Belle II Software development
SegmentTrackVarSet Class Reference

Class to compute floating point variables from a segment to track match which can be recorded as a flat TNtuple or serve as input to a MVA method. More...

#include <SegmentTrackVarSet.h>

Inheritance diagram for SegmentTrackVarSet:
VarSet< SegmentTrackVarNames > BaseVarSet< AVarNames::Object > CompositeProcessingSignalListener ProcessingSignalListener

Public Types

using Object = typename Super::Object
 Type from which variables should be extracted.
 

Public Member Functions

bool extract (const BaseSegmentTrackFilter::Object *testPair) final
 Generate and assign the contained variables.
 
std::vector< Named< Float_t * > > getNamedVariables (const std::string &prefix) override
 Getter for the named references to the individual variables Base implementation returns empty vector.
 
std::vector< Named< Float_t * > > getNamedVariables ()
 Getter for the named references to the individual variables.
 
MayBePtr< Float_t > find (const std::string &varName) override
 Pointer to the variable with the given name.
 
virtual bool extract (const Object *obj)
 Main method that extracts the variable values from the complex object.
 
bool extract (const Object &obj)
 Method for extraction from an object instead of a pointer.
 
std::map< std::string, Float_t > getNamedValues (const std::string &prefix) const
 Getter for a map of names to float values.
 
std::map< std::string, Float_t > getNamedValues () const
 Getter for a map of names to float values.
 
void initialize () override
 Receive and dispatch signal before the start of the event processing.
 
void beginRun () override
 Receive and dispatch signal for the beginning of a new run.
 
void beginEvent () override
 Receive and dispatch signal for the start of a new event.
 
void endRun () override
 Receive and dispatch signal for the end of the run.
 
void terminate () override
 Receive and dispatch Signal for termination of the event processing.
 

Protected Member Functions

Float_t get () const
 Getter for the value of the ith variable. Static version.
 
Float_t & var ()
 Reference getter for the value of the ith variable. Static version.
 
AssignFinite< Float_t > finitevar ()
 Reference getter for the value of the ith variable. Transforms non-finite values to finite value.
 
void addProcessingSignalListener (ProcessingSignalListener *psl)
 Register a processing signal listener to be notified.
 
int getNProcessingSignalListener ()
 Get the number of currently registered listeners.
 

Static Protected Member Functions

static constexpr int named (const char *name)
 Getter for the index from the name.
 

Private Types

using Super = BaseVarSet< typename AVarNames::Object >
 Type of the super class.
 

Private Attributes

FixedSizeNamedFloatTuple< SegmentTrackVarNamesm_variables
 Memory for nVars floating point values.
 
std::vector< ProcessingSignalListener * > m_subordinaryProcessingSignalListeners
 References to subordinary signal processing listener contained in this findlet.
 
bool m_initialized = false
 Flag to keep track whether initialization happened before.
 
bool m_terminated = false
 Flag to keep track whether termination happened before.
 
std::string m_initializedAs
 Name of the type during initialisation.
 

Static Private Attributes

static const size_t nVars
 Number of floating point values represented by this class.
 

Detailed Description

Class to compute floating point variables from a segment to track match which can be recorded as a flat TNtuple or serve as input to a MVA method.

Definition at line 75 of file SegmentTrackVarSet.h.

Member Typedef Documentation

◆ Object

using Object = typename Super::Object
inherited

Type from which variables should be extracted.

Definition at line 44 of file VarSet.h.

◆ Super

using Super = BaseVarSet<typename AVarNames::Object>
privateinherited

Type of the super class.

Definition at line 40 of file VarSet.h.

Member Function Documentation

◆ addProcessingSignalListener()

void addProcessingSignalListener ( ProcessingSignalListener psl)
protectedinherited

Register a processing signal listener to be notified.

Definition at line 55 of file CompositeProcessingSignalListener.cc.

56{
58}
std::vector< ProcessingSignalListener * > m_subordinaryProcessingSignalListeners
References to subordinary signal processing listener contained in this findlet.

◆ beginEvent()

void beginEvent ( )
overridevirtualinherited

Receive and dispatch signal for the start of a new event.

Reimplemented from ProcessingSignalListener.

Reimplemented in SpacePointTagger< Belle2::CKFToPXDResult, Belle2::PXDCluster >, SpacePointTagger< Belle2::CKFToSVDResult, Belle2::SVDCluster >, BaseEventTimeExtractor< RecoTrack * >, BaseEventTimeExtractor< TrackFindingCDC::CDCWireHit & >, SharingHitsMatcher< Belle2::TrackFindingCDC::CDCTrack, Belle2::TrackFindingCDC::CDCSegment2D >, MCSymmetric< BaseAxialSegmentPairFilter >, MCSymmetric< BaseFacetFilter >, MCSymmetric< BaseFacetRelationFilter >, MCSymmetric< BaseSegmentPairFilter >, MCSymmetric< BaseSegmentPairRelationFilter >, MCSymmetric< BaseSegmentRelationFilter >, MCSymmetric< BaseSegmentTripleFilter >, MCSymmetric< BaseSegmentTripleRelationFilter >, MCSymmetric< BaseTrackRelationFilter >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCFacet >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCWireHit, true >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCSegment2D >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCTrack >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCSegmentPair >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCSegmentTriple >, RecoTrackStorer, ROIFinder, and SVDHoughTracking.

Definition at line 31 of file CompositeProcessingSignalListener.cc.

32{
35 psl->beginEvent();
36 }
37}
Interface for an algorithm part that needs to receive the module processing signals.
virtual void beginEvent()
Receive signal for the start of a new event.

◆ beginRun()

void beginRun ( )
overridevirtualinherited

Receive and dispatch signal for the beginning of a new run.

Reimplemented from ProcessingSignalListener.

Reimplemented in LayerRelationFilter< AFilter >, FourHitFilter, QualityIndicatorFilter, ThreeHitFilter, TwoHitVirtualIPFilter, TwoHitVirtualIPQIFilter, RecoTrackStorer, ROIFinder, SpacePointLoaderAndPreparer, and TrackCandidateResultRefiner.

Definition at line 23 of file CompositeProcessingSignalListener.cc.

24{
27 psl->beginRun();
28 }
29}
virtual void beginRun()
Receive signal for the beginning of a new run.

◆ endRun()

void endRun ( )
overridevirtualinherited

Receive and dispatch signal for the end of the run.

Reimplemented from ProcessingSignalListener.

Definition at line 39 of file CompositeProcessingSignalListener.cc.

40{
42 psl->endRun();
43 }
45}
virtual void endRun()
Receive signal for the end of the run.

◆ extract() [1/3]

bool extract ( const BaseSegmentTrackFilter::Object testPair)
final

Generate and assign the contained variables.

Definition at line 26 of file SegmentTrackVarSet.cc.

27{
28 const CDCTrack* track = testPair->getFrom();
29 const CDCSegment2D* segment = testPair->getTo();
30
31 assert(segment);
32 assert(track);
33
34 double maxmimumTrajectoryDistanceFront = 0;
35 double maxmimumTrajectoryDistanceBack = 0;
36 double maxmimumHitDistanceFront = 0;
37 double maxmimumHitDistanceBack = 0;
38 double outOfCDC = 0; // 0 means no, 1 means yes
39 double hitsInSameRegion = 0;
40 double hitsInCommon = 0;
41
42 const CDCRecoHit2D& front = segment->front();
43 const CDCRecoHit2D& back = segment->back();
44
45 // Calculate distances
46 const CDCTrajectory3D& trajectoryTrack3D = track->getStartTrajectory3D();
47 const CDCTrajectory2D& trajectoryTrack2D = trajectoryTrack3D.getTrajectory2D();
48 const CDCTrajectorySZ& szTrajectoryTrack = trajectoryTrack3D.getTrajectorySZ();
49 double radius = trajectoryTrack2D.getGlobalCircle().absRadius();
50
51 maxmimumTrajectoryDistanceFront = trajectoryTrack2D.getDist2D(front.getWireHit().getRefPos2D());
52 maxmimumTrajectoryDistanceBack = trajectoryTrack2D.getDist2D(back.getWireHit().getRefPos2D());
53
54 var<named("z_distance")>() = 0;
55 var<named("theta_distance")>() = 0;
56
57 if (segment->getStereoKind() == EStereoKind::c_Axial) {
58 CDCTrajectory2D& trajectorySegment = segment->getTrajectory2D();
59 if (not trajectoryTrack2D.isFitted()) {
61 fitter.update(trajectorySegment, *segment);
62 }
63 } else {
64 CDCObservations2D observations;
65 for (const CDCRecoHit2D& recoHit : *segment) {
66 const CDCRLWireHit& rlWireHit = recoHit.getRLWireHit();
67 CDCRecoHit3D recoHit3D = CDCRecoHit3D::reconstruct(rlWireHit, trajectoryTrack2D);
68 double s = recoHit3D.getArcLength2D();
69 double z = recoHit3D.getRecoZ();
70 observations.fill(s, z);
71 }
72
73 if (observations.size() > 3) {
74 const CDCSZFitter& fitter = CDCSZFitter::getFitter();
75 const CDCTrajectorySZ& szTrajectorySegments = fitter.fit(observations);
76
77 double startZTrack = szTrajectoryTrack.getZ0();
78 double startZSegments = szTrajectorySegments.getZ0();
79
80 var<named("z_distance")>() = startZTrack - startZSegments;
81 var<named("theta_distance")>() = szTrajectoryTrack.getTanLambda() - szTrajectorySegments.getTanLambda();
82 }
83 }
84
85 // Calculate if it is out of the CDC
86 Vector3D frontRecoPos3D = front.reconstruct3D(trajectoryTrack2D);
87 Vector3D backRecoPos3D = back.reconstruct3D(trajectoryTrack2D);
88
89 if (segment->getStereoKind() != EStereoKind::c_Axial) {
90 double forwardZ = front.getWire().getWireLine().forwardZ();
91 double backwardZ = front.getWire().getWireLine().backwardZ();
92
93 if (frontRecoPos3D.z() > forwardZ or frontRecoPos3D.z() < backwardZ or backRecoPos3D.z() > forwardZ
94 or backRecoPos3D.z() < backwardZ) {
95 outOfCDC = 1.0;
96 }
97 }
98
99 // Get perpS of track in the beginning and the end
100 double perpSOfFront = trajectoryTrack2D.calcArcLength2D(segment->front().getRecoPos2D());
101 double perpSOfBack = trajectoryTrack2D.calcArcLength2D(segment->back().getRecoPos2D());
102
103 double perpSMinimum = std::min(perpSOfFront, perpSOfBack);
104 double perpSMaximum = std::max(perpSOfFront, perpSOfBack);
105
106 // Count number of hits in the same region
107 for (const CDCRecoHit3D& recoHit : *track) {
108 if (recoHit.getArcLength2D() < 0.8 * perpSMinimum or
109 recoHit.getArcLength2D() > 1.2 * perpSMaximum) {
110 continue;
111 }
112 if (recoHit.getISuperLayer() == segment->getISuperLayer()) {
113 hitsInSameRegion++;
114 } else if (abs(recoHit.getISuperLayer() - segment->getISuperLayer()) == 1) {
115 double distanceFront = (front.getWireHit().getRefPos2D() - recoHit.getRecoPos2D()).norm();
116 if (distanceFront > maxmimumHitDistanceFront) {
117 maxmimumHitDistanceFront = distanceFront;
118 }
119 double distanceBack = (back.getWireHit().getRefPos2D() - recoHit.getRecoPos2D()).norm();
120 if (distanceBack > maxmimumHitDistanceBack) {
121 maxmimumHitDistanceBack = distanceBack;
122 }
123 }
124 }
125
126 // Count number of common hits
127 for (const CDCRecoHit3D& trackHit : *track) {
128 if (std::find_if(segment->begin(), segment->end(), [&trackHit](const CDCRecoHit2D & segmentHit) {
129 return segmentHit.getWireHit().getHit() == trackHit.getWireHit().getHit();
130 }) != segment->end()) {
131 hitsInCommon += 1;
132 }
133 }
134
135 // Make a fit with all the hits and one with only the hits in the near range
136 CDCObservations2D observationsFull;
137 CDCObservations2D observationsNeigh;
138
139 // Collect the observations
140 bool isAxialSegment = segment->getStereoKind() != EStereoKind::c_Axial;
141
142 for (const CDCRecoHit3D& recoHit : *track) {
143 if (isAxialSegment and recoHit.getStereoKind() == EStereoKind::c_Axial) {
144 observationsFull.fill(recoHit.getWireHit().getRefPos2D());
145 if (abs(recoHit.getISuperLayer() - segment->getISuperLayer()) < 3) {
146 observationsNeigh.fill(recoHit.getWireHit().getRefPos2D());
147 }
148 } else if (not isAxialSegment and recoHit.getStereoKind() != EStereoKind::c_Axial) {
149 double s = recoHit.getArcLength2D();
150 double z = recoHit.getRecoZ();
151 observationsFull.fill(s, z);
152 if (abs(recoHit.getISuperLayer() - segment->getISuperLayer()) < 3) {
153 observationsNeigh.fill(s, z);
154 }
155 }
156 }
157
158 const CDCTrajectorySZ& trajectorySZ = track->getStartTrajectory3D().getTrajectorySZ();
159 double tanLambda = trajectorySZ.getTanLambda();
160
161 bool hasZInformation = tanLambda != 0;
162 double max_hit_z_distance = -1;
163 double sum_hit_z_distance = 0;
164 double stereo_quad_tree_distance = 0;
165
166 if (hasZInformation) {
167 double thetaFirstSegmentHit = -10;
168
169 for (const CDCRecoHit2D& recoHit2D : *segment) {
170 Vector3D reconstructedPosition = recoHit2D.reconstruct3D(trajectoryTrack2D);
171 const Vector2D& recoPos2D = recoHit2D.getRecoPos2D();
172 double perpS = trajectoryTrack2D.calcArcLength2D(recoPos2D);
173
174
175 double current_z_distance = std::abs(trajectorySZ.getZDist(perpS, reconstructedPosition.z()));
176 if (std::isnan(current_z_distance)) {
177 continue;
178 }
179
180 if (thetaFirstSegmentHit == -10) {
181 thetaFirstSegmentHit = reconstructedPosition.theta();
182 }
183 sum_hit_z_distance += current_z_distance;
184 if (current_z_distance > max_hit_z_distance) {
185 max_hit_z_distance = current_z_distance;
186 }
187 }
188
189 double thetaTrack = trajectoryTrack3D.getFlightDirection3DAtSupport().theta();
190 stereo_quad_tree_distance = thetaTrack - thetaFirstSegmentHit;
191 }
192
193
194 for (const CDCRecoHit2D& recoHit : *segment) {
195 if (isAxialSegment) {
196 observationsFull.fill(recoHit.getRecoPos2D());
197 observationsNeigh.fill(recoHit.getRecoPos2D());
198 } else {
199 const CDCRLWireHit& rlWireHit = recoHit.getRLWireHit();
200 CDCRecoHit3D recoHit3D = CDCRecoHit3D::reconstruct(rlWireHit, trajectoryTrack2D);
201 double s = recoHit3D.getArcLength2D();
202 double z = recoHit3D.getRecoZ();
203 observationsFull.fill(s, z);
204 observationsNeigh.fill(s, z);
205 }
206 }
207
208 // Do the fit
209 var<named("fit_neigh")>() = 0;
210 var<named("fit_full")>() = 0;
211 if (segment->getStereoKind() == EStereoKind::c_Axial) {
213 var<named("fit_full")>() = fitter.fit(observationsFull).getPValue();
214 } else {
215 const CDCSZFitter& fitter = CDCSZFitter::getFitter();
216 var<named("fit_full")>() = toFinite(fitter.fit(observationsFull).getPValue(), 0);
217
218 if (observationsNeigh.size() > 3) {
219 var<named("fit_neigh")>() = toFinite(fitter.fit(observationsNeigh).getPValue(), 0);
220 } else {
221 var<named("fit_neigh")>() = 0;
222 }
223 }
224
225 if (observationsFull.size() == observationsNeigh.size()) {
226 var<named("fit_neigh")>() = -1;
227 }
228
229 var<named("is_stereo")>() = segment->getStereoKind() != EStereoKind::c_Axial;
230 var<named("segment_size")>() = segment->size();
231 var<named("track_size")>() = track->size();
232 var<named("mean_hit_z_distance")>() = sum_hit_z_distance;
233 var<named("max_hit_z_distance")>() = max_hit_z_distance;
234 var<named("stereo_quad_tree_distance")>() = toFinite(stereo_quad_tree_distance, 0);
235
236 var<named("pt_of_track")>() = toFinite(std::isnan(trajectoryTrack2D.getAbsMom2D()) ? 0.0 : trajectoryTrack2D.getAbsMom2D(), 0);
237 var<named("track_is_curler")>() = trajectoryTrack2D.getExit().hasNAN();
238
239 var<named("superlayer_already_full")>() = not trajectoryTrack2D.getOuterExit().hasNAN() and hitsInSameRegion > 5;
240
241 var<named("maxmimum_trajectory_distance_front")>() = toFinite(maxmimumTrajectoryDistanceFront, 999);
242 var<named("maxmimum_trajectory_distance_back")>() = toFinite(maxmimumTrajectoryDistanceBack, 999);
243
244 var<named("maxmimum_hit_distance_front")>() = maxmimumHitDistanceFront;
245 var<named("maxmimum_hit_distance_back")>() = maxmimumHitDistanceBack;
246
247 var<named("out_of_CDC")>() = outOfCDC;
248 var<named("hits_in_same_region")>() = hitsInSameRegion;
249
250 var<named("number_of_hits_in_common")>() = hitsInCommon;
251
252 var<named("segment_super_layer")>() = segment->getISuperLayer();
253
254 double phiBetweenTrackAndSegment = trajectoryTrack2D.getMom2DAtSupport().angleWith(segment->front().getRecoPos2D());
255
256 var<named("phi_between_track_and_segment")>() = toFinite(phiBetweenTrackAndSegment, 0);
257 var<named("perp_s_of_front")>() = toFinite(perpSOfFront / radius, 0);
258 var<named("perp_s_of_back")>() = toFinite(perpSOfBack / radius, 0);
259
260 return true;
261}
Class serving as a storage of observed drift circles to present to the Riemann fitter.
std::size_t fill(double x, double y, double signedRadius=0.0, double weight=1.0)
Appends the observed position.
std::size_t size() const
Returns the number of observations stored.
Class representing an oriented hit wire including a hypotheses whether the causing track passes left ...
Definition: CDCRLWireHit.h:41
Class representing a two dimensional reconstructed hit in the central drift chamber.
Definition: CDCRecoHit2D.h:47
const CDCWireHit & getWireHit() const
Getter for the wire hit associated with the reconstructed hit.
Definition: CDCRecoHit2D.h:193
Vector3D reconstruct3D(const CDCTrajectory2D &trajectory2D, const double z=0) const
Reconstruct the three dimensional position (especially of stereo hits) by determining the z coordinat...
const CDCWire & getWire() const
Getter for the wire the reconstructed hit associated to.
Definition: CDCRecoHit2D.h:175
Class representing a three dimensional reconstructed hit.
Definition: CDCRecoHit3D.h:52
static CDCRecoHit3D reconstruct(const CDCRecoHit2D &recoHit2D, const CDCTrajectory2D &trajectory2D)
Reconstructs the three dimensional hit from the two dimensional and the two dimensional trajectory.
Definition: CDCRecoHit3D.cc:56
double getRecoZ() const
Getter for the z coordinate of the reconstructed position.
Definition: CDCRecoHit3D.h:303
double getArcLength2D() const
Getter for the travel distance in the xy projection.
Definition: CDCRecoHit3D.h:370
Class implementing the Riemann fit for two dimensional trajectory circle.
static const CDCRiemannFitter & getFitter()
Static getter for a general Riemann fitter.
Class implementing the z coordinate over travel distance line fit.
Definition: CDCSZFitter.h:27
static const CDCSZFitter & getFitter()
Getter for a standard sz line fitter instance.
Definition: CDCSZFitter.cc:36
A reconstructed sequence of two dimensional hits in one super layer.
Definition: CDCSegment2D.h:39
Class representing a sequence of three dimensional reconstructed hits.
Definition: CDCTrack.h:41
Particle trajectory as it is seen in xy projection represented as a circle.
Vector2D getMom2DAtSupport(const double bZ) const
Get the momentum at the support point of the trajectory.
PerigeeCircle getGlobalCircle() const
Getter for the circle in global coordinates.
Vector2D getOuterExit(double factor=1) const
Calculates the point where the trajectory meets the outer wall of the CDC.
double calcArcLength2D(const Vector2D &point) const
Calculate the travel distance from the start position of the trajectory.
double getAbsMom2D(double bZ) const
Get the estimation for the absolute value of the transvers momentum.
bool isFitted() const
Checks if the circle is already set to a valid value.
Vector2D getExit() const
Calculates the point where the trajectory leaves the CDC.
double getDist2D(const Vector2D &point) const
Calculates the distance from the point to the trajectory as seen from the xy projection.
Particle full three dimensional trajectory.
CDCTrajectory2D getTrajectory2D() const
Getter for the two dimensional trajectory.
Vector3D getFlightDirection3DAtSupport() const
Get the unit momentum at the start point of the trajectory.
CDCTrajectorySZ getTrajectorySZ() const
Getter for the sz trajectory.
Linear trajectory in sz space.
double getTanLambda() const
Getter for the slope over the travel distance coordinate.
double getZDist(const double s, const double z) const
Calculates the distance along between the given point at the sz trajectory.
double getZ0() const
Getter for the z coordinate at zero travel distance.
const Vector2D & getRefPos2D() const
The two dimensional reference position (z=0) of the underlying wire.
Definition: CDCWireHit.cc:212
const WireLine & getWireLine() const
Getter for the wire line representation of the wire.
Definition: CDCWire.h:188
double absRadius() const
Gives the signed radius of the circle. If it was a line this will be infinity.
static constexpr int named(const char *name)
Getter for the index from the name.
Definition: VarSet.h:78
Float_t & var()
Reference getter for the value of the ith variable. Static version.
Definition: VarSet.h:93
A two dimensional vector which is equipped with functions for correct handling of orientation relate...
Definition: Vector2D.h:32
bool hasNAN() const
Checks if one of the coordinates is NAN.
Definition: Vector2D.h:149
double angleWith(const Vector2D &rhs) const
The angle between this and rhs.
Definition: Vector2D.h:197
A three dimensional vector.
Definition: Vector3D.h:33
double z() const
Getter for the z coordinate.
Definition: Vector3D.h:496
double theta() const
Getter for the polar angle.
Definition: Vector3D.h:546
double backwardZ() const
Gives the backward z coordinate.
Definition: WireLine.h:134
double forwardZ() const
Gives the forward z coordinate.
Definition: WireLine.h:130

◆ extract() [2/3]

bool extract ( const Object obj)
inlineinherited

Method for extraction from an object instead of a pointer.

Definition at line 56 of file BaseVarSet.h.

57 {
58 return extract(&obj);
59 }
virtual bool extract(const Object *obj)
Main method that extracts the variable values from the complex object.
Definition: BaseVarSet.h:50

◆ extract() [3/3]

virtual bool extract ( const Object obj)
inlinevirtualinherited

Main method that extracts the variable values from the complex object.

Returns indication whether the extraction could be completed successfully. Base implementation returns always true.

Parameters
objdummy object not used
Returns
: always true for the base implementation

Definition at line 50 of file BaseVarSet.h.

51 {
52 return true;
53 }

◆ find()

MayBePtr< Float_t > find ( const std::string &  varName)
inlineoverridevirtualinherited

Pointer to the variable with the given name.

Returns nullptr if not found.

Reimplemented from BaseVarSet< AVarNames::Object >.

Definition at line 64 of file VarSet.h.

65 {
66 return m_variables.find(varName);
67 }
virtual MayBePtr< Float_t > find(std::string name)
Getter for a pointer to the value with the given name.
FixedSizeNamedFloatTuple< SegmentTrackVarNames > m_variables
Memory for nVars floating point values.
Definition: VarSet.h:138

◆ finitevar()

AssignFinite< Float_t > finitevar ( )
inlineprotectedinherited

Reference getter for the value of the ith variable. Transforms non-finite values to finite value.

Definition at line 130 of file VarSet.h.

131 {
132 static_assert(I < nVars, "Requested variable index exceeds number of variables.");
133 return AssignFinite<Float_t>(m_variables[I]);
134 }
static const size_t nVars
Number of floating point values represented by this class.
Definition: VarSet.h:48

◆ get()

Float_t get ( ) const
inlineprotectedinherited

Getter for the value of the ith variable. Static version.

Definition at line 85 of file VarSet.h.

86 {
87 static_assert(I < nVars, "Requested variable index exceeds number of variables.");
88 return m_variables.get(I);
89 }
Float_t get() const
Getter for the ith value. Static index version.

◆ getNamedValues() [1/2]

std::map< std::string, Float_t > getNamedValues ( ) const
inlineinherited

Getter for a map of names to float values.

Definition at line 95 of file BaseVarSet.h.

96 {
97 const std::string prefix = "";
98 return this->getNamedValues(prefix);
99 }
std::map< std::string, Float_t > getNamedValues(const std::string &prefix) const
Getter for a map of names to float values.
Definition: BaseVarSet.h:83

◆ getNamedValues() [2/2]

std::map< std::string, Float_t > getNamedValues ( const std::string &  prefix) const
inlineinherited

Getter for a map of names to float values.

Parameters
prefixName prefix to apply to all variable names.

Definition at line 83 of file BaseVarSet.h.

84 {
85 std::map<std::string, Float_t> result;
86 std::vector<Named<Float_t*> > namedVariables = this->getNamedVariables(prefix);
87 for (const Named<Float_t*>& namedVariable : namedVariables) {
88 Float_t* variable = namedVariable;
89 result[namedVariable.getName()] = *variable;
90 }
91 return result;
92 }
virtual std::vector< Named< Float_t * > > getNamedVariables(const std::string &prefix)
Getter for the named references to the individual variables Base implementation returns empty vector.
Definition: BaseVarSet.h:67

◆ getNamedVariables() [1/2]

std::vector< Named< Float_t * > > getNamedVariables ( )
inlineinherited

Getter for the named references to the individual variables.

Definition at line 73 of file BaseVarSet.h.

74 {
75 const std::string prefix = "";
76 return this->getNamedVariables(prefix);
77 }

◆ getNamedVariables() [2/2]

std::vector< Named< Float_t * > > getNamedVariables ( const std::string &  prefix)
inlineoverridevirtualinherited

Getter for the named references to the individual variables Base implementation returns empty vector.

Reimplemented from BaseVarSet< AVarNames::Object >.

Definition at line 55 of file VarSet.h.

56 {
57 return m_variables.getNamedVariables(prefix);
58 }
std::vector< Named< Float_t * > > getNamedVariables(std::string prefix="")
Getter for named references to the variables in this tuple.

◆ getNProcessingSignalListener()

int getNProcessingSignalListener ( )
protectedinherited

Get the number of currently registered listeners.

Definition at line 60 of file CompositeProcessingSignalListener.cc.

61{
63}

◆ initialize()

void initialize ( )
overridevirtualinherited

Receive and dispatch signal before the start of the event processing.

Reimplemented from ProcessingSignalListener.

Reimplemented in UnionVarSet< AObject >, UnionVarSet< Object >, VariadicUnionVarSet< AVarSets >, ResultStorer< Belle2::CKFToPXDResult >, ResultStorer< Belle2::CKFToSVDResult >, BaseEventTimeExtractor< RecoTrack * >, BaseEventTimeExtractor< TrackFindingCDC::CDCWireHit & >, StereoHitTrackQuadTreeMatcher< Belle2::TrackFindingCDC::HyperHough >, StereoHitTrackQuadTreeMatcher< Belle2::TrackFindingCDC::QuadraticLegendre >, StereoHitTrackQuadTreeMatcher< Belle2::TrackFindingCDC::Z0TanLambdaLegendre >, OnVarSet< Filter< ATruthVarSet::Object > >, OnVarSet< Filter< AVarSet::Object > >, OnVarSet< BaseFacetFilter >, OnVarSet< BaseFacetRelationFilter >, OnVarSet< BaseAxialSegmentPairFilter >, OnVarSet< BaseSegmentRelationFilter >, OnVarSet< BaseTrackRelationFilter >, OnVarSet< BaseSegmentPairRelationFilter >, MCSymmetric< BaseAxialSegmentPairFilter >, MCSymmetric< BaseFacetFilter >, MCSymmetric< BaseFacetRelationFilter >, MCSymmetric< BaseSegmentPairFilter >, MCSymmetric< BaseSegmentPairRelationFilter >, MCSymmetric< BaseSegmentRelationFilter >, MCSymmetric< BaseSegmentTripleFilter >, MCSymmetric< BaseSegmentTripleRelationFilter >, MCSymmetric< BaseTrackRelationFilter >, StoreArrayLoader< const Belle2::SpacePoint >, StoreArrayLoader< DataStoreInputTypeRefType >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCFacet >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCWireHit, true >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCSegment2D >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCTrack >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCSegmentPair >, StoreVectorSwapper< Belle2::TrackFindingCDC::CDCSegmentTriple >, RelationVarSet< ABaseVarSet >, QualityIndicatorFilter, TwoHitVirtualIPQIFilter, MultiHoughSpaceFastInterceptFinder, RawTrackCandCleaner< AHit >, RawTrackCandCleaner< Belle2::vxdHoughTracking::VXDHoughState >, RecoTrackStorer, ROIFinder, SingleHoughSpaceFastInterceptFinder, SpacePointLoaderAndPreparer, TrackCandidateOverlapResolver, and TrackCandidateResultRefiner.

Definition at line 15 of file CompositeProcessingSignalListener.cc.

16{
19 psl->initialize();
20 }
21}
virtual void initialize()
Receive signal before the start of the event processing.

◆ named()

static constexpr int named ( const char *  name)
inlinestaticconstexprprotectedinherited

Getter for the index from the name.

Looks through the associated names and returns the right index if found Returns nVars (one after the last element) if not found.

Parameters
nameName of the sought variable
Returns
Index of the name, nVars if not found.

Definition at line 78 of file VarSet.h.

79 {
80 return index<nVars>(AVarNames::getName, name);
81 }

◆ terminate()

void terminate ( )
overridevirtualinherited

Receive and dispatch Signal for termination of the event processing.

Reimplemented from ProcessingSignalListener.

Reimplemented in StereoHitTrackQuadTreeMatcher< Belle2::TrackFindingCDC::HyperHough >, StereoHitTrackQuadTreeMatcher< Belle2::TrackFindingCDC::QuadraticLegendre >, and StereoHitTrackQuadTreeMatcher< Belle2::TrackFindingCDC::Z0TanLambdaLegendre >.

Definition at line 47 of file CompositeProcessingSignalListener.cc.

48{
50 psl->terminate();
51 }
53}
virtual void terminate()
Receive Signal for termination of the event processing.

◆ var()

Float_t & var ( )
inlineprotectedinherited

Reference getter for the value of the ith variable. Static version.

Definition at line 93 of file VarSet.h.

94 {
95 static_assert(I < nVars, "Requested variable index exceeds number of variables.");
96 return m_variables[I];
97 }

Member Data Documentation

◆ m_initialized

bool m_initialized = false
privateinherited

Flag to keep track whether initialization happened before.

Definition at line 52 of file ProcessingSignalListener.h.

◆ m_initializedAs

std::string m_initializedAs
privateinherited

Name of the type during initialisation.

Definition at line 58 of file ProcessingSignalListener.h.

◆ m_subordinaryProcessingSignalListeners

std::vector<ProcessingSignalListener*> m_subordinaryProcessingSignalListeners
privateinherited

References to subordinary signal processing listener contained in this findlet.

Definition at line 52 of file CompositeProcessingSignalListener.h.

◆ m_terminated

bool m_terminated = false
privateinherited

Flag to keep track whether termination happened before.

Definition at line 55 of file ProcessingSignalListener.h.

◆ m_variables

FixedSizeNamedFloatTuple<SegmentTrackVarNames > m_variables
privateinherited

Memory for nVars floating point values.

Definition at line 138 of file VarSet.h.

◆ nVars

const size_t nVars
staticprivateinherited

Number of floating point values represented by this class.

Definition at line 48 of file VarSet.h.


The documentation for this class was generated from the following files: