Belle II Software development
ECLLocalMaximumFinderModule Class Reference

Class to find connected regions. More...

#include <ECLLocalMaximumFinderModule.h>

Inheritance diagram for ECLLocalMaximumFinderModule:
Module PathElement ECLLocalMaximumFinderPureCsIModule

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLLocalMaximumFinderModule ()
 Constructor.
 
virtual ~ECLLocalMaximumFinderModule ()
 Destructor.
 
virtual void initialize () override
 Initialize.
 
virtual void beginRun () override
 Begin.
 
virtual void event () override
 Event.
 
virtual void endRun () override
 End run.
 
virtual void terminate () override
 Terminate (close ROOT files here if you have opened any).
 
virtual const char * mcParticleArrayName () const
 MCParticles.
 
virtual const char * eclHitArrayName () const
 Name to be used for default or PureCsI option: ECLHits.
 
virtual const char * eclDigitArrayName () const
 Name to be used for default or PureCsI option: ECLDigits.
 
virtual const char * eclCalDigitArrayName () const
 Name to be used for default or PureCsI option: ECLCalDigits.
 
virtual const char * eclConnectedRegionArrayName () const
 Name to be used for default option: ECLConnectedRegions.
 
virtual const char * eclLocalMaximumArrayName () const
 Name to be used for default option: ECLLocalMaximums.
 
void resetClassifierVariables ()
 Reset Classifier Variables.
 
void resetTrainingVariables ()
 Reset Debug Variables.
 
void makeLocalMaximum (const ECLConnectedRegion &aCR, const int cellId, const int lmId)
 Make local maximum for a given connected region.
 
void addToSignalEnergy (int motherpdg, int motherindex, int pi0index, double weight)
 Add energy to vector.
 
bool isEnteringECL (const B2Vector3D &vec)
 Check if particle is produced outside of the ECL.
 
void getEnteringMother (const MCParticle &particle, int &pdg, int &arrayindex, int &pi0arrayindex)
 Get enterging mother of this particle.
 
int getIdPosition (const int type, const int id)
 Get Id position in the vector.
 
void getMax (int &maxtype, int &maxpos)
 Get the highest energy deposition particle type.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Public Attributes

StoreArray< MCParticlem_mcParticles
 Store array: MCParticle.
 
StoreArray< ECLHitm_eclHits
 Store array: ECLHit.
 
StoreArray< ECLDigitm_eclDigits
 Store array: ECLDigit.
 
StoreArray< ECLCalDigitm_eclCalDigits
 Store array: ECLCalDigit.
 
StoreArray< ECLConnectedRegionm_eclConnectedRegions
 Store array: ECLConnectedRegion.
 
StoreArray< ECLLocalMaximumm_eclLocalMaximums
 Store array: ECLLocalMaximum.
 
StoreObjPtr< EventLevelClusteringInfom_eventLevelClusteringInfo
 EventLevelClusteringInfo.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

double m_energyCut
 energy cut for seed
 
int m_isTrainingMode
 training mode for MVA methods (i.e.
 
std::string m_outfileName
 file name prefix of the training output file
 
std::string m_method
 Method to find the local maximum.
 
double m_truthFraction
 MC truth fraction.
 
double m_cutOffset
 cut offset
 
double m_cutSlope
 cut slope.
 
double m_cutRatioCorrection
 correction for nominator and denominator of the ratio.
 
const double c_minEnergyCut = 5.0 * Belle2::Unit::MeV
 Minimum LM energy.
 
std::vector< int > m_StoreArrPosition
 vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions
 
ECL::ECLNeighboursm_neighbourMap {nullptr}
 Neighbour maps.
 
ECL::ECLGeometryParm_geom {nullptr}
 Geometry.
 
TFile * m_outfile {nullptr}
 Output training files and trees.
 
TTree * m_tree {nullptr}
 tree that contain information for MVA training
 
float m_energyRatioNeighbour [c_nMaxNeighbours] {}
 energy ratio of neighbour 0..9 to center
 
float m_time = 0.0
 time
 
float m_energy = 0.0
 Variables to monitor the MVA training.
 
float m_thetaId = 0.0
 local maximum center theta Id
 
float m_phiId = 0.0
 local maximum center theta Id
 
float m_cellId = 0.0
 local maximum center cell Id
 
float m_maxNeighbourEnergy = 0.0
 highest energy of all neighbours
 
float m_timeResolution = 0.0
 time resolution
 
float m_timeFitFailed = 0.0
 failed fit
 
float m_CRId = 0.0
 CR ID.
 
float m_LMId = 0.0
 LM ID.
 
float m_target = 0.0
 MC truth variables.
 
float m_targetindex = 0.0
 target array index
 
float m_targetpi0index = 0.0
 target array index
 
float m_nNeighbours10 = 0.0
 Variables (possibly) used for cut classification.
 
float m_maxEnergyRatio = 0.0
 Highest energetic neighbour energy divided by LM energy.
 
double m_totalSignalEnergy = 0.0
 total energy of this digit
 
double m_signalEnergy [10][5] {}
 total energy per MC matching type of this digit
 
int m_signalId [10][5] {}
 total energy per MC matching type of this digit
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Static Private Attributes

static const unsigned c_nMaxNeighbours = 12
 Variables (possibly) used for MVA classification.
 

Detailed Description

Class to find connected regions.

Definition at line 41 of file ECLLocalMaximumFinderModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ECLLocalMaximumFinderModule()

Constructor.

Definition at line 44 of file ECLLocalMaximumFinderModule.cc.

44 : Module(),
51{
52 // Set description.
53 setDescription("ECLLocalMaximumFinderModule");
54
55 // Parallel processing certification.
57
58 // Add module parameters.
59 addParam("energyCut", m_energyCut, "Seed energy cut [MeV], minimum is 5.0 MeV.", 10.0 * Belle2::Unit::MeV);
60 addParam("isTrainingMode", m_isTrainingMode,
61 "Run in training mode (i.e. fill file with MVA input variables and determine MC truth of LM.).", 0);
62 addParam("outfileName", m_outfileName, "Output file name for training file.", std::string("ECLLocalMaximumFinderOutput.root"));
63 addParam("method", m_method, "Method to determine the LM (cut, none, fastbdt).", std::string("none"));
64 addParam("truthFraction", m_truthFraction, "Minimum matched energy fraction truth/rec for the LM.", 0.51);
65 addParam("cutOffset", m_cutOffset, "Cut method specific: Offset. (BaBar: 2.5, high eff: 1.40)", 2.5);
66 addParam("cutSlope", m_cutSlope, "Cut method specific: Slope. (BaBar: 0.5, high eff: 3.0)", 0.5);
67 addParam("cutRatioCorrection", m_cutRatioCorrection, "Cut method specific: Ratio correction.", 0.0);
68
69}
double m_cutRatioCorrection
correction for nominator and denominator of the ratio.
StoreArray< ECLConnectedRegion > m_eclConnectedRegions
Store array: ECLConnectedRegion.
virtual const char * eclHitArrayName() const
Name to be used for default or PureCsI option: ECLHits.
StoreArray< ECLLocalMaximum > m_eclLocalMaximums
Store array: ECLLocalMaximum.
virtual const char * eclLocalMaximumArrayName() const
Name to be used for default option: ECLLocalMaximums.
std::string m_method
Method to find the local maximum.
std::string m_outfileName
file name prefix of the training output file
StoreArray< ECLDigit > m_eclDigits
Store array: ECLDigit.
virtual const char * mcParticleArrayName() const
MCParticles.
virtual const char * eclDigitArrayName() const
Name to be used for default or PureCsI option: ECLDigits.
StoreArray< ECLHit > m_eclHits
Store array: ECLHit.
virtual const char * eclConnectedRegionArrayName() const
Name to be used for default option: ECLConnectedRegions.
StoreArray< MCParticle > m_mcParticles
Store array: MCParticle.
virtual const char * eclCalDigitArrayName() const
Name to be used for default or PureCsI option: ECLCalDigits.
StoreArray< ECLCalDigit > m_eclCalDigits
Store array: ECLCalDigit.
int m_isTrainingMode
training mode for MVA methods (i.e.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
Module()
Constructor.
Definition: Module.cc:30
static const double MeV
[megaelectronvolt]
Definition: Unit.h:114
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~ECLLocalMaximumFinderModule()

Destructor.

Definition at line 71 of file ECLLocalMaximumFinderModule.cc.

72{
73 ;
74}

Member Function Documentation

◆ addToSignalEnergy()

void addToSignalEnergy ( int  motherpdg,
int  motherindex,
int  pi0index,
double  weight 
)

Add energy to vector.

Definition at line 522 of file ECLLocalMaximumFinderModule.cc.

523{
524
525 // for the LM training and CR/LM debugging
526 if (motherpdg == Const::photon.getPDGCode()) {
527 if (pi0index >= 0) { // photon from pi0
528 int idpos = getIdPosition(1, motherindex);
529 m_signalEnergy[1][idpos] += weight;
530 } else {
531 int idpos = getIdPosition(0, motherindex);
532 m_signalEnergy[0][idpos] += weight; // photon from another source
533 }
534 } else if (abs(motherpdg) == Const::electron.getPDGCode()) { // electron
535 int idpos = getIdPosition(2, motherindex);
536 m_signalEnergy[2][idpos] += weight;
537 } else if (abs(motherpdg) == Const::muon.getPDGCode()) { // muon
538 int idpos = getIdPosition(3, motherindex);
539 m_signalEnergy[3][idpos] += weight;
540 } else if (abs(motherpdg) == Const::Klong.getPDGCode() or abs(motherpdg) == Const::neutron.getPDGCode()) { // neutral hadron
541 int idpos = getIdPosition(4, motherindex);
542 m_signalEnergy[4][idpos] += weight;
543 } else if (abs(motherpdg) == Const::pion.getPDGCode() or abs(motherpdg) == Const::kaon.getPDGCode()
544 or abs(motherpdg) == Const::proton.getPDGCode()) { // charged hadron
545 int idpos = getIdPosition(5, motherindex);
546 m_signalEnergy[5][idpos] += weight;
547 } else { // everything else
548 int idpos = getIdPosition(6, motherindex);
549 m_signalEnergy[6][idpos] += weight;
550 }
551}
static const ParticleType neutron
neutron particle
Definition: Const.h:675
static const ChargedStable muon
muon particle
Definition: Const.h:660
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
static const ParticleType Klong
K^0_L particle.
Definition: Const.h:678
static const ChargedStable proton
proton particle
Definition: Const.h:663
static const ChargedStable kaon
charged kaon particle
Definition: Const.h:662
static const ParticleType photon
photon particle
Definition: Const.h:673
static const ChargedStable electron
electron particle
Definition: Const.h:659
double m_signalEnergy[10][5]
total energy per MC matching type of this digit
int getIdPosition(const int type, const int id)
Get Id position in the vector.

◆ beginRun()

void beginRun ( void  )
overridevirtual

Begin.

Reimplemented from Module.

Definition at line 161 of file ECLLocalMaximumFinderModule.cc.

162{
163 ;
164}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ eclCalDigitArrayName()

virtual const char * eclCalDigitArrayName ( ) const
inlinevirtual

Name to be used for default or PureCsI option: ECLCalDigits.

Reimplemented in ECLLocalMaximumFinderPureCsIModule.

Definition at line 99 of file ECLLocalMaximumFinderModule.h.

100 { return "ECLCalDigits" ; }

◆ eclConnectedRegionArrayName()

virtual const char * eclConnectedRegionArrayName ( ) const
inlinevirtual

Name to be used for default option: ECLConnectedRegions.

Reimplemented in ECLLocalMaximumFinderPureCsIModule.

Definition at line 103 of file ECLLocalMaximumFinderModule.h.

104 { return "ECLConnectedRegions" ; }

◆ eclDigitArrayName()

virtual const char * eclDigitArrayName ( ) const
inlinevirtual

Name to be used for default or PureCsI option: ECLDigits.

Reimplemented in ECLLocalMaximumFinderPureCsIModule.

Definition at line 95 of file ECLLocalMaximumFinderModule.h.

96 { return "ECLDigits" ; }

◆ eclHitArrayName()

virtual const char * eclHitArrayName ( ) const
inlinevirtual

Name to be used for default or PureCsI option: ECLHits.

Definition at line 91 of file ECLLocalMaximumFinderModule.h.

92 { return "ECLHits" ; }

◆ eclLocalMaximumArrayName()

virtual const char * eclLocalMaximumArrayName ( ) const
inlinevirtual

Name to be used for default option: ECLLocalMaximums.

Reimplemented in ECLLocalMaximumFinderPureCsIModule.

Definition at line 107 of file ECLLocalMaximumFinderModule.h.

108 { return "ECLLocalMaximums" ; }

◆ endRun()

void endRun ( void  )
overridevirtual

End run.

Reimplemented from Module.

Definition at line 357 of file ECLLocalMaximumFinderModule.cc.

358{
359 B2DEBUG(200, "ECLLocalMaximumFinderModule::endRun()");
360}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Event.

Reimplemented from Module.

Definition at line 166 of file ECLLocalMaximumFinderModule.cc.

167{
168 B2DEBUG(200, "ECLLocalMaximumFinderModule::event()");
169
170 // Fill a vector that can be used to map cellid -> store array position
171 std::fill_n(m_StoreArrPosition.begin(), m_StoreArrPosition.size(), -1);
172 for (int i = 0; i < m_eclCalDigits.getEntries(); i++) {
173 m_StoreArrPosition[m_eclCalDigits[i]->getCellId()] = i;
174 }
175
176 // Vector with neighbour ids.
177 std::vector< double > vNeighourEnergies;
178 vNeighourEnergies.resize(c_nMaxNeighbours);
179
180 // Loop over connected regions.
181 for (const ECLConnectedRegion& aCR : m_eclConnectedRegions) {
182 const int crId = aCR.getCRId();
183 int iLM = 1;
184
185 // Loop over all entries in this CR.
186 for (const ECLCalDigit& aECLCalDigit : aCR.getRelationsTo<ECLCalDigit>()) {
187 // Check seed energy cut.
188 if (aECLCalDigit.getEnergy() >= m_energyCut) {
189
190 // Clean up for this candiate (MVA is trained per LM, regardless of CR)
191 std::fill_n(vNeighourEnergies.begin(), vNeighourEnergies.size(),
192 -999); // -999 means later: this digit is just not available in this neighbour definition.
195
196 // Check neighbours: Must be a local energy maximum.
197 bool isLocMax = 1;
198 int neighbourCount = 0;
199 for (auto& neighbourId : m_neighbourMap->getNeighbours(aECLCalDigit.getCellId())) {
200 if (neighbourId == aECLCalDigit.getCellId()) continue; // Skip the center cell to avoid possible floating point issues.
201
202 const int pos = m_StoreArrPosition[neighbourId]; // Get position in the store array for this digit.
203
204 double energyNeighbour = 0.0;
205 if (pos >= 0) {
206 energyNeighbour = m_eclCalDigits[pos]->getEnergy(); // Get the energy directly from the store array.
207 vNeighourEnergies[neighbourCount] = energyNeighbour;
208 } else {
209 // Digit does not belong to this CR
210 vNeighourEnergies[neighbourCount] = 0.0;
211 }
212 ++neighbourCount;
213
214 if (energyNeighbour > aECLCalDigit.getEnergy()) {
215 isLocMax = 0;
216 break;
217 }
218 }
219
220 // It is a local maximum. Get all variables needed for classification.
221 if (isLocMax) {
222
223 for (unsigned int npos = 0; npos < vNeighourEnergies.size(); ++npos) {
224 if (vNeighourEnergies[npos] >= 0) {
225 m_energyRatioNeighbour[npos] = static_cast < float >(vNeighourEnergies[npos] / aECLCalDigit.getEnergy());
226 if (vNeighourEnergies[npos] > m_maxNeighbourEnergy) m_maxNeighbourEnergy = vNeighourEnergies[npos];
227 if (vNeighourEnergies[npos] > 1.0 * Belle2::Unit::MeV) ++m_nNeighbours10;
228 } else m_energyRatioNeighbour[npos] = 0.0;
229 }
230 m_time = aECLCalDigit.getTime();
231 m_maxEnergyRatio = m_maxNeighbourEnergy / aECLCalDigit.getEnergy();
232
233 // Fill training monitoring variables and MC truth information.
234 if (m_isTrainingMode > 0) {
235
236 m_energy = static_cast < float >(aECLCalDigit.getEnergy());
237 m_cellId = static_cast < float >(aECLCalDigit.getCellId());
238 m_timeResolution = static_cast < float >(aECLCalDigit.getTimeResolution());
239 m_timeFitFailed = static_cast < float >(aECLCalDigit.isFailedFit());
240 m_CRId = static_cast < float >(crId);
241 m_LMId = static_cast < float >(iLM);
242
243 m_geom->Mapping(m_cellId - 1);
244 m_thetaId = static_cast < float >(m_geom->GetThetaID());
245 m_phiId = static_cast < float >(m_geom->GetPhiID());
246
247 // This requires MC matching before this stage!
248 int pi0index = -1;
249 int maxtype = 0;
250 int maxpos = 0;
251
252 auto relatedParticlePairs = aECLCalDigit.getRelationsWith<MCParticle>();
253
254 for (unsigned int irel = 0; irel < relatedParticlePairs.size(); irel++) {
255 const auto particle = relatedParticlePairs.object(irel);
256 const double weight = relatedParticlePairs.weight(irel);
257
258 int motherpdg = -1;
259 int motherindex = -1;
260 pi0index = -1;
261 getEnteringMother(*particle, motherpdg, motherindex, pi0index);
262 addToSignalEnergy(motherpdg, motherindex, pi0index, weight);
263 }
264
265 B2DEBUG(175, " -> digt energy: " << aECLCalDigit.getEnergy());
266 B2DEBUG(175, "photon: " << m_signalEnergy[0][0] << " " << m_signalEnergy[0][1]);
267 B2DEBUG(175, "pi0: " << m_signalEnergy[1][0] << " " << m_signalEnergy[1][1]);
268 B2DEBUG(175, "electron: " << m_signalEnergy[2][0] << " " << m_signalEnergy[2][1]);
269 B2DEBUG(175, "muon: " << m_signalEnergy[3][0] << " " << m_signalEnergy[3][1]);
270 B2DEBUG(175, "neutral hadron: " << m_signalEnergy[4][0] << " " << m_signalEnergy[4][1]);
271 B2DEBUG(175, "charged hadron: " << m_signalEnergy[5][0] << " " << m_signalEnergy[5][1]);
272 B2DEBUG(175, "other: " << m_signalEnergy[6][0]);
273
274 maxtype = 0;
275 maxpos = 0;
276 getMax(maxtype, maxpos);
277
278 if (maxtype >= 0) {
279 if (m_signalEnergy[maxtype][maxpos] >= m_truthFraction * aECLCalDigit.getEnergy()) {
280 m_target = maxtype;
281 m_targetindex = m_signalId[maxtype][maxpos];
282 m_targetpi0index = pi0index;
283 } else {
284 m_target = 7;
285 }
286 } else {
287 m_target = 7;
288 }
289
290 m_tree->Fill();
291
292 } // end training
293
294 if (m_method == "cut") {
295
296 B2DEBUG(200, "m_cutSlope: " << m_cutSlope << ", m_nNeighbours10: " << m_nNeighbours10 << ", m_cutOffset: " << m_cutOffset <<
297 ", m_maxNeighbourEnergy: " << m_maxNeighbourEnergy << ", m_cutRatioCorrection: " << m_cutRatioCorrection <<
298 ", aECLCalDigit.getEnergy(): " << aECLCalDigit.getEnergy());
299 B2DEBUG(200, "m_cutSlope * (m_nNeighbours10 - m_cutOffset): " << m_cutSlope * (m_nNeighbours10 - m_cutOffset));
300 B2DEBUG(200, "(m_maxNeighbourEnergy - m_cutRatioCorrection) / (aECLCalDigit.getEnergy() - m_cutRatioCorrection)" <<
301 (m_maxNeighbourEnergy - m_cutRatioCorrection) / (aECLCalDigit.getEnergy() - m_cutRatioCorrection) << "\n");
302
304 (aECLCalDigit.getEnergy() - m_cutRatioCorrection)) {
305 makeLocalMaximum(aCR, aECLCalDigit.getCellId(), iLM);
306 ++iLM;
307 }
308 } else if (m_method == "none") { // All energy local maximums will become local maximums.
309 makeLocalMaximum(aCR, aECLCalDigit.getCellId(), iLM);
310 ++iLM;
311 }
312
313 }
314
315 } // end check energy
316
317 } // end CalDigit loop
318
319 // Check if there is at least one local maximum in the CR. If not, make the highest energetic crystal one.
320 if (iLM == 1) {
321
322 int highestEnergyCellId = -1;
323 double highestEnergy = 0.0;
324
325 // Loop over all entries in this CR.
326 for (const ECLCalDigit& aECLCalDigit : aCR.getRelationsTo<ECLCalDigit>(eclCalDigitArrayName())) {
327 if (aECLCalDigit.getEnergy() > highestEnergy) {
328 highestEnergyCellId = aECLCalDigit.getCellId();
329 highestEnergy = aECLCalDigit.getEnergy();
330 }
331 } // end CalDigit loop
332
333 makeLocalMaximum(aCR, highestEnergyCellId, 0);
334
335 }
336
337 } // end CR loop
338
339 // Find the number of local maximums in each ECL region in mdst
340 uint16_t nLMPerRegion[3] = {};
341 for (const ECLLocalMaximum& aLM : m_eclLocalMaximums) {
342 const int iCellId = aLM.getCellId();
343 if (ECLElementNumbers::isForward(iCellId)) {nLMPerRegion[0]++;}
344 if (ECLElementNumbers::isBarrel(iCellId)) {nLMPerRegion[1]++;}
345 if (ECLElementNumbers::isBackward(iCellId)) {nLMPerRegion[2]++;}
346 }
347
348 // Store numbers in EventLevelClusteringInfo mdst object
350 m_eventLevelClusteringInfo->setNECLLocalMaximumsFWD(nLMPerRegion[0]);
351 m_eventLevelClusteringInfo->setNECLLocalMaximumsBarrel(nLMPerRegion[1]);
352 m_eventLevelClusteringInfo->setNECLLocalMaximumsBWD(nLMPerRegion[2]);
353
354}
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
Class to store connected regions (CRs)
TTree * m_tree
tree that contain information for MVA training
void getEnteringMother(const MCParticle &particle, int &pdg, int &arrayindex, int &pi0arrayindex)
Get enterging mother of this particle.
float m_energyRatioNeighbour[c_nMaxNeighbours]
energy ratio of neighbour 0..9 to center
float m_phiId
local maximum center theta Id
float m_cellId
local maximum center cell Id
float m_energy
Variables to monitor the MVA training.
ECL::ECLNeighbours * m_neighbourMap
Neighbour maps.
void makeLocalMaximum(const ECLConnectedRegion &aCR, const int cellId, const int lmId)
Make local maximum for a given connected region.
void resetClassifierVariables()
Reset Classifier Variables.
float m_thetaId
local maximum center theta Id
float m_maxNeighbourEnergy
highest energy of all neighbours
void addToSignalEnergy(int motherpdg, int motherindex, int pi0index, double weight)
Add energy to vector.
static const unsigned c_nMaxNeighbours
Variables (possibly) used for MVA classification.
float m_maxEnergyRatio
Highest energetic neighbour energy divided by LM energy.
int m_signalId[10][5]
total energy per MC matching type of this digit
std::vector< int > m_StoreArrPosition
vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions
StoreObjPtr< EventLevelClusteringInfo > m_eventLevelClusteringInfo
EventLevelClusteringInfo.
void resetTrainingVariables()
Reset Debug Variables.
void getMax(int &maxtype, int &maxpos)
Get the highest energy deposition particle type.
float m_nNeighbours10
Variables (possibly) used for cut classification.
Class to store local maxima (LM)
void Mapping(int cid)
Mapping theta, phi Id.
int GetThetaID()
Get Theta Id.
const std::vector< short int > & getNeighbours(short int cid) const
Return the neighbours for a given cell ID.
A Class to store the Monte Carlo particle information.
Definition: MCParticle.h:32
RelationVector< TO > getRelationsTo(const std::string &name="", const std::string &namedRelation="") const
Get the relations that point from this object to another store array.
bool isForward(int cellId)
Check whether the crystal is in forward ECL.
bool isBarrel(int cellId)
Check whether the crystal is in barrel ECL.
bool isBackward(int cellId)
Check whether the crystal is in backward ECL.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getEnteringMother()

void getEnteringMother ( const MCParticle particle,
int &  pdg,
int &  arrayindex,
int &  pi0arrayindex 
)

Get enterging mother of this particle.

Definition at line 437 of file ECLLocalMaximumFinderModule.cc.

438{
439
440 int index = particle.getArrayIndex();
441 int pi0index = -1;
442
443 while (!isEnteringECL(m_mcParticles[index]->getProductionVertex())) {
444 if (m_mcParticles[index]->getMother()) index = m_mcParticles[index]->getMother()->getArrayIndex();
445 else index = -1;
446 };
447
448 // For photon mother: are they from a pi0? This can be used to improved overlap/merged pi0 reconstruction.
449 if (m_mcParticles[index]->getPDG() == Const::photon.getPDGCode()) {
450 if (m_mcParticles[index]->getMother()->getPDG() == Const::pi0.getPDGCode()) {
451 pi0index = m_mcParticles[index]->getMother()->getArrayIndex();
452 }
453 }
454
455 // Dont include mother if its energy is too low or if its a photon from a neutron interaction.
456 if ((m_mcParticles[index]->getEnergy() < 5.0 * Belle2::Unit::MeV)
457 or (m_mcParticles[index]->getPDG() == Const::photon.getPDGCode()
458 and abs(m_mcParticles[index]->getMother()->getPDG()) == Const::proton.getPDGCode())) {
459 pdg = -1;
460 arrayindex = -1;
461 pi0arrayindex = -1;
462 } else {
463 pdg = m_mcParticles[index]->getPDG();
464 arrayindex = index;
465 pi0arrayindex = pi0index;
466 }
467}
static const ParticleType pi0
neutral pion particle
Definition: Const.h:674
bool isEnteringECL(const B2Vector3D &vec)
Check if particle is produced outside of the ECL.

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getIdPosition()

int getIdPosition ( const int  type,
const int  id 
)

Get Id position in the vector.

Definition at line 486 of file ECLLocalMaximumFinderModule.cc.

487{
488
489 for (int i = 0; i < 5; i++) {
490 if (m_signalId[type][i] == id) return i;
491 if (m_signalId[type][i] == -1) {
492 m_signalId[type][i] = id;
493 return i; //next free one
494 }
495 }
496
497 return -1;
498}

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getMax()

void getMax ( int &  maxtype,
int &  maxpos 
)

Get the highest energy deposition particle type.

Definition at line 501 of file ECLLocalMaximumFinderModule.cc.

502{
503 double maxe = 0.;
504 int maxtype = -1;
505 int maxid = -1;
506
507 for (unsigned int i = 0; i < 10; ++i) {
508 for (unsigned int j = 0; j < 5; ++j) {
509 if (m_signalEnergy[i][j] > maxe) {
510 maxe = m_signalEnergy[i][j];
511 maxtype = i;
512 maxid = j;
513 }
514 }
515 }
516
517 type = maxtype;
518 id = maxid;
519
520}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize.

Reimplemented from Module.

Definition at line 76 of file ECLLocalMaximumFinderModule.cc.

77{
78 B2DEBUG(200, "ECLLocalMaximumFinderModule::initialize()");
79
82 m_eclConnectedRegions.requireRelationTo(m_eclCalDigits);
83 m_eclLocalMaximums.registerInDataStore(eclLocalMaximumArrayName());
84 m_eclConnectedRegions.registerRelationTo(m_eclLocalMaximums);
85 m_eventLevelClusteringInfo.isRequired();
86
87 // Check user input.
89 B2WARNING("ECLLocalMaximumFinderModule::initialize: Energy threshold too small, resetting to " << c_minEnergyCut << " GeV");
91 }
92
93 if (m_truthFraction < 1e-6) {
94 B2WARNING("ECLLocalMaximumFinderModule::initialize: Matching fraction must be above 1e-6, input: " << m_truthFraction <<
95 " will be reset to 1e-6.");
96 m_truthFraction = 1e-6;
97 }
98
99 if (m_truthFraction > 1.0) {
100 B2WARNING("ECLLocalMaximumFinderModule::initialize: Matching fraction must be below 1.0, input: " << m_truthFraction <<
101 " will be reset to 1.0.");
102 m_truthFraction = 1.0;
103 }
104
105 // Geometry instance.
107
108 // Initialize neighbour map.
109 m_neighbourMap = new ECLNeighbours("N", 1);
110
111 // Reset all variables.
113
114 // Open output files and declare branches if in training mode. Each file will hold a flat ntuple of training data.
115 m_outfile = nullptr;
116 m_tree = nullptr;
117 if (m_isTrainingMode > 0) {
118 const int cBufferLength = 500;
119 char tmpBuffer[cBufferLength];
120 int tmpBufferLength = sprintf(tmpBuffer, "%s", m_outfileName.c_str());
121
122 if (tmpBufferLength >= cBufferLength) {
123 B2FATAL("ECLLocalMaximumFinderModule::initialize(): Output training filename length too long!");
124 }
125
126 m_outfile = new TFile(tmpBuffer, "RECREATE");
127 m_tree = new TTree("locmax", "locmax");
128 m_tree->Branch("energyRatioNeighbour0", &m_energyRatioNeighbour[0], "energyRatioNeighbour0/F");
129 m_tree->Branch("energyRatioNeighbour1", &m_energyRatioNeighbour[1], "energyRatioNeighbour1/F");
130 m_tree->Branch("energyRatioNeighbour2", &m_energyRatioNeighbour[2], "energyRatioNeighbour2/F");
131 m_tree->Branch("energyRatioNeighbour3", &m_energyRatioNeighbour[3], "energyRatioNeighbour3/F");
132 m_tree->Branch("energyRatioNeighbour4", &m_energyRatioNeighbour[4], "energyRatioNeighbour4/F");
133 m_tree->Branch("energyRatioNeighbour5", &m_energyRatioNeighbour[5], "energyRatioNeighbour5/F");
134 m_tree->Branch("energyRatioNeighbour6", &m_energyRatioNeighbour[6], "energyRatioNeighbour6/F");
135 m_tree->Branch("energyRatioNeighbour7", &m_energyRatioNeighbour[7], "energyRatioNeighbour7/F");
136 m_tree->Branch("energyRatioNeighbour8", &m_energyRatioNeighbour[8], "energyRatioNeighbour8/F");
137 m_tree->Branch("energyRatioNeighbour9", &m_energyRatioNeighbour[9], "energyRatioNeighbour9/F");
138 m_tree->Branch("energyRatioNeighbour10", &m_energyRatioNeighbour[10], "energyRatioNeighbour10/F");
139 m_tree->Branch("energyRatioNeighbour11", &m_energyRatioNeighbour[11], "energyRatioNeighbour11/F");
140 m_tree->Branch("energy", &m_energy, "energy/F");
141 m_tree->Branch("target", &m_target, "target/F");
142 m_tree->Branch("targetindex", &m_targetindex, "targetindex/F");
143 m_tree->Branch("targetpi0index", &m_targetpi0index, "targetpi0index/F");
144 m_tree->Branch("thetaId", &m_thetaId, "thetaId/F");
145 m_tree->Branch("phiId", &m_phiId, "phiId/F");
146 m_tree->Branch("cellId", &m_cellId, "cellId/F");
147 m_tree->Branch("maxNeighbourEnergy", &m_maxNeighbourEnergy, "maxNeighbourEnergy/F");
148 m_tree->Branch("nNeighbours10", &m_nNeighbours10, "nNeighbours10/F");
149 m_tree->Branch("time", &m_time, "time/F");
150 m_tree->Branch("timeResolution", &m_timeResolution, "timeResolution/F");
151 m_tree->Branch("timeFitFailed", &m_timeFitFailed, "timeFitFailed/F");
152 m_tree->Branch("CRId", &m_CRId, "CRId/F");
153 m_tree->Branch("LMId", &m_LMId, "LMId/F");
154 }
155
156 // initialize the vector that gives the relation between cellid and store array position
158
159}
TFile * m_outfile
Output training files and trees.
const double c_minEnergyCut
Minimum LM energy.
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.
Class to get the neighbours for a given cell id.
Definition: ECLNeighbours.h:25
const int c_NCrystals
Number of crystals.

◆ isEnteringECL()

bool isEnteringECL ( const B2Vector3D vec)

Check if particle is produced outside of the ECL.

Definition at line 469 of file ECLLocalMaximumFinderModule.cc.

470{
471
472 const double theta = vertex.Theta();
473
474 if (theta > 0.555015 and theta < 2.26369) { //barrel
475 double radius = vertex.Perp();
476 if (radius < 125 * Belle2::Unit::cm) return true;
477 } else if (theta <= 0.555015) { //fwd
478 if (vertex.Z() < 196.16 * Belle2::Unit::cm) return true;
479 } else if (theta >= 2.26369) { //bwd
480 if (vertex.Z() > -102.16 * Belle2::Unit::cm) return true;
481 }
482
483 return false;
484}
static const double cm
Standard units with the value = 1.
Definition: Unit.h:47

◆ makeLocalMaximum()

void makeLocalMaximum ( const ECLConnectedRegion aCR,
const int  cellId,
const int  lmId 
)

Make local maximum for a given connected region.

Definition at line 380 of file ECLLocalMaximumFinderModule.cc.

381{
382 // Set the local maximum dataobject.
383 const auto aLocalMaximum = m_eclLocalMaximums.appendNew();
384
385 B2DEBUG(175, "ECLLocalMaximumFinderModule::makeLocalMaximum(): local maximum cellid: " << cellId);
386
387 // Set the id of this local maximum.
388 aLocalMaximum->setLMId(lmId);
389
390 // Set the cell Id of the digit.
391 aLocalMaximum->setCellId(cellId);
392
393 // Add relations to ECLConnectedRegion.
394 aCR.addRelationTo(aLocalMaximum);
395
396}
void addRelationTo(const RelationsInterface< BASE > *object, float weight=1.0, const std::string &namedRelation="") const
Add a relation from this object to another object (with caching).

◆ mcParticleArrayName()

virtual const char * mcParticleArrayName ( ) const
inlinevirtual

MCParticles.

Definition at line 87 of file ECLLocalMaximumFinderModule.h.

88 { return "MCParticles" ; }

◆ resetClassifierVariables()

void resetClassifierVariables ( )

Reset Classifier Variables.

Definition at line 415 of file ECLLocalMaximumFinderModule.cc.

416{
417
418 for (unsigned i = 0; i < c_nMaxNeighbours; ++i) {
420 }
421
422 m_energy = 0.;
423 m_cellId = -1;
424 m_thetaId = -1;
425 m_phiId = -1;
426 m_nNeighbours10 = 0;
428 m_time = -9999;
429 m_timeResolution = -9999.;
430 m_timeFitFailed = -9999.;
431 m_CRId = -1;
432 m_LMId = -1;
433 m_maxEnergyRatio = 0.0;
434}

◆ resetTrainingVariables()

void resetTrainingVariables ( )

Reset Debug Variables.

Definition at line 398 of file ECLLocalMaximumFinderModule.cc.

399{
400 m_target = -1;
401 m_targetindex = -1;
402 m_targetpi0index = -1;
403
405
406 for (unsigned int i = 0; i < 10; ++i) {
407 for (unsigned int j = 0; j < 5; ++j) {
408 m_signalEnergy[i][j] = 0.;
409 m_signalId[i][j] = -1;
410 }
411 }
412
413}
double m_totalSignalEnergy
total energy of this digit

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

Terminate (close ROOT files here if you have opened any).

Reimplemented from Module.

Definition at line 363 of file ECLLocalMaximumFinderModule.cc.

364{
365 B2DEBUG(200, "ECLLocalMaximumFinderModule::terminate()");
366
367 // If run in trainingmode, write the training file.
368 if (m_outfile and m_tree) {
369 m_outfile->cd();
370 m_tree->Write();
371 m_outfile->Write();
372 m_outfile->Close();
373 delete m_outfile;
374 }
375
376 if (m_neighbourMap) delete m_neighbourMap;
377
378}

Member Data Documentation

◆ c_minEnergyCut

const double c_minEnergyCut = 5.0 * Belle2::Unit::MeV
private

Minimum LM energy.

Definition at line 147 of file ECLLocalMaximumFinderModule.h.

◆ c_nMaxNeighbours

const unsigned c_nMaxNeighbours = 12
staticprivate

Variables (possibly) used for MVA classification.

Must be float for our framework mvas. maximal number of neighbours (can be more than 8 only in the endcaps)

Definition at line 163 of file ECLLocalMaximumFinderModule.h.

◆ m_cellId

float m_cellId = 0.0
private

local maximum center cell Id

Definition at line 171 of file ECLLocalMaximumFinderModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_CRId

float m_CRId = 0.0
private

CR ID.

Definition at line 175 of file ECLLocalMaximumFinderModule.h.

◆ m_cutOffset

double m_cutOffset
private

cut offset

Definition at line 142 of file ECLLocalMaximumFinderModule.h.

◆ m_cutRatioCorrection

double m_cutRatioCorrection
private

correction for nominator and denominator of the ratio.

Definition at line 144 of file ECLLocalMaximumFinderModule.h.

◆ m_cutSlope

double m_cutSlope
private

cut slope.

Definition at line 143 of file ECLLocalMaximumFinderModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_eclCalDigits

StoreArray<ECLCalDigit> m_eclCalDigits

Store array: ECLCalDigit.

Definition at line 75 of file ECLLocalMaximumFinderModule.h.

◆ m_eclConnectedRegions

StoreArray<ECLConnectedRegion> m_eclConnectedRegions

Store array: ECLConnectedRegion.

Definition at line 78 of file ECLLocalMaximumFinderModule.h.

◆ m_eclDigits

StoreArray<ECLDigit> m_eclDigits

Store array: ECLDigit.

Definition at line 72 of file ECLLocalMaximumFinderModule.h.

◆ m_eclHits

StoreArray<ECLHit> m_eclHits

Store array: ECLHit.

Definition at line 69 of file ECLLocalMaximumFinderModule.h.

◆ m_eclLocalMaximums

StoreArray<ECLLocalMaximum> m_eclLocalMaximums

Store array: ECLLocalMaximum.

Definition at line 81 of file ECLLocalMaximumFinderModule.h.

◆ m_energy

float m_energy = 0.0
private

Variables to monitor the MVA training.

energy of the center cell

Definition at line 168 of file ECLLocalMaximumFinderModule.h.

◆ m_energyCut

double m_energyCut
private

energy cut for seed

Definition at line 137 of file ECLLocalMaximumFinderModule.h.

◆ m_energyRatioNeighbour

float m_energyRatioNeighbour[c_nMaxNeighbours] {}
private

energy ratio of neighbour 0..9 to center

Definition at line 164 of file ECLLocalMaximumFinderModule.h.

◆ m_eventLevelClusteringInfo

StoreObjPtr<EventLevelClusteringInfo> m_eventLevelClusteringInfo

◆ m_geom

ECL::ECLGeometryPar* m_geom {nullptr}
private

Geometry.

Definition at line 156 of file ECLLocalMaximumFinderModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_isTrainingMode

int m_isTrainingMode
private

training mode for MVA methods (i.e.

create weights)

Definition at line 138 of file ECLLocalMaximumFinderModule.h.

◆ m_LMId

float m_LMId = 0.0
private

LM ID.

Definition at line 176 of file ECLLocalMaximumFinderModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_maxEnergyRatio

float m_maxEnergyRatio = 0.0
private

Highest energetic neighbour energy divided by LM energy.

Definition at line 185 of file ECLLocalMaximumFinderModule.h.

◆ m_maxNeighbourEnergy

float m_maxNeighbourEnergy = 0.0
private

highest energy of all neighbours

Definition at line 172 of file ECLLocalMaximumFinderModule.h.

◆ m_mcParticles

StoreArray<MCParticle> m_mcParticles

Store array: MCParticle.

Definition at line 66 of file ECLLocalMaximumFinderModule.h.

◆ m_method

std::string m_method
private

Method to find the local maximum.

Definition at line 140 of file ECLLocalMaximumFinderModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_neighbourMap

ECL::ECLNeighbours* m_neighbourMap {nullptr}
private

Neighbour maps.

Definition at line 153 of file ECLLocalMaximumFinderModule.h.

◆ m_nNeighbours10

float m_nNeighbours10 = 0.0
private

Variables (possibly) used for cut classification.

Number of neighbours above 1.0 MeV.

Definition at line 184 of file ECLLocalMaximumFinderModule.h.

◆ m_outfile

TFile* m_outfile {nullptr}
private

Output training files and trees.

outfiles that contain tree

Definition at line 159 of file ECLLocalMaximumFinderModule.h.

◆ m_outfileName

std::string m_outfileName
private

file name prefix of the training output file

Definition at line 139 of file ECLLocalMaximumFinderModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_phiId

float m_phiId = 0.0
private

local maximum center theta Id

Definition at line 170 of file ECLLocalMaximumFinderModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_signalEnergy

double m_signalEnergy[10][5] {}
private

total energy per MC matching type of this digit

Definition at line 188 of file ECLLocalMaximumFinderModule.h.

◆ m_signalId

int m_signalId[10][5] {}
private

total energy per MC matching type of this digit

Definition at line 189 of file ECLLocalMaximumFinderModule.h.

◆ m_StoreArrPosition

std::vector< int > m_StoreArrPosition
private

vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions

Definition at line 150 of file ECLLocalMaximumFinderModule.h.

◆ m_target

float m_target = 0.0
private

MC truth variables.

target type

Definition at line 179 of file ECLLocalMaximumFinderModule.h.

◆ m_targetindex

float m_targetindex = 0.0
private

target array index

Definition at line 180 of file ECLLocalMaximumFinderModule.h.

◆ m_targetpi0index

float m_targetpi0index = 0.0
private

target array index

Definition at line 181 of file ECLLocalMaximumFinderModule.h.

◆ m_thetaId

float m_thetaId = 0.0
private

local maximum center theta Id

Definition at line 169 of file ECLLocalMaximumFinderModule.h.

◆ m_time

float m_time = 0.0
private

time

Definition at line 165 of file ECLLocalMaximumFinderModule.h.

◆ m_timeFitFailed

float m_timeFitFailed = 0.0
private

failed fit

Definition at line 174 of file ECLLocalMaximumFinderModule.h.

◆ m_timeResolution

float m_timeResolution = 0.0
private

time resolution

Definition at line 173 of file ECLLocalMaximumFinderModule.h.

◆ m_totalSignalEnergy

double m_totalSignalEnergy = 0.0
private

total energy of this digit

Definition at line 187 of file ECLLocalMaximumFinderModule.h.

◆ m_tree

TTree* m_tree {nullptr}
private

tree that contain information for MVA training

Definition at line 160 of file ECLLocalMaximumFinderModule.h.

◆ m_truthFraction

double m_truthFraction
private

MC truth fraction.

Definition at line 141 of file ECLLocalMaximumFinderModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.


The documentation for this class was generated from the following files: