Belle II Software development
SoftGaussParticleConstraint Class Referenceabstract

Abstract base class for constraints of kinematic fits. More...

#include <SoftGaussParticleConstraint.h>

Inheritance diagram for SoftGaussParticleConstraint:
BaseSoftConstraint BaseConstraint SoftGaussMassConstraint SoftGaussMomentumConstraint

Public Member Functions

 SoftGaussParticleConstraint (double sigma_)
 Creates an empty SoftGaussParticleConstraint object.
 
virtual ~SoftGaussParticleConstraint ()
 Virtual destructor.
 
virtual void setFOList (std::vector< ParticleFitObject * > *fitobjects_)
 Adds several ParticleFitObject objects to the list.
 
virtual void addToFOList (ParticleFitObject &fitobject, int flag=1)
 Adds one ParticleFitObject objects to the list.
 
virtual void resetFOList ()
 Resests ParticleFitObject list.
 
virtual double getValue () const override=0
 Returns the value of the constraint function.
 
virtual double getChi2 () const override
 Returns the chi2.
 
virtual double getError () const override
 Returns the error on the value of the constraint.
 
virtual double getSigma () const
 Returns the sigma.
 
virtual double setSigma (double sigma_)
 Sets the sigma.
 
virtual void getDerivatives (int idim, double der[]) const override=0
 Get first order derivatives.
 
virtual void add2ndDerivativesToMatrix (double *M, int idim) const override
 Adds second order derivatives to global covariance matrix M.
 
virtual void addToGlobalChi2DerVector (double *y, int idim) const override
 Add derivatives of chi squared to global derivative matrix.
 
void invalidateCache () const
 Invalidates any cached values for the next event.
 
void test1stDerivatives ()
 
void test2ndDerivatives ()
 
double num1stDerivative (int ifo, int ilocal, double eps)
 Evaluates numerically the 1st derivative w.r.t. a parameter.
 
double num2ndDerivative (int ifo1, int ilocal1, double eps1, int ifo2, int ilocal2, double eps2)
 Evaluates numerically the 2nd derivative w.r.t. 2 parameters.
 
int getVarBasis () const
 
virtual const char * getName () const
 Returns the name of the constraint.
 
void setName (const char *name_)
 Set object's name.
 
virtual std::ostream & print (std::ostream &os) const
 print object to ostream
 

Protected Types

enum  { VAR_BASIS = BaseDefs::VARBASIS_EPXYZ }
 
typedef std::vector< ParticleFitObject * > FitObjectContainer
 Vector of pointers to ParticleFitObjects.
 
typedef FitObjectContainer::iterator FitObjectIterator
 Iterator through vector of pointers to ParticleFitObjects.
 
typedef FitObjectContainer::const_iterator ConstFitObjectIterator
 Constant iterator through vector of pointers to ParticleFitObjects.
 

Protected Member Functions

virtual bool secondDerivatives (int i, int j, double *derivatives) const =0
 Second derivatives with respect to the 4-vectors of Fit objects i and j; result false if all derivatives are zero.
 
virtual bool firstDerivatives (int i, double *derivatives) const =0
 First derivatives with respect to the 4-vector of Fit objects i; result false if all derivatives are zero.
 

Protected Attributes

FitObjectContainer fitobjects
 The FitObjectContainer.
 
std::vector< double > derivatives
 The derivatives.
 
std::vector< int > flags
 The flags can be used to divide the FitObjectContainer into several subsets used for example to implement an equal mass constraint (see MassConstraint).
 
double sigma
 The sigma of the Gaussian.
 
char * name
 

Related Functions

(Note that these are not member functions.)

std::ostream & operator<< (std::ostream &os, const BaseConstraint &bc)
 Prints out a BaseConstraint, using its print method.
 

Detailed Description

Abstract base class for constraints of kinematic fits.

This class defines the minimal functionality any constraint class must provide. First of all a constraint should know on with particles (or FitObject) it is applied. Where as for example a constraint on the total transvese momentum takes into account all particles in the event, an invariant mass constraint usually applies only to a subset of particles.

The particle list is implemented as a vector containing pointers to objects derived from ParticleFitObject and can be either set a whole (setFOList) or enlarged by adding a single ParticleFitObject (addToFOList).

From the four–momenta of all concerned fit objects the constraint has to be able to calculate its current value (getValue). Constraints should be formulated such that a value of zero corresponds to a perfectly fulfilled constraint.

In order to find a solution to the constrained minimisation problem, fit algorithms usually need the first order derivatives of the constraint with respect to the fit parameters. Since many constraints can be most easily expressed in terms of E, px, py, pz, the constraints supply their derivatives w.r.t. these parameters. If a FitObject uses a different parametrisation, it is its own task to provide the additional derivatives of E, px, py, pz w.r.t. the parameters of the FitObject. Thus it is easily possible to use FitObjects with different kinds of parametrisations under the same constraint. Some fit algorithms also need the second derivatives of the constraint, i.e. the NewtonFitter.

First and second order derivatives of each constraint can be added directly to the global covariance matrix containing the derivatives of all constraints w.r.t. to all parameters (add1stDerivativesToMatrix, add2ndDerivativesToMatrix). This requires the constraint to know its position in the overall list of constraints (globalNum).

Author: Jenny List, Benno List

Date
2008/02/13 12:37:38
Author
blist

Definition at line 74 of file SoftGaussParticleConstraint.h.

Member Typedef Documentation

◆ ConstFitObjectIterator

typedef FitObjectContainer::const_iterator ConstFitObjectIterator
protected

Constant iterator through vector of pointers to ParticleFitObjects.

Definition at line 177 of file SoftGaussParticleConstraint.h.

◆ FitObjectContainer

typedef std::vector<ParticleFitObject*> FitObjectContainer
protected

Vector of pointers to ParticleFitObjects.

Definition at line 173 of file SoftGaussParticleConstraint.h.

◆ FitObjectIterator

typedef FitObjectContainer::iterator FitObjectIterator
protected

Iterator through vector of pointers to ParticleFitObjects.

Definition at line 175 of file SoftGaussParticleConstraint.h.

Member Enumeration Documentation

◆ anonymous enum

anonymous enum
protected

Definition at line 189 of file SoftGaussParticleConstraint.h.

189{ VAR_BASIS = BaseDefs::VARBASIS_EPXYZ }; // this means that the constraint knows about E,px,py,pz

Constructor & Destructor Documentation

◆ SoftGaussParticleConstraint()

SoftGaussParticleConstraint ( double  sigma_)
explicit

Creates an empty SoftGaussParticleConstraint object.

Parameters
sigma_The sigma value

Definition at line 31 of file SoftGaussParticleConstraint.cc.

32 : sigma(sigma_)
33 {
35 }
void invalidateCache() const
Invalidates any cached values for the next event.

◆ ~SoftGaussParticleConstraint()

virtual ~SoftGaussParticleConstraint ( )
inlinevirtual

Virtual destructor.

Definition at line 80 of file SoftGaussParticleConstraint.h.

80{};

Member Function Documentation

◆ add2ndDerivativesToMatrix()

void add2ndDerivativesToMatrix ( double *  M,
int  idim 
) const
overridevirtual

Adds second order derivatives to global covariance matrix M.

Calculates the second derivative of the constraint g w.r.t.

the various parameters and adds it to the global covariance matrix

We denote with P_i the 4-vector of the i-th ParticleFitObject, then

\[
  \frac{\partial ^2 g}{\partial a_k \partial a_l}
  = \sum_i \sum_j \frac{\partial ^2 g}{\partial P_i \partial P_j} \cdot
    \frac{\partial P_i}{\partial a_k} \cdot \frac{\partial P_j}{\partial a_l}
    + \sum_i \frac{\partial g}{\partial P_i} \cdot
       \frac{\partial^2 P_i}{\partial a_k \partial a_l}
\]

Here, $\frac{\partial P_i}{\partial a_k}$ is a $4 \times n_i$ Matrix, where $n_i$ is the number of parameters of FitObject i; Correspondingly, $\frac{\partial^2 P_i}{\partial a_k \partial a_l}$ is a $4 \times n_i \times n_i$ matrix. Also, $\frac{\partial ^2 g}{\partial P_i \partial P_j}$ is a $4\times 4$ matrix for a given i and j, and $\frac{\partial g}{\partial P_i}$ is a 4-vector (though not a Lorentz-vector!).

First, treat the part

\[
   \frac{\partial ^2 g}{\partial P_i \partial P_j}  \cdot
    \frac{\partial P_i}{\partial a_k} \cdot \frac{\partial P_j}{\partial a_l}
\]

Second, treat the parts

\[
\sum_i \frac{\partial g}{\partial P_i} \cdot
       \frac{\partial^2 P_i}{\partial a_k \partial a_l}
\]

and

\[
\frac{\partial^2 h}{\partial g^2}
\sum_i \frac{\partial g}{\partial P_i} \cdot
       \frac{\partial P_i}{\partial a_k}
\sum_j \frac{\partial g}{\partial P_j} \cdot
       \frac{\partial P_j}{\partial a_l}
\]

Here, $\frac{\partial g}{\partial P_i}$ is a 4-vector, which we pass on to the FitObject

Parameters
MCovariance matrix, at least idim x idim
idimFirst dimension of the array

Implements BaseSoftConstraint.

Definition at line 92 of file SoftGaussParticleConstraint.cc.

93 {
94
101 double s = getSigma();
102 double fact = 2 * getValue() / (s * s);
103
104 // Derivatives \f$\frac{\partial ^2 g}{\partial P_i \partial P_j}\f$ at fixed i, j
105 // d2GdPidPj[4*ii+jj] is derivative w.r.t. P_i,ii and P_j,jj, where ii=0,1,2,3 for E,px,py,pz
106 double d2GdPidPj[16];
107 // Derivatives \f$\frac {\partial P_i}{\partial a_k}\f$ for all i;
108 // k is local parameter number
109 // dPidAk[KMAX*4*i + 4*k + ii] is \f$\frac {\partial P_{i,ii}}{\partial a_k}\f$,
110 // with ii=0, 1, 2, 3 for E, px, py, pz
111 const int KMAX = 4;
112 const int n = fitobjects.size();
113 auto* dPidAk = new double[n * KMAX * 4];
114 bool* dPidAkval = new bool[n];
115
116 for (int i = 0; i < n; ++i) dPidAkval[i] = false;
117
118 // Derivatives \f$\frac{\partial ^2 g}{\partial P_i \partial a_l}\f$ at fixed i
119 // d2GdPdAl[4*l + ii] is \f$\frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l}\f$
120 double d2GdPdAl[4 * KMAX];
121 // Derivatives \f$\frac{\partial ^2 g}{\partial a_k \partial a_l}\f$
122 double d2GdAkdAl[KMAX * KMAX] = {0};
123
124 // Global parameter numbers: parglobal[KMAX*i+klocal]
125 // is global parameter number of local parameter klocal of i-th Fit object
126 int* parglobal = new int[KMAX * n];
127
128 for (int i = 0; i < n; ++i) {
129 const ParticleFitObject* foi = fitobjects[i];
130 assert(foi);
131 for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
132 parglobal [KMAX * i + klocal] = foi->getGlobalParNum(klocal);
133 }
134 }
135
136
137 for (int i = 0; i < n; ++i) {
138 const ParticleFitObject* foi = fitobjects[i];
139 assert(foi);
140 for (int j = 0; j < n; ++j) {
141 const ParticleFitObject* foj = fitobjects[j];
142 assert(foj);
143 if (secondDerivatives(i, j, d2GdPidPj)) {
144 if (!dPidAkval[i]) {
145 foi->getDerivatives(dPidAk + i * (KMAX * 4), KMAX * 4);
146 dPidAkval[i] = true;
147 }
148 if (!dPidAkval[j]) {
149 foj->getDerivatives(dPidAk + j * (KMAX * 4), KMAX * 4);
150 dPidAkval[j] = true;
151 }
152 // Now sum over E/px/Py/Pz for object j:
153 // \f[
154 // \frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l}
155 // = (sum_{j}) sum_{jj} frac{\partial ^2 g}{\partial P_{i,ii} \partial P_{j,jj}}
156 // \cdot \frac{\partial P_{j,jj}}{\partial a_l}
157 // \f]
158 // We're summing over jj here
159 for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
160 for (int ii = 0; ii < 4; ++ii) {
161 int ind1 = 4 * ii;
162 int ind2 = (KMAX * 4) * j + 4 * llocal;
163 double& r = d2GdPdAl[4 * llocal + ii];
164 r = d2GdPidPj[ ind1] * dPidAk[ ind2]; // E
165 r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // px
166 r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // py
167 r += d2GdPidPj[++ind1] * dPidAk[++ind2]; // pz
168 }
169 }
170 // Now sum over E/px/Py/Pz for object i, i.e. sum over ii:
171 // \f[
172 // \frac{\partial ^2 g}{\partial a_k \partial a_l}
173 // = \sum_{ii} \frac{\partial ^2 g}{\partial P_{i,ii} \partial a_l} \cdot
174 // \frac{\partial P_{i,ii}}{\partial a_k}
175 // \f]
176 for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
177 for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
178 int ind1 = 4 * llocal;
179 int ind2 = (KMAX * 4) * i + 4 * klocal;
180 double& r = d2GdAkdAl[KMAX * klocal + llocal];
181 r = d2GdPdAl[ ind1] * dPidAk[ ind2]; //E
182 r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // px
183 r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // py
184 r += d2GdPdAl[++ind1] * dPidAk[++ind2]; // pz
185 }
186 }
187 // Now expand the local parameter numbers to global ones
188 for (int klocal = 0; klocal < foi->getNPar(); ++klocal) {
189 int kglobal = parglobal [KMAX * i + klocal];
190 for (int llocal = 0; llocal < foj->getNPar(); ++llocal) {
191 int lglobal = parglobal [KMAX * j + llocal];
192 M [idim * kglobal + lglobal] += fact * d2GdAkdAl[KMAX * klocal + llocal];
193 }
194 }
195 }
196 }
197 }
216 auto* v = new double[idim];
217 for (int i = 0; i < idim; ++i) v[i] = 0;
218 double sqrtfact2 = sqrt(2.0) / s;
219
220 double dgdpi[4];
221 for (int i = 0; i < n; ++i) {
222 const ParticleFitObject* foi = fitobjects[i];
223 assert(foi);
224 if (firstDerivatives(i, dgdpi)) {
225 foi->addTo2ndDerivatives(M, idim, fact, dgdpi, getVarBasis());
226 foi->addToGlobalChi2DerVector(v, idim, sqrtfact2, dgdpi, getVarBasis());
227 }
228 }
229
230 for (int i = 0; i < idim; ++i) {
231 if (double vi = v[i]) {
232 int ioffs = i * idim;
233 for (double* pvj = v; pvj < v + idim; ++pvj) {
234 M[ioffs++] += vi * (*pvj);
235 }
236 }
237 }
238
239
240 delete[] dPidAk;
241 delete[] dPidAkval;
242 delete[] parglobal;
243 delete[] v;
244 }
virtual double getValue() const override=0
Returns the value of the constraint function.
FitObjectContainer fitobjects
The FitObjectContainer.
virtual bool secondDerivatives(int i, int j, double *derivatives) const =0
Second derivatives with respect to the 4-vectors of Fit objects i and j; result false if all derivati...
virtual bool firstDerivatives(int i, double *derivatives) const =0
First derivatives with respect to the 4-vector of Fit objects i; result false if all derivatives are ...
virtual double getSigma() const
Returns the sigma.
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ addToFOList()

virtual void addToFOList ( ParticleFitObject fitobject,
int  flag = 1 
)
inlinevirtual

Adds one ParticleFitObject objects to the list.

Definition at line 92 of file SoftGaussParticleConstraint.h.

94 {
95 fitobjects.push_back(&fitobject);
96 flags.push_back(flag);
97 };
std::vector< int > flags
The flags can be used to divide the FitObjectContainer into several subsets used for example to imple...

◆ addToGlobalChi2DerVector()

void addToGlobalChi2DerVector ( double *  y,
int  idim 
) const
overridevirtual

Add derivatives of chi squared to global derivative matrix.

Parameters
yVector of chi2 derivatives
idimVector size

Implements BaseSoftConstraint.

Definition at line 246 of file SoftGaussParticleConstraint.cc.

247 {
248 double dgdpi[4];
249 double s = getSigma();
250 double r = 2 * getValue() / (s * s);
251 for (unsigned int i = 0; i < fitobjects.size(); ++i) {
252 const ParticleFitObject* foi = fitobjects[i];
253 assert(foi);
254 if (firstDerivatives(i, dgdpi)) {
255 foi->addToGlobalChi2DerVector(y, idim, r, dgdpi, getVarBasis());
256 }
257 }
258 }

◆ firstDerivatives()

virtual bool firstDerivatives ( int  i,
double *  derivatives 
) const
protectedpure virtual

First derivatives with respect to the 4-vector of Fit objects i; result false if all derivatives are zero.

Parameters
inumber of 1st FitObject
derivativesThe result 4-vector

Implemented in SoftGaussMassConstraint, and SoftGaussMomentumConstraint.

◆ getChi2()

double getChi2 ( ) const
overridevirtual

Returns the chi2.

Implements BaseSoftConstraint.

Definition at line 48 of file SoftGaussParticleConstraint.cc.

49 {
50 double r = getValue() / getSigma();
51 return r * r;
52 }

◆ getDerivatives()

virtual void getDerivatives ( int  idim,
double  der[] 
) const
overridepure virtual

Get first order derivatives.

Call this with a predefined array "der" with the necessary number of entries!

Parameters
idimFirst dimension of the array
derArray of derivatives, at least idim x idim

Implements BaseConstraint.

Implemented in SoftGaussMassConstraint, and SoftGaussMomentumConstraint.

◆ getError()

double getError ( ) const
overridevirtual

Returns the error on the value of the constraint.

Reimplemented from BaseConstraint.

Definition at line 54 of file SoftGaussParticleConstraint.cc.

55 {
56 double dgdpi[4];
57 double error2 = 0;
58 for (unsigned int i = 0; i < fitobjects.size(); ++i) {
59 const ParticleFitObject* foi = fitobjects[i];
60 assert(foi);
61 if (firstDerivatives(i, dgdpi)) {
62 error2 += foi->getError2(dgdpi, getVarBasis());
63 }
64 }
65 return std::sqrt(std::abs(error2));
66 }

◆ getName()

const char * getName ( ) const
virtualinherited

Returns the name of the constraint.

Definition at line 56 of file BaseConstraint.cc.

57 {
58 return name;
59 }

◆ getSigma()

double getSigma ( ) const
virtual

Returns the sigma.

Definition at line 37 of file SoftGaussParticleConstraint.cc.

38 {
39 return sigma;
40 }

◆ getValue()

virtual double getValue ( ) const
overridepure virtual

Returns the value of the constraint function.

Implements BaseConstraint.

Implemented in SoftGaussMassConstraint, and SoftGaussMomentumConstraint.

◆ getVarBasis()

int getVarBasis ( ) const

Definition at line 368 of file SoftGaussParticleConstraint.cc.

369 {
370 return VAR_BASIS;
371 }

◆ invalidateCache()

void invalidateCache ( ) const
inline

Invalidates any cached values for the next event.

Definition at line 138 of file SoftGaussParticleConstraint.h.

138{}

◆ num1stDerivative()

double num1stDerivative ( int  ifo,
int  ilocal,
double  eps 
)

Evaluates numerically the 1st derivative w.r.t. a parameter.

Parameters
ifoNumber of FitObject
ilocalLocal parameter number
epsvariation of local parameter

Definition at line 315 of file SoftGaussParticleConstraint.cc.

316 {
317 ParticleFitObject* fo = fitobjects[ifo];
318 assert(fo);
319 double save = fo->getParam(ilocal);
320 fo->setParam(ilocal, save + eps);
321 double v1 = getChi2();
322 fo->setParam(ilocal, save - eps);
323 double v2 = getChi2();
324 double result = (v1 - v2) / (2 * eps);
325 fo->setParam(ilocal, save);
326 return result;
327 }
virtual double getChi2() const override
Returns the chi2.
const std::vector< double > v2
MATLAB generated random vector.
const std::vector< double > v1
MATLAB generated random vector.

◆ num2ndDerivative()

double num2ndDerivative ( int  ifo1,
int  ilocal1,
double  eps1,
int  ifo2,
int  ilocal2,
double  eps2 
)

Evaluates numerically the 2nd derivative w.r.t. 2 parameters.

Parameters
ifo1Number of 1st FitObject
ilocal11st local parameter number
eps1variation of 1st local parameter
ifo2Number of 1st FitObject
ilocal21st local parameter number
eps2variation of 2nd local parameter

Definition at line 329 of file SoftGaussParticleConstraint.cc.

331 {
332 double result;
333
334 if (ifo1 == ifo2 && ilocal1 == ilocal2) {
335 ParticleFitObject* fo = fitobjects[ifo1];
336 assert(fo);
337 double save = fo->getParam(ilocal1);
338 double v0 = getChi2();
339 fo->setParam(ilocal1, save + eps1);
340 double v1 = getChi2();
341 fo->setParam(ilocal1, save - eps1);
342 double v2 = getChi2();
343 result = (v1 + v2 - 2 * v0) / (eps1 * eps1);
344 fo->setParam(ilocal1, save);
345 } else {
346 ParticleFitObject* fo1 = fitobjects[ifo1];
347 assert(fo1);
348 ParticleFitObject* fo2 = fitobjects[ifo2];
349 assert(fo2);
350 double save1 = fo1->getParam(ilocal1);
351 double save2 = fo2->getParam(ilocal2);
352 fo1->setParam(ilocal1, save1 + eps1);
353 fo2->setParam(ilocal2, save2 + eps2);
354 double v11 = getChi2();
355 fo2->setParam(ilocal2, save2 - eps2);
356 double v12 = getChi2();
357 fo1->setParam(ilocal1, save1 - eps1);
358 double v22 = getChi2();
359 fo2->setParam(ilocal2, save2 + eps2);
360 double v21 = getChi2();
361 result = (v11 + v22 - v12 - v21) / (4 * eps1 * eps2);
362 fo1->setParam(ilocal1, save1);
363 fo2->setParam(ilocal2, save2);
364 }
365 return result;
366 }

◆ print()

std::ostream & print ( std::ostream &  os) const
virtualinherited

print object to ostream

Parameters
osThe output stream

Definition at line 76 of file BaseConstraint.cc.

77 {
78 os << getName() << "=" << getValue();
79 return os;
80 }
virtual double getValue() const =0
Returns the value of the constraint function.
virtual const char * getName() const
Returns the name of the constraint.

◆ resetFOList()

virtual void resetFOList ( )
inlinevirtual

Resests ParticleFitObject list.

Definition at line 99 of file SoftGaussParticleConstraint.h.

100 {
101 fitobjects.resize(0);
102 flags.resize(0);
103 };

◆ secondDerivatives()

virtual bool secondDerivatives ( int  i,
int  j,
double *  derivatives 
) const
protectedpure virtual

Second derivatives with respect to the 4-vectors of Fit objects i and j; result false if all derivatives are zero.

Parameters
inumber of 1st FitObject
jnumber of 2nd FitObject
derivativesThe result 4x4 matrix

Implemented in SoftGaussMassConstraint, and SoftGaussMomentumConstraint.

◆ setFOList()

virtual void setFOList ( std::vector< ParticleFitObject * > *  fitobjects_)
inlinevirtual

Adds several ParticleFitObject objects to the list.

Parameters
fitobjects_A list of BaseFitObject objects

Definition at line 83 of file SoftGaussParticleConstraint.h.

85 {
86 for (int i = 0; i < (int) fitobjects_->size(); i++) {
87 fitobjects.push_back((*fitobjects_)[i]);
88 flags.push_back(1);
89 }
90 };

◆ setName()

void setName ( const char *  name_)
inherited

Set object's name.

Definition at line 61 of file BaseConstraint.cc.

62 {
63 if (name_ == nullptr) return;
64 size_t l = strlen(name_);
65 if (name) delete[] name;
66 name = new char[l + 1];
67 strcpy(name, name_);
68 }

◆ setSigma()

double setSigma ( double  sigma_)
virtual

Sets the sigma.

Parameters
sigma_The new sigma value

Definition at line 42 of file SoftGaussParticleConstraint.cc.

43 {
44 if (sigma_ != 0) sigma = std::abs(sigma_);
45 return sigma;
46 }

◆ test1stDerivatives()

void test1stDerivatives ( )

Definition at line 260 of file SoftGaussParticleConstraint.cc.

261 {
262 B2INFO("SoftGaussParticleConstraint::test1stDerivatives for " << getName());
263 double y[100];
264 for (double& i : y) i = 0;
266 double eps = 0.00001;
267 for (unsigned int ifo = 0; ifo < fitobjects.size(); ++ifo) {
268 ParticleFitObject* fo = fitobjects[ifo];
269 assert(fo);
270 for (int ilocal = 0; ilocal < fo->getNPar(); ++ilocal) {
271 int iglobal = fo->getGlobalParNum(ilocal);
272 double calc = y[iglobal];
273 double num = num1stDerivative(ifo, ilocal, eps);
274 B2INFO("fo: " << fo->getName() << " par " << ilocal << "/"
275 << iglobal << " (" << fo->getParamName(ilocal)
276 << ") calc: " << calc << " - num: " << num << " = " << calc - num);
277 }
278 }
279 }
virtual void addToGlobalChi2DerVector(double *y, int idim) const override
Add derivatives of chi squared to global derivative matrix.
double num1stDerivative(int ifo, int ilocal, double eps)
Evaluates numerically the 1st derivative w.r.t. a parameter.

◆ test2ndDerivatives()

void test2ndDerivatives ( )

Definition at line 280 of file SoftGaussParticleConstraint.cc.

281 {
282 B2INFO("SoftGaussParticleConstraint::test2ndDerivatives for " << getName());
283 const int idim = 100;
284 auto* M = new double[idim * idim];
285 for (int i = 0; i < idim * idim; ++i) M[i] = 0;
287 double eps = 0.0001;
288 B2INFO("eps=" << eps);
289
290 for (unsigned int ifo1 = 0; ifo1 < fitobjects.size(); ++ifo1) {
291 ParticleFitObject* fo1 = fitobjects[ifo1];
292 assert(fo1);
293 for (unsigned int ifo2 = ifo1; ifo2 < fitobjects.size(); ++ifo2) {
294 ParticleFitObject* fo2 = fitobjects[ifo2];
295 assert(fo2);
296 for (int ilocal1 = 0; ilocal1 < fo1->getNPar(); ++ilocal1) {
297 int iglobal1 = fo1->getGlobalParNum(ilocal1);
298 for (int ilocal2 = (ifo1 == ifo2 ? ilocal1 : 0); ilocal2 < fo2->getNPar(); ++ilocal2) {
299 int iglobal2 = fo2->getGlobalParNum(ilocal2);
300 double calc = M[idim * iglobal1 + iglobal2];
301 double num = num2ndDerivative(ifo1, ilocal1, eps, ifo2, ilocal2, eps);
302 B2INFO("fo1: " << fo1->getName() << " par " << ilocal1 << "/"
303 << iglobal1 << " (" << fo1->getParamName(ilocal1)
304 << "), fo2: " << fo2->getName() << " par " << ilocal2 << "/"
305 << iglobal2 << " (" << fo2->getParamName(ilocal2)
306 << ") calc: " << calc << " - num: " << num << " = " << calc - num);
307 }
308 }
309 }
310 }
311 delete[] M;
312 }
virtual void add2ndDerivativesToMatrix(double *M, int idim) const override
Adds second order derivatives to global covariance matrix M.
double num2ndDerivative(int ifo1, int ilocal1, double eps1, int ifo2, int ilocal2, double eps2)
Evaluates numerically the 2nd derivative w.r.t. 2 parameters.

Friends And Related Function Documentation

◆ operator<<()

std::ostream & operator<< ( std::ostream &  os,
const BaseConstraint bc 
)
related

Prints out a BaseConstraint, using its print method.

Parameters
osThe output stream
bcThe object to print

Definition at line 114 of file BaseConstraint.h.

117 {
118 return bc.print(os);
119 }

Member Data Documentation

◆ derivatives

std::vector<double> derivatives
protected

The derivatives.

Definition at line 181 of file SoftGaussParticleConstraint.h.

◆ fitobjects

FitObjectContainer fitobjects
protected

The FitObjectContainer.

Definition at line 179 of file SoftGaussParticleConstraint.h.

◆ flags

std::vector<int> flags
protected

The flags can be used to divide the FitObjectContainer into several subsets used for example to implement an equal mass constraint (see MassConstraint).

Definition at line 184 of file SoftGaussParticleConstraint.h.

◆ name

char* name
protectedinherited

Definition at line 108 of file BaseConstraint.h.

◆ sigma

double sigma
protected

The sigma of the Gaussian.

Definition at line 187 of file SoftGaussParticleConstraint.h.


The documentation for this class was generated from the following files: