Belle II Software development
ECLSplitterN1Module Class Reference

Class to perform the shower correction. More...

#include <ECLSplitterN1Module.h>

Inheritance diagram for ECLSplitterN1Module:
Module PathElement ECLSplitterN1PureCsIModule

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLSplitterN1Module ()
 Constructor.
 
 ~ECLSplitterN1Module ()
 Destructor.
 
virtual void initialize () override
 Initialize.
 
virtual void beginRun () override
 Begin run.
 
virtual void event () override
 Event.
 
virtual void endRun () override
 End run.
 
virtual void terminate () override
 Terminate.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

virtual const char * eclCalDigitArrayName () const
 Default name ECLCalDigits.
 
virtual const char * eclConnectedRegionArrayName () const
 Default name ECLConnectedRegions.
 
virtual const char * eclLocalMaximumArrayName () const
 Default name ECLLocalMaximums.
 
virtual const char * eclShowerArrayName () const
 Default name ECLShowers.
 
virtual const char * eventLevelClusteringInfoName () const
 Name to be used for default option: EventLevelClusteringInfo.
 
void splitConnectedRegion (ECLConnectedRegion &aCR)
 Split connected region into showers.
 
int getNeighbourMap (const double energy, const double background)
 Get number of neighbours based on first energy estimation and background level per event.
 
std::vector< int > getOptimalNumberOfDigits (const int cellid, const double energy)
 Get optimal number of digits (out of 21) based on first energy estimation and background level per event.
 
double getEnergySum (std::vector< std::pair< double, double > > &weighteddigits, const unsigned int n)
 Get energy sum for weighted entries.
 
double estimateEnergy (const int centerid)
 Estimate energy using 3x3 around central crystal.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

double m_threshold
 Local maximum threshold after splitting.
 
double m_expConstant
 Constant a from exp(-a*dist/RM), 1.5 to 2.5.
 
int m_maxIterations
 Maximum number of iterations.
 
double m_shiftTolerance
 Tolerance level for centroid shifts.
 
double m_minimumSharedEnergy
 Minimum shared energy.
 
int m_maxSplits
 Maximum number of splits.
 
const double c_molierRadius
 Constant RM (Molier Radius) from exp(-a*dist/RM), http://pdg.lbl.gov/2009/AtomicNuclearProperties/HTML_PAGES/141.html.
 
double m_cutDigitEnergyForEnergy
 Minimum digit energy to be included in the shower energy calculation.
 
double m_cutDigitTimeResidualForEnergy
 Maximum time residual to be included in the shower energy calculation.
 
int m_useOptimalNumberOfDigitsForEnergy
 Optimize the number of neighbours for energy calculations.
 
DBObjPtr< ECLnOptimalm_eclNOptimal
 nOptimal payload
 
TH2F m_nOptimal2D
 2D hist of nOptimal for Ebin vs groupID
 
std::vector< int > m_groupNumber
 group number for each crystal
 
const int m_nLeakReg = 3
 3 ECL regions: 0 = forward, 1 = barrel, 2 = backward
 
int m_nEnergyBins = 0
 number of energies bins in nOptimal payload
 
std::vector< std::vector< float > > m_eBoundaries
 energy boundaries each region
 
std::string m_positionMethod
 Position calculation: lilo or linear.
 
double m_liloParameterA
 lin-log parameter A
 
double m_liloParameterB
 lin-log parameter B
 
double m_liloParameterC
 lin-log parameter C
 
std::vector< double > m_liloParameters
 lin-log parameters A, B, and C
 
int m_fullBkgdCount
 Number of expected background digits at full background, FIXME: move to database.
 
std::vector< int > m_StoreArrPosition
 vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions
 
std::vector< int > m_StoreArrPositionLM
 vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions for LM
 
std::vector< int > m_cellIdInCR
 list with all cellid of this connected region
 
ECL::ECLNeighboursm_NeighbourMap9 {nullptr}
 Neighbour maps.
 
ECL::ECLNeighboursm_NeighbourMap21 {nullptr}
 5x5 neighbours excluding corners = 21
 
StoreArray< ECLCalDigitm_eclCalDigits
 Store array: ECLCalDigit.
 
StoreArray< ECLConnectedRegionm_eclConnectedRegions
 Store array: ECLConnectedRegion.
 
StoreArray< ECLShowerm_eclShowers
 Store array: ECLShower.
 
StoreArray< ECLLocalMaximumm_eclLocalMaximums
 Store array: ECLLocalMaximum.
 
StoreObjPtr< EventLevelClusteringInfom_eventLevelClusteringInfo
 Store object pointer: EventLevelClusteringInfo.
 
ECL::ECLGeometryParm_geom {nullptr}
 Geometry.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Class to perform the shower correction.

Definition at line 42 of file ECLSplitterN1Module.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ECLSplitterN1Module()

Constructor.

Definition at line 47 of file ECLSplitterN1Module.cc.

47 : Module(),
53{
54 // Set description.
55 setDescription("ECLSplitterN1Module: Baseline reconstruction splitter code for the n photon hypothesis.");
56 addParam("fullBkgdCount", m_fullBkgdCount,
57 "Number of background digits at full background (as provided by EventLevelClusteringInfo).",
58 182);
59
60 // Set module parameters.
61
62 // Splitter.
63 addParam("threshold", m_threshold, "Threshold energy after splitting.", 7.5 * Belle2::Unit::MeV);
64 addParam("expConstant", m_expConstant, "Constant a from exp(-a*dist/RM), typical: 1.5 to 3.5?", 2.5); // to be optimized!
65 addParam("maxIterations", m_maxIterations, "Maximum number of iterations for centroid shifts.", 100);
66 addParam("shiftTolerance", m_shiftTolerance, "Tolerance level for centroid shifts.", 1.0 * Belle2::Unit::mm);
67 addParam("minimumSharedEnergy", m_minimumSharedEnergy, "Minimum shared energy.", 25.0 * Belle2::Unit::keV);
68 addParam("maxSplits", m_maxSplits, "Maximum number of splits within one connected region.", 10);
69 addParam("cutDigitEnergyForEnergy", m_cutDigitEnergyForEnergy,
70 "Minimum digit energy to be included in the shower energy calculation. (NOT USED)", 0.5 * Belle2::Unit::MeV);
71 addParam("cutDigitTimeResidualForEnergy", m_cutDigitTimeResidualForEnergy,
72 "Maximum time residual to be included in the shower energy calculation. (NOT USED)", 5.0);
73
74 // Neighbour definitions
75 addParam("useOptimalNumberOfDigitsForEnergy", m_useOptimalNumberOfDigitsForEnergy,
76 "Optimize the number of digits for energy calculations.", 1);
77
78 // Position.
79 addParam("positionMethod", m_positionMethod, "Position determination method.", std::string("lilo"));
80 addParam("liloParameterA", m_liloParameterA, "Position determination linear-log. parameter A.", 4.0);
81 addParam("liloParameterB", m_liloParameterB, "Position determination linear-log. parameter B.", 0.0);
82 addParam("liloParameterC", m_liloParameterC, "Position determination linear-log. parameter C.", 0.0);
83
84 // Set parallel processing flag.
86}
virtual const char * eclShowerArrayName() const
Default name ECLShowers.
virtual const char * eventLevelClusteringInfoName() const
Name to be used for default option: EventLevelClusteringInfo.
double m_liloParameterB
lin-log parameter B
int m_maxIterations
Maximum number of iterations.
StoreArray< ECLShower > m_eclShowers
Store array: ECLShower.
StoreArray< ECLConnectedRegion > m_eclConnectedRegions
Store array: ECLConnectedRegion.
double m_minimumSharedEnergy
Minimum shared energy.
std::string m_positionMethod
Position calculation: lilo or linear.
double m_cutDigitTimeResidualForEnergy
Maximum time residual to be included in the shower energy calculation.
StoreArray< ECLLocalMaximum > m_eclLocalMaximums
Store array: ECLLocalMaximum.
virtual const char * eclLocalMaximumArrayName() const
Default name ECLLocalMaximums.
double m_threshold
Local maximum threshold after splitting.
double m_shiftTolerance
Tolerance level for centroid shifts.
int m_fullBkgdCount
Number of expected background digits at full background, FIXME: move to database.
virtual const char * eclConnectedRegionArrayName() const
Default name ECLConnectedRegions.
int m_maxSplits
Maximum number of splits.
int m_useOptimalNumberOfDigitsForEnergy
Optimize the number of neighbours for energy calculations.
double m_cutDigitEnergyForEnergy
Minimum digit energy to be included in the shower energy calculation.
virtual const char * eclCalDigitArrayName() const
Default name ECLCalDigits.
double m_liloParameterA
lin-log parameter A
StoreObjPtr< EventLevelClusteringInfo > m_eventLevelClusteringInfo
Store object pointer: EventLevelClusteringInfo.
StoreArray< ECLCalDigit > m_eclCalDigits
Store array: ECLCalDigit.
double m_expConstant
Constant a from exp(-a*dist/RM), 1.5 to 2.5.
double m_liloParameterC
lin-log parameter C
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
Module()
Constructor.
Definition: Module.cc:30
static const double mm
[millimeters]
Definition: Unit.h:70
static const double keV
[kiloelectronvolt]
Definition: Unit.h:113
static const double MeV
[megaelectronvolt]
Definition: Unit.h:114
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~ECLSplitterN1Module()

Destructor.

Definition at line 88 of file ECLSplitterN1Module.cc.

89{
90 // do not delete objects here, do it in terminate()!
91}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

Begin run.

Reimplemented from Module.

Definition at line 132 of file ECLSplitterN1Module.cc.

133{
134 //..Read in nOptimal crystal payload from database
135 if (m_eclNOptimal.hasChanged()) {
136
137 //..Vectors of energy boundaries for each region
138 std::vector<float> eBoundariesFwd = m_eclNOptimal->getUpperBoundariesFwd();
139 std::vector<float> eBoundariesBrl = m_eclNOptimal->getUpperBoundariesBrl();
140 std::vector<float> eBoundariesBwd = m_eclNOptimal->getUpperBoundariesBwd();
141
142 //..Adjust the size of the vector of boundaries to match the number in the payload
143 m_nEnergyBins = eBoundariesBrl.size();
144 B2INFO("ECLSplitterN1 beginRun: number of nOptimal payload energies = " << m_nEnergyBins);
145 m_eBoundaries.resize(m_nLeakReg, std::vector<float>(m_nEnergyBins, 0.));
146
147 //..Copy values to m_eBoundaries
148 for (int ie = 0; ie < m_nEnergyBins; ie++) {
149 m_eBoundaries[0][ie] = eBoundariesFwd[ie];
150 m_eBoundaries[1][ie] = eBoundariesBrl[ie];
151 m_eBoundaries[2][ie] = eBoundariesBwd[ie];
152 B2INFO(" upper boundaries for energy point " << ie << " " << m_eBoundaries[0][ie] << " " << m_eBoundaries[1][ie] << " " <<
153 m_eBoundaries[2][ie]);
154 }
155
156 //..Group number of each crystal
157 m_groupNumber = m_eclNOptimal->getGroupNumber();
158
159 //..2D histogram of nOptimal for each group and energy point
160 m_nOptimal2D = m_eclNOptimal->getNOptimal();
161 }
162}
const int m_nLeakReg
3 ECL regions: 0 = forward, 1 = barrel, 2 = backward
DBObjPtr< ECLnOptimal > m_eclNOptimal
nOptimal payload
int m_nEnergyBins
number of energies bins in nOptimal payload
std::vector< std::vector< float > > m_eBoundaries
energy boundaries each region
TH2F m_nOptimal2D
2D hist of nOptimal for Ebin vs groupID
std::vector< int > m_groupNumber
group number for each crystal

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ eclCalDigitArrayName()

virtual const char * eclCalDigitArrayName ( ) const
inlineprivatevirtual

Default name ECLCalDigits.

Reimplemented in ECLSplitterN1PureCsIModule.

Definition at line 130 of file ECLSplitterN1Module.h.

131 { return "ECLCalDigits" ; }

◆ eclConnectedRegionArrayName()

virtual const char * eclConnectedRegionArrayName ( ) const
inlineprivatevirtual

Default name ECLConnectedRegions.

Reimplemented in ECLSplitterN1PureCsIModule.

Definition at line 134 of file ECLSplitterN1Module.h.

135 { return "ECLConnectedRegions" ; }

◆ eclLocalMaximumArrayName()

virtual const char * eclLocalMaximumArrayName ( ) const
inlineprivatevirtual

Default name ECLLocalMaximums.

Reimplemented in ECLSplitterN1PureCsIModule.

Definition at line 138 of file ECLSplitterN1Module.h.

139 { return "ECLLocalMaximums" ; }

◆ eclShowerArrayName()

virtual const char * eclShowerArrayName ( ) const
inlineprivatevirtual

Default name ECLShowers.

Reimplemented in ECLSplitterN1PureCsIModule.

Definition at line 142 of file ECLSplitterN1Module.h.

143 { return "ECLShowers" ; }

◆ endRun()

void endRun ( void  )
overridevirtual

End run.

Reimplemented from Module.

Definition at line 204 of file ECLSplitterN1Module.cc.

205{
206// if (m_tg2OptimalNumberOfDigitsForEnergy) delete m_tg2OptimalNumberOfDigitsForEnergy;
207}

◆ estimateEnergy()

double estimateEnergy ( const int  centerid)
private

Estimate energy using 3x3 around central crystal.

Definition at line 867 of file ECLSplitterN1Module.cc.

868{
869
870 double energyEstimation = 0.0;
871
872 for (auto& neighbourId : m_NeighbourMap9->getNeighbours(centerid)) {
873
874 // Check if this neighbour is in this CR
875 const auto it = std::find(m_cellIdInCR.begin(), m_cellIdInCR.end(),
876 neighbourId); // check if the neighbour is in the list for this CR
877 if (it == m_cellIdInCR.end()) continue; // not in this CR
878
879 const int pos = m_StoreArrPosition[neighbourId];
880 const double energyNeighbour = m_eclCalDigits[pos]->getEnergy();
881
882 energyEstimation += energyNeighbour;
883 }
884
885 return energyEstimation;
886}
ECL::ECLNeighbours * m_NeighbourMap9
Neighbour maps.
std::vector< int > m_cellIdInCR
list with all cellid of this connected region
std::vector< int > m_StoreArrPosition
vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions
const std::vector< short int > & getNeighbours(short int cid) const
Return the neighbours for a given cell ID.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Event.

Reimplemented from Module.

Definition at line 164 of file ECLSplitterN1Module.cc.

165{
166 B2DEBUG(175, "ECLCRSplitterModule::event()");
167
168 // Fill a vector that can be used to map cellid -> store array position for eclCalDigits.
169 memset(&m_StoreArrPosition[0], -1, m_StoreArrPosition.size() * sizeof m_StoreArrPosition[0]);
170 for (int i = 0; i < m_eclCalDigits.getEntries(); i++) {
171 m_StoreArrPosition[m_eclCalDigits[i]->getCellId()] = i;
172 }
173
174 // Fill a vector that can be used to map cellid -> store array position for eclLocalMaximums.
175 memset(&m_StoreArrPositionLM[0], -1, m_StoreArrPositionLM.size() * sizeof m_StoreArrPositionLM[0]);
176 for (int i = 0; i < m_eclLocalMaximums.getEntries(); i++) {
177 m_StoreArrPositionLM[m_eclLocalMaximums[i]->getCellId()] = i;
178 }
179
180 // Loop over all connected regions
181 for (auto& aCR : m_eclConnectedRegions) {
182 // list theat will hold all cellids in this connected region
183 m_cellIdInCR.clear();
184
185 const unsigned int entries = (aCR.getRelationsWith<ECLCalDigit>(eclCalDigitArrayName())).size();
186
187 m_cellIdInCR.resize(entries);
188
189 // Fill all calDigits ids in this CR into a vector to make them 'find'-able.
190 int i = 0;
191 for (const auto& caldigit : aCR.getRelationsWith<ECLCalDigit>(eclCalDigitArrayName())) {
192 m_cellIdInCR[i] = caldigit.getCellId();
193 ++i;
194 }
195
196 // Split and reconstruct the showers in this connected regions.
198
199 } // end auto& aCR
200
201}
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
void splitConnectedRegion(ECLConnectedRegion &aCR)
Split connected region into showers.
std::vector< int > m_StoreArrPositionLM
vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions for LM

◆ eventLevelClusteringInfoName()

virtual const char * eventLevelClusteringInfoName ( ) const
inlineprivatevirtual

Name to be used for default option: EventLevelClusteringInfo.

Reimplemented in ECLSplitterN1PureCsIModule.

Definition at line 146 of file ECLSplitterN1Module.h.

147 { return "EventLevelClusteringInfo" ; }

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getEnergySum()

double getEnergySum ( std::vector< std::pair< double, double > > &  weighteddigits,
const unsigned int  n 
)
private

Get energy sum for weighted entries.

Definition at line 844 of file ECLSplitterN1Module.cc.

845{
846
847 double energysum = 0.;
848
849 std::sort(weighteddigits.begin(), weighteddigits.end(), [](const auto & left, const auto & right) {
850 return left.first * left.second > right.first * right.second;
851 });
852
853
854 unsigned int min = n;
855 if (weighteddigits.size() < n) min = weighteddigits.size();
856
857 for (unsigned int i = 0; i < min; ++i) {
858 B2DEBUG(175, "getEnergySum: " << weighteddigits.at(i).first << " " << weighteddigits.at(i).second);
859 energysum += (weighteddigits.at(i).first * weighteddigits.at(i).second);
860 }
861 B2DEBUG(175, "getEnergySum: energysum=" << energysum);
862
863 return energysum;
864}

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getNeighbourMap()

int getNeighbourMap ( const double  energy,
const double  background 
)
private

Get number of neighbours based on first energy estimation and background level per event.

Definition at line 804 of file ECLSplitterN1Module.cc.

805{
806 if (background <= 0.1) return 21;
807 else {
808 if (energy > 0.06 + 0.4 * background) return 21; // based on preliminary study TF, valid in barrel only (TF).
809 else return 9;
810 }
811}

◆ getOptimalNumberOfDigits()

std::vector< int > getOptimalNumberOfDigits ( const int  cellid,
const double  energy 
)
private

Get optimal number of digits (out of 21) based on first energy estimation and background level per event.

Definition at line 813 of file ECLSplitterN1Module.cc.

814{
815
816 //..nOptimal depends on the energy bin, which in turn depends on ECL region
817 int iRegion = 1; // barrel
818 if (ECLElementNumbers::isForward(cellid)) {iRegion = 0;}
819 if (ECLElementNumbers::isBackward(cellid)) {iRegion = 2;}
820
821 //..Find the energy bin
822 int iEnergy = 0;
823 while (energy > m_eBoundaries[iRegion][iEnergy] and iEnergy < m_nEnergyBins - 1) {iEnergy++;}
824
825 //..Group number just depends on the cellID
826 int iGroup = m_groupNumber[cellid - 1];
827
828 //..Optimal number of crystals from energy and group numbers
829 int nOptimalNeighbours = (int)(0.5 + m_nOptimal2D.GetBinContent(iGroup + 1, iEnergy + 1));
830
831 //..Store these in a vector to return
832 std::vector<int> nOptimalVector;
833 nOptimalVector.push_back(nOptimalNeighbours);
834 nOptimalVector.push_back(iGroup);
835 nOptimalVector.push_back(iEnergy);
836
837 B2DEBUG(175, "ECLSplitterN1Module::getOptimalNumberOfDigits: cellID: " << cellid << " energy: " << energy << " iG: " << iGroup <<
838 " iE: " << iEnergy << " nOpt: " << nOptimalNeighbours);
839
840 return nOptimalVector;
841
842}
bool isForward(int cellId)
Check whether the crystal is in forward ECL.
bool isBackward(int cellId)
Check whether the crystal is in backward ECL.

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize.

Reimplemented from Module.

Definition at line 93 of file ECLSplitterN1Module.cc.

94{
95
96 // Geometry instance.
98
99 // Check and format user input.
100 m_liloParameters.resize(3);
104
105 // ECL dataobjects.
109 m_eclShowers.registerInDataStore(eclShowerArrayName());
110
111 // mDST dataobjects.
113
114 // Register relations (we probably dont need all, but keep them for now for debugging).
115 m_eclShowers.registerRelationTo(m_eclConnectedRegions);
116 m_eclShowers.registerRelationTo(m_eclCalDigits);
117 m_eclShowers.registerRelationTo(m_eclLocalMaximums);
118 m_eclLocalMaximums.registerRelationTo(m_eclCalDigits);
119 m_eclConnectedRegions.requireRelationTo(m_eclLocalMaximums);
120 m_eclConnectedRegions.requireRelationTo(m_eclCalDigits);
121
122 // Initialize neighbour maps (we will optimize the endcaps later, there is more than just a certain energy containment to be considered)
123 m_NeighbourMap9 = new ECLNeighbours("N", 1); // N: 3x3 = 9
124 m_NeighbourMap21 = new ECLNeighbours("NC", 2); // NC: 5x5 excluding corners = 21
125
126 // initialize the vector that gives the relation between cellid and store array position
129
130}
ECL::ECLNeighbours * m_NeighbourMap21
5x5 neighbours excluding corners = 21
ECL::ECLGeometryPar * m_geom
Geometry.
std::vector< double > m_liloParameters
lin-log parameters A, B, and C
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.
Class to get the neighbours for a given cell id.
Definition: ECLNeighbours.h:25
const int c_NCrystals
Number of crystals.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ splitConnectedRegion()

void splitConnectedRegion ( ECLConnectedRegion aCR)
private

Split connected region into showers.

Definition at line 216 of file ECLSplitterN1Module.cc.

217{
218
219 // Get the event background level
220 const int bkgdcount = m_eventLevelClusteringInfo->getNECLCalDigitsOutOfTime();
221 double backgroundLevel = 0.0; // from out of time digit counting
222 if (m_fullBkgdCount > 0) {
223 backgroundLevel = static_cast<double>(bkgdcount) / static_cast<double>(m_fullBkgdCount);
224 }
225
226 // Get the number of LMs in this CR
227 const int nLocalMaximums = aCR.getRelationsWith<ECLLocalMaximum>(eclLocalMaximumArrayName()).size();
228
229 B2DEBUG(170, "ECLCRSplitterModule::splitConnectedRegion: nLocalMaximums = " << nLocalMaximums);
230
231 // Three cases:
232 // 1) There is no local maximum (can only happen if the CR seed is not a LM itself).
233 // 2) There is exactly one local maximum.
234 // 3) There are more than one, typically two or three, local maxima and we have to share energy between them.
235 // If there are more than m_maxSplits local maxima, the m_maxSplits highest energy local maxima will be used.
236
237 // ---------------------------------------------------------------------
238 if (nLocalMaximums == 1) {
239
240 // Create a shower.
241 const auto aECLShower = m_eclShowers.appendNew();
242
243 // Add relation to the CR.
244 aECLShower->addRelationTo(&aCR);
245
246 // Find the highest energetic crystal in this CR or use the LM.
247 double weightSum = 0.0;
248
249 // Add relation to the LM.
251 aECLShower->addRelationTo(locmaxvector[0]);
252
253 const int locmaxcellid = locmaxvector[0]->getCellId();
254 const int pos = m_StoreArrPosition[locmaxcellid];
255 double highestEnergyID = (m_eclCalDigits[pos])->getCellId();
256 double highestEnergy = (m_eclCalDigits[pos])->getEnergy();
257 double highestEnergyTime = (m_eclCalDigits[pos])->getTime();
258 double highestEnergyTimeResolution = (m_eclCalDigits[pos])->getTimeResolution();
259
260 // Get a first estimation of the energy using 3x3 neighbours.
261 const double energyEstimation = estimateEnergy(highestEnergyID);
262
263 // Check if 21 would be better in the present background conditions:
264 ECLNeighbours* neighbourMap; // FIXME pointer needed?
265 int nNeighbours = getNeighbourMap(energyEstimation, backgroundLevel);
266 if (nNeighbours == 9 and !m_useOptimalNumberOfDigitsForEnergy) neighbourMap = m_NeighbourMap9;
267 else neighbourMap = m_NeighbourMap21;
268
269 // Add neighbours and weights for the shower.
270 std::vector<ECLCalDigit> digits;
271 std::vector<double> weights;
272 for (auto& neighbourId : neighbourMap->getNeighbours(highestEnergyID)) {
273 const auto it = std::find(m_cellIdInCR.begin(), m_cellIdInCR.end(),
274 neighbourId); // check if the neighbour is in the list for this CR
275 if (it == m_cellIdInCR.end()) continue; // not in this CR
276
277 const int neighbourpos = m_StoreArrPosition[neighbourId];
278 digits.push_back(*m_eclCalDigits[neighbourpos]); // list of digits for position reconstruction
279 weights.push_back(1.0); // list of weights (all 1 in this case for now)
280 weightSum += 1.0;
281
282 aECLShower->addRelationTo(m_eclCalDigits[neighbourpos], 1.0); // add digits to this shower, weight = 1
283 }
284
285 // Get position.
286 const B2Vector3D& showerposition = Belle2::ECL::computePositionLiLo(digits, weights, m_liloParameters);
287 aECLShower->setTheta(showerposition.Theta());
288 aECLShower->setPhi(showerposition.Phi());
289 aECLShower->setR(showerposition.Mag());
290
291 // Get Energy, if requested, set some weights to zero for energy calculation.
292 double showerEnergy = 0.0;
294
295 // Get the optimal number of neighbours for this crystal and energy
296 std::vector<int> nOptimalVec = getOptimalNumberOfDigits(highestEnergyID, energyEstimation);
297 const unsigned int nOptimal = static_cast<unsigned int>(nOptimalVec[0]);
298 aECLShower->setNominalNumberOfCrystalsForEnergy(static_cast<double>(nOptimal));
299
300 // Store the indices used; will be needed later for energy corrections.
301 // Also store energy, used along with cellID to find leakage corrections.
302 aECLShower->setNOptimalGroupIndex(nOptimalVec[1]);
303 aECLShower->setNOptimalEnergyBin(nOptimalVec[2]);
304 aECLShower->setNOptimalEnergy(energyEstimation);
305
306 // Get the list of crystals used for the energy calculation
307 std::vector< std::pair<unsigned int, double>> listCrystalPairs; // cell id and weighted reconstructed energy
308 listCrystalPairs.resize(digits.size()); //resize to number of all crystals in cluster
309
310 std::vector < std::pair<double, double> > weighteddigits;
311 weighteddigits.resize(digits.size());
312 for (unsigned int i = 0; i < digits.size(); ++i) {
313 weighteddigits.at(i) = std::make_pair((digits.at(i)).getEnergy(), weights.at(i));
314 listCrystalPairs.at(i) = std::make_pair((digits.at(i)).getCellId(), weights.at(i) * (digits.at(i)).getEnergy());
315 }
316
317 // sort the listCrystals and keep the n highest in descending order
318 std::sort(listCrystalPairs.begin(), listCrystalPairs.end(), [](const auto & left, const auto & right) {
319 return left.second > right.second;
320 });
321 std::vector< unsigned int> listCrystals; //cell id
322
323 for (unsigned int i = 0; i < digits.size(); ++i) {
324 if (i < nOptimal) {
325 listCrystals.push_back(listCrystalPairs[i].first);
326 }
327 }
328
329 aECLShower->setNumberOfCrystalsForEnergy(static_cast<double>(listCrystals.size()));
330 aECLShower->setListOfCrystalsForEnergy(listCrystals);
331
332 showerEnergy = getEnergySum(weighteddigits, nOptimal);
333 B2DEBUG(175, "Shower Energy (1): " << showerEnergy);
334
335 } else {
336 showerEnergy = Belle2::ECL::computeEnergySum(digits, weights);
337 }
338
339 aECLShower->setEnergy(showerEnergy);
340 aECLShower->setEnergyRaw(showerEnergy);
341 aECLShower->setEnergyHighestCrystal(highestEnergy);
342 aECLShower->setTime(highestEnergyTime);
343 aECLShower->setDeltaTime99(highestEnergyTimeResolution);
344 aECLShower->setNumberOfCrystals(weightSum);
345 aECLShower->setCentralCellId(highestEnergyID);
346
347 B2DEBUG(175, "theta = " << showerposition.Theta());
348 B2DEBUG(175, "phi = " << showerposition.Phi());
349 B2DEBUG(175, "R = " << showerposition.Mag());
350 B2DEBUG(175, "energy = " << showerEnergy);
351 B2DEBUG(175, "time = " << highestEnergyTime);
352 B2DEBUG(175, "time resolution = " << highestEnergyTimeResolution);
353 B2DEBUG(175, "neighbours = " << nNeighbours);
354 B2DEBUG(175, "backgroundLevel = " << backgroundLevel);
355
356 // Fill shower Ids
357 aECLShower->setShowerId(1); // always one (only this single shower in the CR)
358 aECLShower->setHypothesisId(Belle2::ECLShower::c_nPhotons);
359 aECLShower->setConnectedRegionId(aCR.getCRId());
360
361 // Add relations of all CalDigits of the CR to the local maximum (here: all weights = 1).
362 const int posLM = m_StoreArrPositionLM[locmaxcellid];
363 for (const auto& aDigit : aCR.getRelationsWith<ECLCalDigit>()) {
364 const int posDigit = m_StoreArrPosition[aDigit.getCellId()];
365 m_eclLocalMaximums[posLM]->addRelationTo(m_eclCalDigits[posDigit], 1.0);
366 }
367
368 } // end case with one LM
369 else { // More than one LM, energy must be split. This algorithm is inspired by BaBar code.
370
371 // check if we have too many local maximums. if yes: limit to user set maximum
372 // create a vector with all local maximums and its crystal energies
373 std::vector<std::pair<ECLLocalMaximum, double>> lm_energy_vector;
374 for (auto& aLocalMaximum : aCR.getRelationsWith<ECLLocalMaximum>(eclLocalMaximumArrayName())) {
375 const int cellid = aLocalMaximum.getCellId();
376 const int pos = m_StoreArrPosition[cellid];
377 const double digitenergy = m_eclCalDigits[pos]->getEnergy();
378 lm_energy_vector.push_back(std::pair<ECLLocalMaximum, double>(aLocalMaximum, digitenergy));
379 };
380
381 // sort this vector in descending order and keep only up to m_maxSplits entries
382 if (lm_energy_vector.size() >= static_cast<size_t>(m_maxSplits)) {
383 std::sort(lm_energy_vector.begin(), lm_energy_vector.end(), [](const std::pair<ECLLocalMaximum, double>& x,
384 const std::pair<ECLLocalMaximum, double>& y) {
385 return x.second > y.second;
386 });
387
388 lm_energy_vector.resize(m_maxSplits);
389 }
390
391 std::vector<ECLCalDigit> digits;
392 std::vector<double> weights;
393 std::map<int, B2Vector3D> centroidList; // key = cellid, value = centroid position
394 std::map<int, double> centroidEnergyList; // key = cellid, value = centroid position
395 std::map<int, B2Vector3D> allPoints; // key = cellid, value = digit position
396 std::map<int, std::vector < double > > weightMap; // key = locmaxid, value = vector of weights
397 std::vector < ECLCalDigit > digitVector; // the order of weights in weightMap must be the same
398
399 // Fill the maxima positions in a map
400 std::map<int, B2Vector3D> localMaximumsPoints; // key = locmaxid, value = maximum position
401 std::map<int, B2Vector3D> centroidPoints; // key = locmaxid (as index), value = centroid position
402
403 for (auto& aLocalMaximum : lm_energy_vector) {
404
405 int cellid = aLocalMaximum.first.getCellId();
406
407 // Get the position of this crystal and fill it in two maps.
408 B2Vector3D vectorPosition = m_geom->GetCrystalPos(cellid - 1);
409 localMaximumsPoints.insert(std::map<int, B2Vector3D>::value_type(cellid, vectorPosition));
410 centroidPoints.insert(std::map<int, B2Vector3D>::value_type(cellid, vectorPosition));
411 }
412
413 // The following will be done iteratively. Empty clusters after splitting will be removed, and the procedure will be repeated.
414 bool iterateclusters = true;
415 do {
416 digits.clear();
417 weights.clear();
418 centroidList.clear();
419 centroidEnergyList.clear();
420 allPoints.clear();
421 weightMap.clear();
422 digitVector.clear();
423
424 // Fill all digits from this CR in a map
425 for (auto& aCalDigit : aCR.getRelationsWith<ECLCalDigit>(eclCalDigitArrayName())) {
426 const int cellid = aCalDigit.getCellId();
427 // get the position of this crystal and fill them in a map
428 B2Vector3D vectorPosition = m_geom->GetCrystalPos(cellid - 1);
429 allPoints.insert(std::map<int, B2Vector3D>::value_type(cellid, vectorPosition));
430 digits.push_back(aCalDigit);
431 }
432
433 for (const auto& digitpoint : allPoints) {
434 const int cellid = digitpoint.first;
435 const int pos = m_StoreArrPosition[cellid];
436 digitVector.push_back(*m_eclCalDigits[pos]);
437 }
438
439
440 // -----------------------------------------------------------------------------------------
441 // The 'heart' of the splitter
442 // Start with each local maximum and set it to the first centroid position. Then iterate over all ECLCalDigits
443 // in this CR and calculate the weighted distances to the local maximum
444 int nIterations = 0;
445 double centroidShiftAverage = 0.0;
446 // double lastcentroidShiftAverage = 0.0;
447
448 do {
449 B2DEBUG(175, "Iteration: #" << nIterations << " (of max. " << m_maxIterations << ")");
450
451 centroidShiftAverage = 0.0;
452 if (nIterations == 0) {
453 centroidList.clear();
454 centroidEnergyList.clear();
455 weightMap.clear();
456 }
457
458 // Loop over all local maximums points, each one will become a shower!
459 for (const auto& locmaxpoint : localMaximumsPoints) {
460
461 // cell id of this local maximum
462 const int locmaxcellid = locmaxpoint.first;
463
464 // clear weights vector
465 weights.clear();
466
467 // if this is the first iteration the shower energy is not know, take the local maximum energy * 1.5.
468 if (nIterations == 0) {
469 const int pos = m_StoreArrPosition[locmaxcellid];
470 const double locmaxenergy = m_eclCalDigits[pos]->getEnergy();
471 centroidEnergyList[locmaxcellid] = 1.5 * locmaxenergy;
472 }
473
474 B2DEBUG(175, "local maximum cellid: " << locmaxcellid);
475
476 //-------------------------------------------------------------------
477 // Loop over all digits. They get a weight using the distance to the respective centroid.
478 for (const auto& digitpoint : allPoints) {
479
480 // cellid and position of this digit
481 const int digitcellid = digitpoint.first;
482 B2Vector3D digitpos = digitpoint.second;
483
484 const int pos = m_StoreArrPosition[digitcellid];
485 const double digitenergy = m_eclCalDigits[pos]->getEnergy();
486
487 double weight = 0.0;
488 double energy = 0.0;
489 double distance = 0.0;
490 double distanceEnergySum = 0.0;
491
492 // Loop over all centroids
493 for (const auto& centroidpoint : centroidPoints) {
494
495 // cell id and position of this centroid
496 const int centroidcellid = centroidpoint.first;
497 B2Vector3D centroidpos = centroidpoint.second;
498
499 double thisdistance = 0.;
500
501 // in the first iteration, this distance is really zero, avoid floating point problems
502 if (nIterations == 0 and digitcellid == centroidcellid) {
503 thisdistance = 0.0;
504 } else {
505 B2Vector3D vectorDistance = ((centroidpos) - (digitpos));
506 thisdistance = vectorDistance.Mag();
507 }
508
509 // energy of the centroid aka locmax
510 const int thispos = m_StoreArrPosition[centroidcellid];
511 const double thisenergy = m_eclCalDigits[thispos]->getEnergy();
512
513 // Not the most efficienct way to get this information, but not worth the thinking yet:
514 if (locmaxcellid == centroidcellid) {
515 distance = thisdistance;
516 energy = thisenergy;
517 }
518
519 // Get the product of distance and energy.
520 const double expfactor = exp(-m_expConstant * thisdistance / c_molierRadius);
521 distanceEnergySum += (thisenergy * expfactor);
522
523 } // end centroidPoints
524
525 // Calculate the weight for this digits for this local maximum.
526 if (distanceEnergySum > 0.0) {
527 const double expfactor = exp(-m_expConstant * distance / c_molierRadius);
528 weight = energy * expfactor / distanceEnergySum;
529 } else {
530 weight = 0.0;
531 }
532
533 // Check if the weighted energy is above threshold
534 if ((digitenergy * weight) < m_minimumSharedEnergy) {
535 weight = 0.0;
536 }
537
538 // Check for rounding problems larger than unity
539 if (weight > 1.0) {
540 B2WARNING("ECLCRSplitterModule::splitConnectedRegion: Floating point glitch, weight for this digit " << weight <<
541 ", resetting it to 1.0.");
542 weight = 1.0;
543 }
544
545 // Fill the weight for this digits and this local maximum.
546 B2DEBUG(175, " cellid: " << digitcellid << ", energy: " << digitenergy << ", weight: " << weight << ", distance: " << distance);
547 weights.push_back(weight);
548
549 } // end allPoints
550
551 // Get the old centroid position.
552 B2Vector3D oldCentroidPos = (centroidPoints.find(locmaxcellid))->second;
553
554 // Calculate the new centroid position.
555 B2Vector3D newCentroidPos = Belle2::ECL::computePositionLiLo(digits, weights, m_liloParameters);
556
557 // Calculate new energy
558 const double newEnergy = Belle2::ECL::computeEnergySum(digits, weights);
559
560 // Calculate the shift of the centroid position for this local maximum.
561 const B2Vector3D centroidShift = (oldCentroidPos - newCentroidPos);
562
563 // Save the new centroid position (but dont update yet!), also save the weights and energy.
564 centroidList[locmaxcellid] = newCentroidPos;
565 weightMap[locmaxcellid] = weights;
566
567 B2DEBUG(175, "--> inserting new energy: " << newEnergy << " for local maximum " << locmaxcellid);
568 centroidEnergyList[locmaxcellid] = newEnergy;
569 double showerenergy = (*centroidEnergyList.find(locmaxcellid)).second / Belle2::Unit::MeV;
570 B2DEBUG(175, "--> new energy = " << showerenergy << " MeV");
571
572 // Add this to the average centroid shift.
573 centroidShiftAverage += centroidShift.Mag();
574
575 // Debugging output
576 B2DEBUG(175, " old centroid: " << oldCentroidPos.X() << " cm, " << oldCentroidPos.Y() << " cm, " << oldCentroidPos.Z() <<
577 "cm");
578 B2DEBUG(175, " new centroid: " << newCentroidPos.X() << " cm, " << newCentroidPos.Y() << " cm, " << newCentroidPos.Z() <<
579 "cm");
580 B2DEBUG(175, " centroid shift: " << centroidShift.Mag() << " cm");
581
582 } // end localMaximumsPoints
583
584 // Get the average centroid shift.
585 centroidShiftAverage /= static_cast<double>(nLocalMaximums);
586 // lastcentroidShiftAverage = centroidShiftAverage;
587 B2DEBUG(175, "--> average centroid shift: " << centroidShiftAverage << " cm (tolerance is " << m_shiftTolerance << " cm)");
588
589 // Update centroid positions for the next round
590 for (const auto& locmaxpoint : localMaximumsPoints) {
591 centroidPoints[locmaxpoint.first] = (centroidList.find(locmaxpoint.first))->second;
592 }
593
594 ++nIterations;
595
596 } while (nIterations < m_maxIterations and centroidShiftAverage > m_shiftTolerance);
597 // DONE!
598
599 // check that local maxima are still local maxima
600 std::vector<int> markfordeletion;
601 iterateclusters = false;
602 for (const auto& locmaxpoint : localMaximumsPoints) {
603
604 // Get locmax cellid
605 const int locmaxcellid = locmaxpoint.first;
606 const int pos = m_StoreArrPosition[locmaxcellid];
607
608 B2DEBUG(175, "locmaxcellid: " << locmaxcellid);
609 const double lmenergy = m_eclCalDigits[pos]->getEnergy();
610 B2DEBUG(175, "ok: ");
611
612 // Get the weight vector.
613 std::vector < double > myWeights = (*weightMap.find(locmaxcellid)).second;
614
615 for (unsigned int i = 0; i < digitVector.size(); ++i) {
616
617 const ECLCalDigit dig = digitVector[i];
618 const double weight = myWeights[i];
619 const int cellid = dig.getCellId();
620 const double energy = dig.getEnergy();
621
622 // two ways to fail:
623 // 1) another cell has more energy: energy*weight > lmenergy and cellid != locmaxcellid
624 // 2) local maximum has cell has less than threshold energy left: energy*weight < m_threshold and cellid == locmaxcellid
625 if ((energy * weight > lmenergy and cellid != locmaxcellid) or (energy * weight < m_threshold and cellid == locmaxcellid)) {
626 markfordeletion.push_back(locmaxcellid);
627 iterateclusters = true;
628 continue;
629 }
630 }
631 }
632
633 // delete LMs
634 for (const auto lmid : markfordeletion) {
635 localMaximumsPoints.erase(lmid);
636 centroidPoints.erase(lmid);
637 }
638
639 } while (iterateclusters);
640
641 // Create the ECLShower objects, one per LocalMaximumPoints
642 unsigned int iShower = 1;
643 for (const auto& locmaxpoint : localMaximumsPoints) {
644
645 const int locmaxcellid = locmaxpoint.first;
646 const int posLM = m_StoreArrPositionLM[locmaxcellid];
647
648 // Create a shower
649 const auto aECLShower = m_eclShowers.appendNew();
650
651 // Use the same method for the estimate (3x3).
652 const double energyEstimation = estimateEnergy(locmaxcellid);
653
654 // Get the neighbour list.
655 ECLNeighbours* neighbourMap; // FIXME need pointer?
656 int nNeighbours = getNeighbourMap(energyEstimation, backgroundLevel);
657 if (nNeighbours == 9 and !m_useOptimalNumberOfDigitsForEnergy) neighbourMap = m_NeighbourMap9;
658 else neighbourMap = m_NeighbourMap21;
659
660 // Get the neighbour list.
661 std::vector<short int> neighbourlist = neighbourMap->getNeighbours(locmaxcellid);
662
663 // Get the weight vector.
664 std::vector < double > myWeights = (*weightMap.find(locmaxcellid)).second;
665
666 // Loop over all digits.
667 std::vector<ECLCalDigit> newdigits;
668 std::vector<double> newweights;
669 double highestEnergy = 0.;
670 double highestEnergyTime = 0.;
671 double highestEnergyTimeResolution = 0.;
672 double weightSum = 0.0;
673
674 for (unsigned int i = 0; i < digitVector.size(); ++i) {
675
676 const ECLCalDigit dig = digitVector[i];
677 const double weight = myWeights[i];
678
679 const int cellid = dig.getCellId();
680 const int pos = m_StoreArrPosition[cellid];
681
682 // Add weighted relations of all CalDigits to the local maximum.
683 m_eclLocalMaximums[posLM]->addRelationTo(m_eclCalDigits[pos], weight);
684
685 // Positive weight and in allowed neighbour list?
686 if (weight > 0.0) {
687 if (std::find(neighbourlist.begin(), neighbourlist.end(), cellid) != neighbourlist.end()) {
688
689 aECLShower->addRelationTo(m_eclCalDigits[pos], weight);
690
691 newdigits.push_back(dig);
692 newweights.push_back(weight);
693
694 weightSum += weight;
695
696 const double energy = dig.getEnergy();
697
698 if (energy * weight > highestEnergy) {
699 highestEnergy = energy * weight;
700 highestEnergyTime = dig.getTime();
701 highestEnergyTimeResolution = dig.getTimeResolution();
702 }
703 }
704 }
705 }
706
707 // Old position:
708 B2Vector3D* oldshowerposition = new B2Vector3D((centroidList.find(locmaxcellid))->second);
709
710 B2DEBUG(175, "old theta: " << oldshowerposition->Theta());
711 B2DEBUG(175, "old phi: " << oldshowerposition->Phi());
712 B2DEBUG(175, "old R: " << oldshowerposition->Mag());
713 B2DEBUG(175, "old energy: " << energyEstimation);
714 delete oldshowerposition;
715
716 // New position (with reduced number of neighbours)
717 // There are some cases where high backgrounds fake local maxima and the split centroid position is far
718 // away from the original LM cell... this will throw a (non fatal) error, and create a cluster with zero energy now).
719 B2Vector3D* showerposition = new B2Vector3D(Belle2::ECL::computePositionLiLo(newdigits, newweights, m_liloParameters));
720 aECLShower->setTheta(showerposition->Theta());
721 aECLShower->setPhi(showerposition->Phi());
722 aECLShower->setR(showerposition->Mag());
723
724 B2DEBUG(175, "new theta: " << showerposition->Theta());
725 B2DEBUG(175, "new phi: " << showerposition->Phi());
726 B2DEBUG(175, "new R: " << showerposition->Mag());
727 delete showerposition;
728
729 // Get Energy, if requested, set weights to zero for energy calculation.
730 double showerEnergy = 0.0;
732
733
734 // Get the optimal number of neighbours for this crystal and energy
735 std::vector<int> nOptimalVec = getOptimalNumberOfDigits(locmaxcellid, energyEstimation);
736 const unsigned int nOptimal = static_cast<unsigned int>(nOptimalVec[0]);
737 aECLShower->setNominalNumberOfCrystalsForEnergy(static_cast<double>(nOptimal));
738
739 // Store the indices used; will be needed later for energy corrections.
740 // Also store energy, used along with cellID to find leakage corrections.
741 aECLShower->setNOptimalGroupIndex(nOptimalVec[1]);
742 aECLShower->setNOptimalEnergyBin(nOptimalVec[2]);
743 aECLShower->setNOptimalEnergy(energyEstimation);
744
745 // Get the list of crystals used for the energy calculation
746 std::vector< std::pair<unsigned int, double>> listCrystalPairs; // cell id and weighted reconstructed energy
747 listCrystalPairs.resize(newdigits.size()); //resize to number of all crystals in cluster
748
749 std::vector < std::pair<double, double> > weighteddigits;
750 weighteddigits.resize(newdigits.size());
751 for (unsigned int i = 0; i < newdigits.size(); ++i) {
752 weighteddigits.at(i) = std::make_pair((newdigits.at(i)).getEnergy(), newweights.at(i));
753 listCrystalPairs.at(i) = std::make_pair((newdigits.at(i)).getCellId(), newweights.at(i) * (newdigits.at(i)).getEnergy());
754 }
755
756 // sort the listCrystals and keep the n highest in descending order
757 std::sort(listCrystalPairs.begin(), listCrystalPairs.end(), [](const auto & left, const auto & right) {
758 return left.second > right.second;
759 });
760
761 std::vector< unsigned int> listCrystals; //cell id
762
763 for (unsigned int i = 0; i < newdigits.size(); ++i) {
764 if (i < nOptimal) {
765 listCrystals.push_back(listCrystalPairs[i].first);
766 }
767 }
768
769 aECLShower->setNumberOfCrystalsForEnergy(static_cast<double>(listCrystals.size()));
770 aECLShower->setListOfCrystalsForEnergy(listCrystals);
771
772 showerEnergy = getEnergySum(weighteddigits, nOptimal);
773 B2DEBUG(175, "Shower Energy (2): " << showerEnergy);
774
775 } else {
776 showerEnergy = Belle2::ECL::computeEnergySum(newdigits, newweights);
777 }
778
779 aECLShower->setEnergy(showerEnergy);
780 aECLShower->setEnergyRaw(showerEnergy);
781 aECLShower->setEnergyHighestCrystal(highestEnergy);
782 aECLShower->setTime(highestEnergyTime);
783 aECLShower->setDeltaTime99(highestEnergyTimeResolution);
784 aECLShower->setNumberOfCrystals(weightSum);
785 aECLShower->setCentralCellId(locmaxcellid);
786
787 B2DEBUG(175, "new energy: " << showerEnergy);
788
789 // Get unique ID
790 aECLShower->setShowerId(iShower);
791 ++iShower;
792 aECLShower->setHypothesisId(Belle2::ECLShower::c_nPhotons);
793 aECLShower->setConnectedRegionId(aCR.getCRId());
794
795 // Add relation to the CR.
796 aECLShower->addRelationTo(&aCR);
797
798 // Add relation to the LM.
799 aECLShower->addRelationTo(m_eclLocalMaximums[posLM]);
800 }
801 }
802}
DataType Phi() const
The azimuth angle.
Definition: B2Vector3.h:151
DataType Z() const
access variable Z (= .at(2) without boundary check)
Definition: B2Vector3.h:435
DataType Theta() const
The polar angle.
Definition: B2Vector3.h:153
DataType X() const
access variable X (= .at(0) without boundary check)
Definition: B2Vector3.h:431
DataType Y() const
access variable Y (= .at(1) without boundary check)
Definition: B2Vector3.h:433
DataType Mag() const
The magnitude (rho in spherical coordinate system).
Definition: B2Vector3.h:159
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:118
double getEnergy() const
Get Calibrated Energy.
Definition: ECLCalDigit.h:123
double getTimeResolution() const
Get Calibrated Time Resolution.
Definition: ECLCalDigit.h:168
double getTime() const
Get Calibrated Time.
Definition: ECLCalDigit.h:163
int getCRId() const
Get CR identifier.
Class to store local maxima (LM)
@ c_nPhotons
CR is split into n photons (N1)
Definition: ECLShower.h:42
double estimateEnergy(const int centerid)
Estimate energy using 3x3 around central crystal.
std::vector< int > getOptimalNumberOfDigits(const int cellid, const double energy)
Get optimal number of digits (out of 21) based on first energy estimation and background level per ev...
const double c_molierRadius
Constant RM (Molier Radius) from exp(-a*dist/RM), http://pdg.lbl.gov/2009/AtomicNuclearProperties/HTM...
int getNeighbourMap(const double energy, const double background)
Get number of neighbours based on first energy estimation and background level per event.
double getEnergySum(std::vector< std::pair< double, double > > &weighteddigits, const unsigned int n)
Get energy sum for weighted entries.
ROOT::Math::XYZVector GetCrystalPos(int cid)
The Position of crystal.
Class for type safe access to objects that are referred to in relations.
void addRelationTo(const RelationsInterface< BASE > *object, float weight=1.0, const std::string &namedRelation="") const
Add a relation from this object to another object (with caching).
RelationVector< T > getRelationsWith(const std::string &name="", const std::string &namedRelation="") const
Get the relations between this object and another store array.
B2Vector3< double > B2Vector3D
typedef for common usage with double
Definition: B2Vector3.h:516

◆ terminate()

void terminate ( void  )
overridevirtual

Terminate.

Reimplemented from Module.

Definition at line 210 of file ECLSplitterN1Module.cc.

211{
214}

Member Data Documentation

◆ c_molierRadius

const double c_molierRadius
private
Initial value:
= 3.581 *
static const double cm
Standard units with the value = 1.
Definition: Unit.h:47

Constant RM (Molier Radius) from exp(-a*dist/RM), http://pdg.lbl.gov/2009/AtomicNuclearProperties/HTML_PAGES/141.html.

Definition at line 76 of file ECLSplitterN1Module.h.

◆ m_cellIdInCR

std::vector< int > m_cellIdInCR
private

list with all cellid of this connected region

Definition at line 108 of file ECLSplitterN1Module.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_cutDigitEnergyForEnergy

double m_cutDigitEnergyForEnergy
private

Minimum digit energy to be included in the shower energy calculation.

Definition at line 79 of file ECLSplitterN1Module.h.

◆ m_cutDigitTimeResidualForEnergy

double m_cutDigitTimeResidualForEnergy
private

Maximum time residual to be included in the shower energy calculation.

Definition at line 80 of file ECLSplitterN1Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_eBoundaries

std::vector< std::vector<float> > m_eBoundaries
private

energy boundaries each region

Definition at line 89 of file ECLSplitterN1Module.h.

◆ m_eclCalDigits

StoreArray<ECLCalDigit> m_eclCalDigits
private

Store array: ECLCalDigit.

Definition at line 115 of file ECLSplitterN1Module.h.

◆ m_eclConnectedRegions

StoreArray<ECLConnectedRegion> m_eclConnectedRegions
private

Store array: ECLConnectedRegion.

Definition at line 118 of file ECLSplitterN1Module.h.

◆ m_eclLocalMaximums

StoreArray<ECLLocalMaximum> m_eclLocalMaximums
private

Store array: ECLLocalMaximum.

Definition at line 124 of file ECLSplitterN1Module.h.

◆ m_eclNOptimal

DBObjPtr<ECLnOptimal> m_eclNOptimal
private

nOptimal payload

Definition at line 84 of file ECLSplitterN1Module.h.

◆ m_eclShowers

StoreArray<ECLShower> m_eclShowers
private

Store array: ECLShower.

Definition at line 121 of file ECLSplitterN1Module.h.

◆ m_eventLevelClusteringInfo

StoreObjPtr<EventLevelClusteringInfo> m_eventLevelClusteringInfo
private

Store object pointer: EventLevelClusteringInfo.

Definition at line 127 of file ECLSplitterN1Module.h.

◆ m_expConstant

double m_expConstant
private

Constant a from exp(-a*dist/RM), 1.5 to 2.5.

Definition at line 71 of file ECLSplitterN1Module.h.

◆ m_fullBkgdCount

int m_fullBkgdCount
private

Number of expected background digits at full background, FIXME: move to database.

Definition at line 99 of file ECLSplitterN1Module.h.

◆ m_geom

ECL::ECLGeometryPar* m_geom {nullptr}
private

Geometry.

Definition at line 150 of file ECLSplitterN1Module.h.

◆ m_groupNumber

std::vector<int> m_groupNumber
private

group number for each crystal

Definition at line 86 of file ECLSplitterN1Module.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_liloParameterA

double m_liloParameterA
private

lin-log parameter A

Definition at line 93 of file ECLSplitterN1Module.h.

◆ m_liloParameterB

double m_liloParameterB
private

lin-log parameter B

Definition at line 94 of file ECLSplitterN1Module.h.

◆ m_liloParameterC

double m_liloParameterC
private

lin-log parameter C

Definition at line 95 of file ECLSplitterN1Module.h.

◆ m_liloParameters

std::vector<double> m_liloParameters
private

lin-log parameters A, B, and C

Definition at line 96 of file ECLSplitterN1Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_maxIterations

int m_maxIterations
private

Maximum number of iterations.

Definition at line 72 of file ECLSplitterN1Module.h.

◆ m_maxSplits

int m_maxSplits
private

Maximum number of splits.

Definition at line 75 of file ECLSplitterN1Module.h.

◆ m_minimumSharedEnergy

double m_minimumSharedEnergy
private

Minimum shared energy.

Definition at line 74 of file ECLSplitterN1Module.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_NeighbourMap21

ECL::ECLNeighbours* m_NeighbourMap21 {nullptr}
private

5x5 neighbours excluding corners = 21

Definition at line 112 of file ECLSplitterN1Module.h.

◆ m_NeighbourMap9

ECL::ECLNeighbours* m_NeighbourMap9 {nullptr}
private

Neighbour maps.

3x3 = 9 neighbours

Definition at line 111 of file ECLSplitterN1Module.h.

◆ m_nEnergyBins

int m_nEnergyBins = 0
private

number of energies bins in nOptimal payload

Definition at line 88 of file ECLSplitterN1Module.h.

◆ m_nLeakReg

const int m_nLeakReg = 3
private

3 ECL regions: 0 = forward, 1 = barrel, 2 = backward

Definition at line 87 of file ECLSplitterN1Module.h.

◆ m_nOptimal2D

TH2F m_nOptimal2D
private

2D hist of nOptimal for Ebin vs groupID

Definition at line 85 of file ECLSplitterN1Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_positionMethod

std::string m_positionMethod
private

Position calculation: lilo or linear.

Definition at line 92 of file ECLSplitterN1Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_shiftTolerance

double m_shiftTolerance
private

Tolerance level for centroid shifts.

Definition at line 73 of file ECLSplitterN1Module.h.

◆ m_StoreArrPosition

std::vector< int > m_StoreArrPosition
private

vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions

Definition at line 102 of file ECLSplitterN1Module.h.

◆ m_StoreArrPositionLM

std::vector< int > m_StoreArrPositionLM
private

vector (ECLElementNumbers::c_NCrystals + 1 entries) with cell id to store array positions for LM

Definition at line 105 of file ECLSplitterN1Module.h.

◆ m_threshold

double m_threshold
private

Local maximum threshold after splitting.

Definition at line 70 of file ECLSplitterN1Module.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_useOptimalNumberOfDigitsForEnergy

int m_useOptimalNumberOfDigitsForEnergy
private

Optimize the number of neighbours for energy calculations.

Definition at line 81 of file ECLSplitterN1Module.h.


The documentation for this class was generated from the following files: