dPhi in phi direction.
 
HepPoint3D x (double dPhi, HepSymMatrix &Ex) const
 returns position and convariance matrix(Ex) after rotation.
 
Hep3Vector direction (double dPhi=0.) const
 returns direction vector after rotating angle dPhi in phi direction.
 
Hep3Vector momentum (double dPhi=0.) const
 returns momentum vector after rotating angle dPhi in phi direction.
 
Hep3Vector momentum (double dPhi, HepSymMatrix &Em) const
 returns momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass, HepSymMatrix &Em) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass, HepPoint3D &x, HepSymMatrix &Emx) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
double dr (void) const
 Return helix parameter dr.
 
double phi0 (void) const
 Return helix parameter phi0.
 
double kappa (void) const
 Return helix parameter kappa.
 
double dz (void) const
 Return helix parameter dz.
 
double tanl (void) const
 Return helix parameter tangent lambda.
 
double curv (void) const
 Return curvature of helix.
 
double sinPhi0 (void) const
 Return sin phi0.
 
double cosPhi0 (void) const
 Return cos phi0.
 
const HepVector & a (void) const
 Returns helix parameters.
 
const HepSymMatrix & Ea (void) const
 Returns error matrix.
 
const HepVector & a (const HepVector &newA)
 Sets helix parameters.
 
const HepSymMatrix & Ea (const HepSymMatrix &newdA)
 Sets helix paramters and error matrix.
 
const HepPoint3Dpivot (const HepPoint3D &newPivot)
 Sets pivot position.
 
void set (const HepPoint3D &pivot, const HepVector &a, const HepSymMatrix &Ea)
 Sets helix pivot position, parameters, and error matrix.
 
void ignoreErrorMatrix (void)
 Unsets error matrix.
 
double bFieldZ (double bz)
 Sets/returns z componet of the magnetic field.
 
double bFieldZ (void) const
 Returns z componet of the magnetic field.
 
Helixoperator= (const Helix &)
 Copy operator.
 
HepMatrix delApDelA (const HepVector &ap) const
 DAp/DA.
 
HepMatrix delXDelA (double phi) const
 DX/DA.
 
HepMatrix delMDelA (double phi) const
 DM/DA.
 
HepMatrix del4MDelA (double phi, double mass) const
 DM4/DA.
 
HepMatrix del4MXDelA (double phi, double mass) const
 DMX4/DA.
 

Static Public Member Functions

static void set_limits (const HepVector &a_min, const HepVector &a_max)
 set limit for parameter "a"
 
static bool set_exception (bool)
 set exception
 
static bool set_print (bool)
 Set print option for debugging.
 

Static Public Attributes

static const double ConstantAlpha = 222.376063
 Constant alpha for uniform field.
 

Private Member Functions

void updateCache (void)
 updateCache
 
void checkValid (void)
 Check whether helix parameters is valid or not.
 
void debugPrint (void) const
 Print the helix parameters to stdout.
 
void debugHelix (void) const
 Debug Helix.
 

Private Attributes

bool m_matrixValid
 True: matrix valid, False: matrix not valid.
 
bool m_helixValid
 True: helix valid, False: helix not valid.
 
double m_bField
 Magnetic field, assuming uniform Bz in the unit of kG.
 
double m_alpha
 10000.0/(speed of light)/B.
 
HepPoint3D m_pivot
 Pivot.
 
HepVector m_a
 Helix parameter.
 
HepSymMatrix m_Ea
 Error of the helix parameter.
 
HepPoint3D m_center
 Cache of the center position of Helix.
 
double m_cp
 Cache of the cos phi0.
 
double m_sp
 Cache of the sin phi0.
 
double m_pt
 Cache of the pt.
 
double m_r
 Cache of the r.
 
double m_ac [5]
 Cache of the helix parameter.
 

Static Private Attributes

static HepVector ms_amin
 minimum limit of Helix parameter a
 
static HepVector ms_amax
 maxiimum limit of Helix parameter a
 
static bool ms_check_range
 Check the helix parameter's range.
 
static bool ms_print_debug
 Debug option flag.
 
static bool ms_throw_exception
 Throw exception flag.
 
static const std::string invalidhelix
 String "Invalid Helix".
 

Detailed Description

Helix parameter class.

Definition at line 48 of file Helix.h.

Constructor & Destructor Documentation

◆ Helix() [1/3]

Helix ( const HepPoint3D pivot,
const HepVector &  a,
const HepSymMatrix &  Ea 
)

Constructor with pivot, helix parameter a, and its error matrix.

Definition at line 132 of file Helix.cc.

135 : m_matrixValid(true),
136 m_helixValid(false),
137 m_bField(15.0),
138 m_alpha(222.376063),
139 m_pivot(pivot),
140 m_a(a),
141 m_Ea(Ea)
142{
143 // m_alpha = 10000. / 2.99792458 / m_bField;
144 // m_alpha = 222.376063;
145 if (m_a.num_row() == 5 && m_Ea.num_row() == 5) {
146 updateCache();
147 }
148}
const HepPoint3D & pivot(void) const
returns pivot position.
Definition: Helix.h:356
const HepSymMatrix & Ea(void) const
Returns error matrix.
Definition: Helix.h:436
void updateCache(void)
updateCache
Definition: Helix.cc:508
bool m_matrixValid
True: matrix valid, False: matrix not valid.
Definition: Helix.h:288
bool m_helixValid
True: helix valid, False: helix not valid.
Definition: Helix.h:290
const HepVector & a(void) const
Returns helix parameters.
Definition: Helix.h:428
HepVector m_a
Helix parameter.
Definition: Helix.h:298
double m_alpha
10000.0/(speed of light)/B.
Definition: Helix.h:294
HepSymMatrix m_Ea
Error of the helix parameter.
Definition: Helix.h:300
HepPoint3D m_pivot
Pivot.
Definition: Helix.h:296
double m_bField
Magnetic field, assuming uniform Bz in the unit of kG.
Definition: Helix.h:292

◆ Helix() [2/3]

Helix ( const HepPoint3D pivot,
const HepVector &  a 
)

Constructor without error matrix.

Definition at line 150 of file Helix.cc.

152 : m_matrixValid(false),
153 m_helixValid(false),
154 m_bField(15.0),
155 m_alpha(222.376063),
156 m_pivot(pivot),
157 m_a(a),
158 m_Ea(HepSymMatrix(5, 0))
159{
160 // m_alpha = 222.376063;
161 if (m_a.num_row() == 5) {
162 updateCache();
163 }
164}

◆ Helix() [3/3]

Helix ( const HepPoint3D position,
const Hep3Vector &  momentum,
double  charge 
)

Constructor with position, momentum, and charge.

Definition at line 166 of file Helix.cc.

169 : m_matrixValid(false),
170 m_helixValid(false),
171 m_bField(15.0),
172 m_alpha(222.376063),
173 m_pivot(position),
174 m_a(HepVector(5, 0)),
175 m_Ea(HepSymMatrix(5, 0))
176{
177 m_a[0] = 0.;
178 m_a[3] = 0.;
179 double perp(momentum.perp());
180 if (perp != 0.0) {
181 m_a[1] = fmod(atan2(- momentum.x(), momentum.y())
182 + M_PI4, M_PI2);
183 m_a[2] = charge / perp;
184 m_a[4] = momentum.z() / perp;
185 } else {
186 m_a[2] = charge * (DBL_MAX);
187 }
188 // m_alpha = 222.376063;
189 updateCache();
190}
Hep3Vector momentum(double dPhi=0.) const
returns momentum vector after rotating angle dPhi in phi direction.
Definition: Helix.cc:259
const double M_PI2
2*PI
Definition: Helix.cc:31
const double M_PI4
4*PI
Definition: Helix.cc:35
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ ~Helix()

~Helix ( )
virtual

Destructor.

Definition at line 192 of file Helix.cc.

193{
194}

Member Function Documentation

◆ a() [1/2]

const HepVector & a ( const HepVector &  newA)
inline

Sets helix parameters.

Definition at line 444 of file Helix.h.

445 {
446 if (i.num_row() == 5) {
447 m_a = i;
448 m_helixValid = false;
449 updateCache();
450#if defined(BELLE_DEBUG)
451 DEBUG_HELIX;
452 } else {
453 {
454 std::cout << "Helix::input vector's num_row is not 5" << std::endl;
455 DEBUG_PRINT;
457 }
458#endif
459 }
460 return m_a;
461 }
static bool ms_throw_exception
Throw exception flag.
Definition: Helix.h:239
static const std::string invalidhelix
String "Invalid Helix".
Definition: Helix.h:318

◆ a() [2/2]

const HepVector & a ( void  ) const
inline

Returns helix parameters.

Definition at line 428 of file Helix.h.

429 {
430 DEBUG_HELIX;
431 return m_a;
432 }

◆ bFieldZ() [1/2]

double bFieldZ ( double  bz)
inline

Sets/returns z componet of the magnetic field.

Parameters
[in]bzz-component of the magnetic field.
Attention
Helix param. alpha is also stored.

Definition at line 473 of file Helix.h.

474 {
475 DEBUG_HELIX;
476 m_bField = a;
477 m_alpha = 10000. / 2.99792458 / m_bField;
478 updateCache();
479 return m_bField;
480 }

◆ bFieldZ() [2/2]

double bFieldZ ( void  ) const
inline

Returns z componet of the magnetic field.

Definition at line 484 of file Helix.h.

485 {
486 DEBUG_HELIX;
487 return m_bField;
488 }

◆ center()

const HepPoint3D & center ( void  ) const
inline

returns position of helix center(z = 0.);

Definition at line 343 of file Helix.h.

344 {
345#if defined(BELLE_DEBUG)
346 if (!m_helixValid) {
347 DEBUG_PRINT;
348 if (msthrow_exception) throw invalidhelix;
349 }
350#endif
351 return m_center;
352 }
HepPoint3D m_center
Cache of the center position of Helix.
Definition: Helix.h:305

◆ checkValid()

void checkValid ( void  )
private

Check whether helix parameters is valid or not.

Sets m_helixValid.

Definition at line 895 of file Helix.cc.

896{
897
898 if (!ms_check_range) return;
899 const double adr = fabs(m_a[0]);
900 const double acpa = fabs(m_a[2]);
901 if (!(adr >= ms_amin[0] && adr <= ms_amax[0])) {
902 m_helixValid = false;
903 } else if (!(acpa >= ms_amin[2] && acpa <= ms_amax[2])) {
904 m_helixValid = false;
905 } else {
906 m_helixValid = true;
907 }
908 if (!m_helixValid) {
909 if (m_a[0] != 0.0 || m_a[1] != 0.0 || m_a[2] != 0.0 ||
910 m_a[3] != 0.0 || m_a[4] != 0.0) {
911 DEBUG_PRINT;
912 }
913 }
914
915}
static bool ms_check_range
Check the helix parameter's range.
Definition: Helix.h:235
static HepVector ms_amin
minimum limit of Helix parameter a
Definition: Helix.h:231
static HepVector ms_amax
maxiimum limit of Helix parameter a
Definition: Helix.h:233

◆ cosPhi0()

double cosPhi0 ( void  ) const
inline

Return cos phi0.

Definition at line 500 of file Helix.h.

501 {
502 DEBUG_HELIX;
503 return m_cp;
504 }
double m_cp
Cache of the cos phi0.
Definition: Helix.h:307

◆ curv()

double curv ( void  ) const
inline

Return curvature of helix.

Definition at line 420 of file Helix.h.

421 {
422 DEBUG_HELIX;
423 return m_r;
424 }
double m_r
Cache of the r.
Definition: Helix.h:313

◆ debugHelix()

void debugHelix ( void  ) const
private

Debug Helix.

Definition at line 917 of file Helix.cc.

918{
919 if (!m_helixValid) {
920 if (ms_check_range) {DEBUG_PRINT;}
921 if (ms_throw_exception) { throw invalidhelix;}
922 }
923}

◆ debugPrint()

void debugPrint ( void  ) const
private

Print the helix parameters to stdout.

Definition at line 879 of file Helix.cc.

880{
881
882 const double dr = m_a[0];
883 const double phi0 = m_a[1];
884 const double cpa = m_a[2];
885 const double dz = m_a[3];
886 const double tnl = m_a[4];
887 if (ms_print_debug) {
888 std::cout << "Helix::dr = " << dr << " phi0 = " << phi0 << " cpa = " << cpa
889 << " dz = " << dz << " tnl = " << tnl << std::endl;
890 std::cout << " pivot = " << m_pivot << std::endl;
891 }
892}
static bool ms_print_debug
Debug option flag.
Definition: Helix.h:237
double phi0(void) const
Return helix parameter phi0.
Definition: Helix.h:388
double dr(void) const
Return helix parameter dr.
Definition: Helix.h:380
double dz(void) const
Return helix parameter dz.
Definition: Helix.h:404

◆ del4MDelA()

HepMatrix del4MDelA ( double  phi,
double  mass 
) const

DM4/DA.

Definition at line 749 of file Helix.cc.

750{
751 DEBUG_HELIX;
752
753 //
754 // Calculate Jacobian (@4m/@a)
755 // Vector a is helix parameters and phi is internal parameter.
756 // Vector 4m is 4 momentum.
757 //
758
759 HepMatrix d4MDA(4, 5, 0);
760
761 double phi0 = m_ac[1];
762 double cpa = m_ac[2];
763 double tnl = m_ac[4];
764
765 double cosf0phi = cos(phi0 + phi);
766 double sinf0phi = sin(phi0 + phi);
767
768 double rho;
769 if (cpa != 0.)rho = 1. / cpa;
770 else rho = (DBL_MAX);
771
772 double charge = 1.;
773 if (cpa < 0.)charge = -1.;
774
775 double E = sqrt(rho * rho * (1. + tnl * tnl) + mass * mass);
776
777 d4MDA[0][1] = -fabs(rho) * cosf0phi;
778 d4MDA[0][2] = charge * rho * rho * sinf0phi;
779
780 d4MDA[1][1] = -fabs(rho) * sinf0phi;
781 d4MDA[1][2] = -charge * rho * rho * cosf0phi;
782
783 d4MDA[2][2] = -charge * rho * rho * tnl;
784 d4MDA[2][4] = fabs(rho);
785
786 if (cpa != 0.0 && E != 0.0) {
787 d4MDA[3][2] = (-1. - tnl * tnl) / (cpa * cpa * cpa * E);
788 d4MDA[3][4] = tnl / (cpa * cpa * E);
789 } else {
790 d4MDA[3][2] = (DBL_MAX);
791 d4MDA[3][4] = (DBL_MAX);
792 }
793 return d4MDA;
794}
R E
internal precision of FFTW codelets
double m_ac[5]
Cache of the helix parameter.
Definition: Helix.h:315
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ del4MXDelA()

HepMatrix del4MXDelA ( double  phi,
double  mass 
) const

DMX4/DA.

Definition at line 798 of file Helix.cc.

799{
800 DEBUG_HELIX;
801
802 //
803 // Calculate Jacobian (@4mx/@a)
804 // Vector a is helix parameters and phi is internal parameter.
805 // Vector 4xm is 4 momentum and position.
806 //
807
808 HepMatrix d4MXDA(7, 5, 0);
809
810 const double& dr = m_ac[0];
811 const double& phi0 = m_ac[1];
812 const double& cpa = m_ac[2];
813 //const double & dz = m_ac[3];
814 const double& tnl = m_ac[4];
815
816 double cosf0phi = cos(phi0 + phi);
817 double sinf0phi = sin(phi0 + phi);
818
819 double rho;
820 if (cpa != 0.)rho = 1. / cpa;
821 else rho = (DBL_MAX);
822
823 double charge = 1.;
824 if (cpa < 0.)charge = -1.;
825
826 double E = sqrt(rho * rho * (1. + tnl * tnl) + mass * mass);
827
828 d4MXDA[0][1] = - fabs(rho) * cosf0phi;
829 d4MXDA[0][2] = charge * rho * rho * sinf0phi;
830
831 d4MXDA[1][1] = - fabs(rho) * sinf0phi;
832 d4MXDA[1][2] = - charge * rho * rho * cosf0phi;
833
834 d4MXDA[2][2] = - charge * rho * rho * tnl;
835 d4MXDA[2][4] = fabs(rho);
836
837 if (cpa != 0.0 && E != 0.0) {
838 d4MXDA[3][2] = (- 1. - tnl * tnl) / (cpa * cpa * cpa * E);
839 d4MXDA[3][4] = tnl / (cpa * cpa * E);
840 } else {
841 d4MXDA[3][2] = (DBL_MAX);
842 d4MXDA[3][4] = (DBL_MAX);
843 }
844
845 d4MXDA[4][0] = m_cp;
846 d4MXDA[4][1] = - dr * m_sp + m_r * (- m_sp + sinf0phi);
847 if (cpa != 0.0) {
848 d4MXDA[4][2] = - (m_r / cpa) * (m_cp - cosf0phi);
849 } else {
850 d4MXDA[4][2] = (DBL_MAX);
851 }
852
853 d4MXDA[5][0] = m_sp;
854 d4MXDA[5][1] = dr * m_cp + m_r * (m_cp - cosf0phi);
855 if (cpa != 0.0) {
856 d4MXDA[5][2] = - (m_r / cpa) * (m_sp - sinf0phi);
857
858 d4MXDA[6][2] = (m_r / cpa) * tnl * phi;
859 } else {
860 d4MXDA[5][2] = (DBL_MAX);
861
862 d4MXDA[6][2] = (DBL_MAX);
863 }
864
865 d4MXDA[6][3] = 1.;
866 d4MXDA[6][4] = - m_r * phi;
867
868 return d4MXDA;
869}
double m_sp
Cache of the sin phi0.
Definition: Helix.h:309

◆ delApDelA()

HepMatrix delApDelA ( const HepVector &  ap) const

DAp/DA.

Definition at line 584 of file Helix.cc.

585{
586 DEBUG_HELIX;
587 //
588 // Calculate Jacobian (@ap/@a)
589 // Vector ap is new helix parameters and a is old helix parameters.
590 //
591
592 HepMatrix dApDA(5, 5, 0);
593
594 const double& dr = m_ac[0];
595 const double& phi0 = m_ac[1];
596 const double& cpa = m_ac[2];
597 //const double & dz = m_ac[3];
598 const double& tnl = m_ac[4];
599
600 double drp = ap[0];
601 double phi0p = ap[1];
602 //double cpap = ap[2];
603 //double dzp = ap[3];
604 //double tnlp = ap[4];
605
606 double rdr = m_r + dr;
607 double rdrpr;
608 if ((m_r + drp) != 0.0) {
609 rdrpr = 1. / (m_r + drp);
610 } else {
611 rdrpr = (DBL_MAX);
612 }
613 // double csfd = cos(phi0)*cos(phi0p) + sin(phi0)*sin(phi0p);
614 // double snfd = cos(phi0)*sin(phi0p) - sin(phi0)*cos(phi0p);
615 double csfd = cos(phi0p - phi0);
616 double snfd = sin(phi0p - phi0);
617 double phid = fmod(phi0p - phi0 + M_PI8, M_PI2);
618 if (phid > M_PI) phid = phid - M_PI2;
619
620 dApDA[0][0] = csfd;
621 dApDA[0][1] = rdr * snfd;
622 if (cpa != 0.0) {
623 dApDA[0][2] = (m_r / cpa) * (1.0 - csfd);
624 } else {
625 dApDA[0][2] = (DBL_MAX);
626 }
627
628 dApDA[1][0] = - rdrpr * snfd;
629 dApDA[1][1] = rdr * rdrpr * csfd;
630 if (cpa != 0.0) {
631 dApDA[1][2] = (m_r / cpa) * rdrpr * snfd;
632 } else {
633 dApDA[1][2] = (DBL_MAX);
634 }
635
636 dApDA[2][2] = 1.0;
637
638 dApDA[3][0] = m_r * rdrpr * tnl * snfd;
639 dApDA[3][1] = m_r * tnl * (1.0 - rdr * rdrpr * csfd);
640 if (cpa != 0.0) {
641 dApDA[3][2] = (m_r / cpa) * tnl * (phid - m_r * rdrpr * snfd);
642 } else {
643 dApDA[3][2] = (DBL_MAX);
644 }
645 dApDA[3][3] = 1.0;
646 dApDA[3][4] = - m_r * phid;
647
648 dApDA[4][4] = 1.0;
649
650 return dApDA;
651}
const double M_PI8
8*PI
Definition: Helix.cc:39

◆ delMDelA()

HepMatrix delMDelA ( double  phi) const

DM/DA.

Definition at line 710 of file Helix.cc.

711{
712 DEBUG_HELIX;
713 //
714 // Calculate Jacobian (@m/@a)
715 // Vector a is helix parameters and phi is internal parameter.
716 // Vector m is momentum.
717 //
718
719 HepMatrix dMDA(3, 5, 0);
720
721 const double& phi0 = m_ac[1];
722 const double& cpa = m_ac[2];
723 const double& tnl = m_ac[4];
724
725 double cosf0phi = cos(phi0 + phi);
726 double sinf0phi = sin(phi0 + phi);
727
728 double rho;
729 if (cpa != 0.)rho = 1. / cpa;
730 else rho = (DBL_MAX);
731
732 double charge = 1.;
733 if (cpa < 0.)charge = -1.;
734
735 dMDA[0][1] = -fabs(rho) * cosf0phi;
736 dMDA[0][2] = charge * rho * rho * sinf0phi;
737
738 dMDA[1][1] = -fabs(rho) * sinf0phi;
739 dMDA[1][2] = -charge * rho * rho * cosf0phi;
740
741 dMDA[2][2] = -charge * rho * rho * tnl;
742 dMDA[2][4] = fabs(rho);
743
744 return dMDA;
745}

◆ delXDelA()

HepMatrix delXDelA ( double  phi) const

DX/DA.

Definition at line 654 of file Helix.cc.

655{
656 DEBUG_HELIX;
657 //
658 // Calculate Jacobian (@x/@a)
659 // Vector a is helix parameters and phi is internal parameter
660 // which specifys the point to be calculated for Ex(phi).
661 //
662
663 HepMatrix dXDA(3, 5, 0);
664
665 const double& dr = m_ac[0];
666 const double& phi0 = m_ac[1];
667 const double& cpa = m_ac[2];
668 //const double & dz = m_ac[3];
669 const double& tnl = m_ac[4];
670
671 double cosf0phi = cos(phi0 + phi);
672 double sinf0phi = sin(phi0 + phi);
673
674 dXDA[0][0] = m_cp;
675 dXDA[0][1] = - dr * m_sp + m_r * (- m_sp + sinf0phi);
676 if (cpa != 0.0) {
677 dXDA[0][2] = - (m_r / cpa) * (m_cp - cosf0phi);
678 } else {
679 dXDA[0][2] = (DBL_MAX);
680 }
681 // dXDA[0][3] = 0.0;
682 // dXDA[0][4] = 0.0;
683
684 dXDA[1][0] = m_sp;
685 dXDA[1][1] = dr * m_cp + m_r * (m_cp - cosf0phi);
686 if (cpa != 0.0) {
687 dXDA[1][2] = - (m_r / cpa) * (m_sp - sinf0phi);
688 } else {
689 dXDA[1][2] = (DBL_MAX);
690 }
691 // dXDA[1][3] = 0.0;
692 // dXDA[1][4] = 0.0;
693
694 // dXDA[2][0] = 0.0;
695 // dXDA[2][1] = 0.0;
696 if (cpa != 0.0) {
697 dXDA[2][2] = (m_r / cpa) * tnl * phi;
698 } else {
699 dXDA[2][2] = (DBL_MAX);
700 }
701 dXDA[2][3] = 1.0;
702 dXDA[2][4] = - m_r * phi;
703
704 return dXDA;
705}

◆ direction()

Hep3Vector direction ( double  dPhi = 0.) const
inline

returns direction vector after rotating angle dPhi in phi direction.

Definition at line 372 of file Helix.h.

373 {
374 DEBUG_HELIX;
375 return momentum(phi).unit();
376 }

◆ dr()

double dr ( void  ) const
inline

Return helix parameter dr.

Definition at line 380 of file Helix.h.

381 {
382 DEBUG_HELIX;
383 return m_ac[0];
384 }

◆ dz()

double dz ( void  ) const
inline

Return helix parameter dz.

Definition at line 404 of file Helix.h.

405 {
406 DEBUG_HELIX;
407 return m_ac[3];
408 }

◆ Ea() [1/2]

const HepSymMatrix & Ea ( const HepSymMatrix &  newdA)
inline

Sets helix paramters and error matrix.

Definition at line 465 of file Helix.h.

466 {
467 DEBUG_HELIX;
468 return m_Ea = i;
469 }

◆ Ea() [2/2]

const HepSymMatrix & Ea ( void  ) const
inline

Returns error matrix.

Definition at line 436 of file Helix.h.

437 {
438 DEBUG_HELIX;
439 return m_Ea;
440 }

◆ ignoreErrorMatrix()

void ignoreErrorMatrix ( void  )

Unsets error matrix.

Error calculations will be ignored after this function call until an error matrix be set again. 0 matrix will be return as a return value for error matrix when you call functions which returns an error matrix.

Definition at line 872 of file Helix.cc.

873{
874 m_matrixValid = false;
875 m_Ea *= 0.;
876}

◆ kappa()

double kappa ( void  ) const
inline

Return helix parameter kappa.

Definition at line 396 of file Helix.h.

397 {
398 DEBUG_HELIX;
399 return m_ac[2];
400 }

◆ momentum() [1/5]

HepLorentzVector momentum ( double  dPhi,
double  mass 
) const

returns 4momentum vector after rotating angle dPhi in phi direction.

Definition at line 306 of file Helix.cc.

307{
308 DEBUG_HELIX;
309 //
310 // Calculate momentum.
311 //
312 // Pt = | 1/kappa | (GeV/c)
313 //
314 // Px = -Pt * sin(phi0 + phi)
315 // Py = Pt * cos(phi0 + phi)
316 // Pz = Pt * tan(lambda)
317 //
318 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
319
320 double pt = fabs(m_pt);
321 double px = - pt * sin(m_ac[1] + phi);
322 double py = pt * cos(m_ac[1] + phi);
323 double pz = pt * m_ac[4];
324 double E = sqrt(pt * pt * (1. + m_ac[4] * m_ac[4]) + mass * mass);
325
326 return HepLorentzVector(px, py, pz, E);
327}
double m_pt
Cache of the pt.
Definition: Helix.h:311

◆ momentum() [2/5]

HepLorentzVector momentum ( double  dPhi,
double  mass,
HepPoint3D x,
HepSymMatrix &  Emx 
) const

returns 4momentum vector after rotating angle dPhi in phi direction.

Definition at line 358 of file Helix.cc.

362{
363 DEBUG_HELIX;
364 //
365 // Calculate momentum.
366 //
367 // Pt = | 1/kappa | (GeV/c)
368 //
369 // Px = -Pt * sin(phi0 + phi)
370 // Py = Pt * cos(phi0 + phi)
371 // Pz = Pt * tan(lambda)
372 //
373 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
374
375 double pt = fabs(m_pt);
376 double px = - pt * sin(m_ac[1] + phi);
377 double py = pt * cos(m_ac[1] + phi);
378 double pz = pt * m_ac[4];
379 double E = sqrt(pt * pt * (1. + m_ac[4] * m_ac[4]) + mass * mass);
380
381 x.setX(m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi)));
382 x.setY(m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi)));
383 x.setZ(m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi);
384
385 if (m_matrixValid) Emx = m_Ea.similarity(del4MXDelA(phi, mass));
386 else Emx = m_Ea;
387
388 return HepLorentzVector(px, py, pz, E);
389}
HepMatrix del4MXDelA(double phi, double mass) const
DMX4/DA.
Definition: Helix.cc:798
HepPoint3D x(double dPhi=0.) const
returns position after rotating angle dPhi in phi direction.
Definition: Helix.cc:197

◆ momentum() [3/5]

HepLorentzVector momentum ( double  dPhi,
double  mass,
HepSymMatrix &  Em 
) const

returns 4momentum vector after rotating angle dPhi in phi direction.

Definition at line 331 of file Helix.cc.

332{
333 DEBUG_HELIX;
334 //
335 // Calculate momentum.
336 //
337 // Pt = | 1/kappa | (GeV/c)
338 //
339 // Px = -Pt * sin(phi0 + phi)
340 // Py = Pt * cos(phi0 + phi)
341 // Pz = Pt * tan(lambda)
342 //
343 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
344
345 double pt = fabs(m_pt);
346 double px = - pt * sin(m_ac[1] + phi);
347 double py = pt * cos(m_ac[1] + phi);
348 double pz = pt * m_ac[4];
349 double E = sqrt(pt * pt * (1. + m_ac[4] * m_ac[4]) + mass * mass);
350
351 if (m_matrixValid) Em = m_Ea.similarity(del4MDelA(phi, mass));
352 else Em = m_Ea;
353
354 return HepLorentzVector(px, py, pz, E);
355}
HepMatrix del4MDelA(double phi, double mass) const
DM4/DA.
Definition: Helix.cc:749

◆ momentum() [4/5]

Hep3Vector momentum ( double  dPhi,
HepSymMatrix &  Em 
) const

returns momentum vector after rotating angle dPhi in phi direction.

Definition at line 281 of file Helix.cc.

282{
283 DEBUG_HELIX;
284 //
285 // Calculate momentum.
286 //
287 // Pt = | 1/kappa | (GeV/c)
288 //
289 // Px = -Pt * sin(phi0 + phi)
290 // Py = Pt * cos(phi0 + phi)
291 // Pz = Pt * tan(lambda)
292 //
293
294 double pt = fabs(m_pt);
295 double px = - pt * sin(m_ac[1] + phi);
296 double py = pt * cos(m_ac[1] + phi);
297 double pz = pt * m_ac[4];
298
299 if (m_matrixValid) Em = m_Ea.similarity(delMDelA(phi));
300 else Em = m_Ea;
301
302 return Hep3Vector(px, py, pz);
303}
HepMatrix delMDelA(double phi) const
DM/DA.
Definition: Helix.cc:710

◆ momentum() [5/5]

Hep3Vector momentum ( double  dPhi = 0.) const

returns momentum vector after rotating angle dPhi in phi direction.

Definition at line 259 of file Helix.cc.

260{
261 DEBUG_HELIX;
262 //
263 // Calculate momentum.
264 //
265 // Pt = | 1/kappa | (GeV/c)
266 //
267 // Px = -Pt * sin(phi0 + phi)
268 // Py = Pt * cos(phi0 + phi)
269 // Pz = Pt * tan(lambda)
270 //
271
272 double pt = fabs(m_pt);
273 double px = - pt * sin(m_ac[1] + phi);
274 double py = pt * cos(m_ac[1] + phi);
275 double pz = pt * m_ac[4];
276
277 return Hep3Vector(px, py, pz);
278}

◆ operator=()

Helix & operator= ( const Helix i)

Copy operator.

Definition at line 481 of file Helix.cc.

482{
483 if (this == & i) return * this;
484 DEBUG_HELIX;
485
486 m_bField = i.m_bField;
487 m_alpha = i.m_alpha;
488 m_pivot = i.m_pivot;
489 m_a = i.m_a;
490 m_Ea = i.m_Ea;
491 m_matrixValid = i.m_matrixValid;
492
493 m_center = i.m_center;
494 m_cp = i.m_cp;
495 m_sp = i.m_sp;
496 m_pt = i.m_pt;
497 m_r = i.m_r;
498 m_ac[0] = i.m_ac[0];
499 m_ac[1] = i.m_ac[1];
500 m_ac[2] = i.m_ac[2];
501 m_ac[3] = i.m_ac[3];
502 m_ac[4] = i.m_ac[4];
503
504 return * this;
505}

◆ phi0()

double phi0 ( void  ) const
inline

Return helix parameter phi0.

Definition at line 388 of file Helix.h.

389 {
390 DEBUG_HELIX;
391 return m_ac[1];
392 }

◆ pivot() [1/2]

const HepPoint3D & pivot ( const HepPoint3D newPivot)

Sets pivot position.

Definition at line 393 of file Helix.cc.

394{
395 DEBUG_HELIX;
396#if defined(BELLE_DEBUG)
397 try {
398#endif
399 const double& dr = m_ac[0];
400 const double& phi0 = m_ac[1];
401 const double& kappa = m_ac[2];
402 const double& dz = m_ac[3];
403 const double& tanl = m_ac[4];
404
405 double rdr = dr + m_r;
406 double phi = fmod(phi0 + M_PI4, M_PI2);
407 double csf0 = cos(phi);
408 double snf0 = (1. - csf0) * (1. + csf0);
409 snf0 = sqrt((snf0 > 0.) ? snf0 : 0.);
410 if (phi > M_PI) snf0 = - snf0;
411
412 double xc = m_pivot.x() + rdr * csf0;
413 double yc = m_pivot.y() + rdr * snf0;
414 double csf, snf;
415 if (m_r != 0.0) {
416 csf = (xc - newPivot.x()) / m_r;
417 snf = (yc - newPivot.y()) / m_r;
418 double anrm = sqrt(csf * csf + snf * snf);
419 if (anrm != 0.0) {
420 csf /= anrm;
421 snf /= anrm;
422 phi = atan2(snf, csf);
423 } else {
424 csf = 1.0;
425 snf = 0.0;
426 phi = 0.0;
427 }
428 } else {
429 csf = 1.0;
430 snf = 0.0;
431 phi = 0.0;
432 }
433 double phid = fmod(phi - phi0 + M_PI8, M_PI2);
434 if (phid > M_PI) phid = phid - M_PI2;
435 double drp = (m_pivot.x() + dr * csf0 + m_r * (csf0 - csf) - newPivot.x())
436 * csf
437 + (m_pivot.y() + dr * snf0 + m_r * (snf0 - snf) - newPivot.y()) * snf;
438 double dzp = m_pivot.z() + dz - m_r * tanl * phid - newPivot.z();
439
440 HepVector ap(5);
441 ap[0] = drp;
442 ap[1] = fmod(phi + M_PI4, M_PI2);
443 ap[2] = kappa;
444 ap[3] = dzp;
445 ap[4] = tanl;
446
447 // if (m_matrixValid) m_Ea.assign(delApDelA(ap) * m_Ea * delApDelA(ap).T());
448 if (m_matrixValid) m_Ea = m_Ea.similarity(delApDelA(ap));
449
450 m_a = ap;
451 m_pivot = newPivot;
452
453 //...Are these needed?...iw...
454 updateCache();
455 return m_pivot;
456#if defined(BELLE_DEBUG)
457 } catch (...) {
458 m_helixValid = false;
459 DEBUG_PRINT;
461 }
462#endif
463 return m_pivot;
464}
double tanl(void) const
Return helix parameter tangent lambda.
Definition: Helix.h:412
HepMatrix delApDelA(const HepVector &ap) const
DAp/DA.
Definition: Helix.cc:584
double kappa(void) const
Return helix parameter kappa.
Definition: Helix.h:396

◆ pivot() [2/2]

const HepPoint3D & pivot ( void  ) const
inline

returns pivot position.

Definition at line 356 of file Helix.h.

357 {
358 DEBUG_HELIX;
359 return m_pivot;
360 }

◆ radius()

double radius ( void  ) const
inline

returns radious of helix.

Definition at line 364 of file Helix.h.

365 {
366 DEBUG_HELIX;
367 return m_r;
368 }

◆ set()

void set ( const HepPoint3D pivot,
const HepVector &  a,
const HepSymMatrix &  Ea 
)

Sets helix pivot position, parameters, and error matrix.

Definition at line 467 of file Helix.cc.

470{
471 m_pivot = pivot;
472 m_a = a;
473 m_Ea = Ea;
474 m_matrixValid = true;
475 m_helixValid = false;
476 updateCache();
477 DEBUG_HELIX;
478}

◆ set_exception()

bool set_exception ( bool  t)
static

set exception

Definition at line 112 of file Helix.cc.

113{
114 return ms_throw_exception = t;
115}

◆ set_limits()

void set_limits ( const HepVector &  a_min,
const HepVector &  a_max 
)
static

set limit for parameter "a"

Definition at line 123 of file Helix.cc.

124{
125 if (a_min.num_row() != 5 || a_max.num_row() != 5) return;
126 ms_amin = a_min;
127 ms_amax = a_max;
128 ms_check_range = true;
129}

◆ set_print()

bool set_print ( bool  t)
static

Set print option for debugging.

Definition at line 117 of file Helix.cc.

118{
119 return ms_print_debug = t;
120}

◆ sinPhi0()

double sinPhi0 ( void  ) const
inline

Return sin phi0.

Definition at line 492 of file Helix.h.

493 {
494 DEBUG_HELIX;
495 return m_sp;
496 }

◆ tanl()

double tanl ( void  ) const
inline

Return helix parameter tangent lambda.

Definition at line 412 of file Helix.h.

413 {
414 DEBUG_HELIX;
415 return m_ac[4];
416 }

◆ updateCache()

void updateCache ( void  )
private

updateCache

Definition at line 508 of file Helix.cc.

509{
510
511#if defined(BELLE_DEBUG)
512 checkValid();
513 if (m_helixValid) {
514#endif
515
516 //
517 // Calculate Helix center( xc, yc ).
518 //
519 // xc = x0 + (dr + (alpha / kappa)) * cos(phi0) (cm)
520 // yc = y0 + (dr + (alpha / kappa)) * sin(phi0) (cm)
521 //
522
523 m_ac[0] = m_a[0];
524 m_ac[1] = m_a[1];
525 m_ac[2] = m_a[2];
526 m_ac[3] = m_a[3];
527 m_ac[4] = m_a[4];
528
529 m_cp = cos(m_ac[1]);
530 m_sp = sin(m_ac[1]);
531 if (m_ac[2] != 0.0) {
532 if (m_ac[2] == DBL_MAX || m_ac[2] == (-DBL_MAX)) {
533 m_pt = m_r = 0;
534 return;
535 } else {
536 m_pt = 1. / m_ac[2];
537 m_r = m_alpha / m_ac[2];
538 }
539 } else {
540 m_pt = (DBL_MAX);
541 m_r = (DBL_MAX);
542 return;
543 }
544
545 double x = m_pivot.x() + (m_ac[0] + m_r) * m_cp;
546 double y = m_pivot.y() + (m_ac[0] + m_r) * m_sp;
547 m_center.setX(x);
548 m_center.setY(y);
549 m_center.setZ(0.);
550#if defined(BELLE_DEBUG)
551 } else {
552 m_ac[0] = m_a[0];
553 m_ac[1] = m_a[1];
554 m_ac[2] = m_a[2];
555 m_ac[3] = m_a[3];
556 m_ac[4] = m_a[4];
557
558 m_cp = cos(m_ac[1]);
559 m_sp = sin(m_ac[1]);
560 if (m_ac[2] != 0.0) {
561 if (m_ac[2] == DBL_MAX || m_ac[2] == (-DBL_MAX)) {
562 m_pt = m_r = 0;
563 return;
564 } else {
565 m_pt = 1. / m_ac[2];
566 m_r = m_alpha / m_ac[2];
567 }
568 } else {
569 m_pt = (DBL_MAX);
570 m_r = (DBL_MAX);
571 return;
572 }
573
574 double x = m_pivot.x() + (m_ac[0] + m_r) * m_cp;
575 double y = m_pivot.y() + (m_ac[0] + m_r) * m_sp;
576 m_center.setX(x);
577 m_center.setY(y);
578 m_center.setZ(0.);
579 }
580#endif
581}
void checkValid(void)
Check whether helix parameters is valid or not.
Definition: Helix.cc:895

◆ x() [1/3]

double * x ( double  dPhi,
double  p[3] 
) const

returns position after rotating angle dPhi in phi direction.

x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi)) y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi)) z = z0 + dz - (alpha / kappa) * tan(lambda) * phi

Returns
double[3]

Definition at line 216 of file Helix.cc.

217{
218 DEBUG_HELIX;
219 //
220 // Calculate position (x,y,z) along helix.
221 //
222 // x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi))
223 // y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi))
224 // z = z0 + dz - (alpha / kappa) * tan(lambda) * phi
225 //
226
227 p[0] = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi));
228 p[1] = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi));
229 p[2] = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
230
231 return p;
232}

◆ x() [2/3]

HepPoint3D x ( double  dPhi,
HepSymMatrix &  Ex 
) const

returns position and convariance matrix(Ex) after rotation.

Definition at line 235 of file Helix.cc.

236{
237 DEBUG_HELIX;
238
239 double x = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi));
240 double y = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi));
241 double z = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
242
243 //
244 // Calculate position error matrix.
245 // Ex(phi) = (@x/@a)(Ea)(@x/@a)^T, phi is deflection angle to specify the
246 // point to be calcualted.
247 //
248 // HepMatrix dXDA(3, 5, 0);
249 // dXDA = delXDelA(phi);
250 // Ex.assign(dXDA * m_Ea * dXDA.T());
251
252 if (m_matrixValid) Ex = m_Ea.similarity(delXDelA(phi));
253 else Ex = m_Ea;
254
255 return HepPoint3D(x, y, z);
256}
HepMatrix delXDelA(double phi) const
DX/DA.
Definition: Helix.cc:654

◆ x() [3/3]

HepPoint3D x ( double  dPhi = 0.) const

returns position after rotating angle dPhi in phi direction.

x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi)) y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi)) z = z0 + dz - (alpha / kappa) * tan(lambda) * phi

Returns
HepPoint3D

Definition at line 197 of file Helix.cc.

198{
199 DEBUG_HELIX;
200 //
201 // Calculate position (x,y,z) along helix.
202 //
203 // x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi))
204 // y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi))
205 // z = z0 + dz - (alpha / kappa) * tan(lambda) * phi
206 //
207
208 double x = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi));
209 double y = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi));
210 double z = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
211
212 return HepPoint3D(x, y, z);
213}

Member Data Documentation

◆ ConstantAlpha

const double ConstantAlpha = 222.376063
static

Constant alpha for uniform field.

Definition at line 283 of file Helix.h.

◆ invalidhelix

const std::string invalidhelix
staticprivate

String "Invalid Helix".

Definition at line 318 of file Helix.h.

◆ m_a

HepVector m_a
private

Helix parameter.

Definition at line 298 of file Helix.h.

◆ m_ac

double m_ac[5]
private

Cache of the helix parameter.

Definition at line 315 of file Helix.h.

◆ m_alpha

double m_alpha
private

10000.0/(speed of light)/B.

Definition at line 294 of file Helix.h.

◆ m_bField

double m_bField
private

Magnetic field, assuming uniform Bz in the unit of kG.

Definition at line 292 of file Helix.h.

◆ m_center

HepPoint3D m_center
private

Cache of the center position of Helix.

Definition at line 305 of file Helix.h.

◆ m_cp

double m_cp
private

Cache of the cos phi0.

Definition at line 307 of file Helix.h.

◆ m_Ea

HepSymMatrix m_Ea
private

Error of the helix parameter.

Definition at line 300 of file Helix.h.

◆ m_helixValid

bool m_helixValid
private

True: helix valid, False: helix not valid.

Definition at line 290 of file Helix.h.

◆ m_matrixValid

bool m_matrixValid
private

True: matrix valid, False: matrix not valid.

Definition at line 288 of file Helix.h.

◆ m_pivot

HepPoint3D m_pivot
private

Pivot.

Definition at line 296 of file Helix.h.

◆ m_pt

double m_pt
private

Cache of the pt.

Definition at line 311 of file Helix.h.

◆ m_r

double m_r
private

Cache of the r.

Definition at line 313 of file Helix.h.

◆ m_sp

double m_sp
private

Cache of the sin phi0.

Definition at line 309 of file Helix.h.

◆ ms_amax

HepVector ms_amax
staticprivate

maxiimum limit of Helix parameter a

Definition at line 233 of file Helix.h.

◆ ms_amin

HepVector ms_amin
staticprivate

minimum limit of Helix parameter a

Definition at line 231 of file Helix.h.

◆ ms_check_range

bool ms_check_range
staticprivate

Check the helix parameter's range.

Definition at line 235 of file Helix.h.

◆ ms_print_debug

bool ms_print_debug
staticprivate

Debug option flag.

Definition at line 237 of file Helix.h.

◆ ms_throw_exception

bool ms_throw_exception
staticprivate

Throw exception flag.

Definition at line 239 of file Helix.h.


The documentation for this class was generated from the following files: