Expert for the TMVA Regression MVA method.
More...
#include <TMVA.h>
|
virtual void | load (Weightfile &weightfile) override |
| Load the expert from a Weightfile.
|
|
virtual std::vector< float > | apply (Dataset &test_data) const override |
| Apply this m_expert onto a dataset.
|
|
virtual std::vector< std::vector< float > > | applyMulticlass (Dataset &test_data) const |
| Apply this m_expert onto a dataset.
|
|
Expert for the TMVA Regression MVA method.
Definition at line 362 of file TMVA.h.
◆ apply()
std::vector< float > apply |
( |
Dataset & |
test_data | ) |
const |
|
overridevirtual |
Apply this m_expert onto a dataset.
- Parameters
-
Implements Expert.
Definition at line 542 of file TMVA.cc.
543 {
544
545 std::vector<float> prediction(test_data.getNumberOfEvents());
546 for (unsigned int iEvent = 0; iEvent < test_data.getNumberOfEvents(); ++iEvent) {
547 test_data.loadEvent(iEvent);
551 }
552 return prediction;
553
554 }
TMVAOptionsRegression specific_options
Method specific options.
std::vector< float > m_input_cache
Input Cache for TMVA::Reader: Otherwise we would have to set the branch addresses in each apply call.
std::unique_ptr< TMVA::Reader > m_expert
TMVA::Reader pointer.
std::string m_method
tmva method name
◆ applyMulticlass()
virtual std::vector< std::vector< float > > applyMulticlass |
( |
Dataset & |
test_data | ) |
const |
|
inlinevirtualinherited |
Apply this m_expert onto a dataset.
Multiclass mode. Not pure virtual, since not all derived classes to re-implement this.
- Parameters
-
- Returns
- vector of size N=test_data.getNumberOfEvents() with N=m_classes.size() scores for each event in the dataset.
Reimplemented in PythonExpert, TMVAExpertMulticlass, and TrivialExpert.
Definition at line 56 of file Expert.h.
57 {
58
59 B2ERROR("Attempted to call applyMulticlass() of the abstract base class MVA::Expert. All methods that support multiclass classification should override this definition.");
60 (void) test_data;
61
62 return std::vector<std::vector<float>>();
63 };
◆ load()
Load the expert from a Weightfile.
- Parameters
-
weightfile | containing all information necessary to build the m_expert |
Reimplemented from TMVAExpert.
Definition at line 476 of file TMVA.cc.
477 {
478
480
481
482 std::string custom_weightfile = weightfile.generateFileName(std::string(
"_") +
specific_options.
m_method +
".weights.xml");
483 weightfile.getFile("TMVA_Weightfile", custom_weightfile);
484
486
488 auto base = std::string("TMVA@@MethodBase");
493 auto ctor2 = std::string(
"Method") +
specific_options.
m_method + std::string(
"(TString&,TString&,TMVA::DataSetInfo&,TString&)");
495
496 gROOT->GetPluginManager()->AddHandler(base.c_str(), regexp1.c_str(), className.c_str(), pluginName.c_str(), ctor1.c_str());
497 gROOT->GetPluginManager()->AddHandler(base.c_str(), regexp2.c_str(), className.c_str(), pluginName.c_str(), ctor2.c_str());
498 B2INFO("Registered new TMVA Plugin named " << pluginName);
499 }
500
502 B2FATAL("Could not set up expert! Please see preceding error message from TMVA!");
503 }
504
505 }
virtual void load(Weightfile &weightfile) override
Load the expert from a Weightfile.
std::string m_type
tmva method type
◆ m_expert
std::unique_ptr<TMVA::Reader> m_expert |
|
protectedinherited |
TMVA::Reader pointer.
Definition at line 294 of file TMVA.h.
◆ m_general_options
General options loaded from the weightfile.
Definition at line 70 of file Expert.h.
◆ m_input_cache
std::vector<float> m_input_cache |
|
mutableprotectedinherited |
Input Cache for TMVA::Reader: Otherwise we would have to set the branch addresses in each apply call.
Definition at line 296 of file TMVA.h.
◆ m_spectators_cache
std::vector<float> m_spectators_cache |
|
mutableprotectedinherited |
Spectators Cache for TMVA::Reader: Otherwise we would have to set the branch addresses in each apply call.
Definition at line 298 of file TMVA.h.
◆ specific_options
Method specific options.
Definition at line 378 of file TMVA.h.
The documentation for this class was generated from the following files: