Belle II Software development
SegmentTrackVarSet Class Reference

Class to compute floating point variables from a segment to track match which can be recorded as a flat TNtuple or serve as input to a MVA method. More...

#include <SegmentTrackVarSet.h>

Inheritance diagram for SegmentTrackVarSet:
VarSet< SegmentTrackVarNames > BaseVarSet< SegmentTrackVarNames::Object > CompositeProcessingSignalListener ProcessingSignalListener

Public Types

using Object
 Type from which variables should be extracted.
 

Public Member Functions

bool extract (const BaseSegmentTrackFilter::Object *testPair) final
 Generate and assign the contained variables.
 
std::vector< Named< Float_t * > > getNamedVariables (const std::string &prefix) override
 Getter for the named references to the individual variables Base implementation returns empty vector.
 
std::vector< Named< Float_t * > > getNamedVariables ()
 Getter for the named references to the individual variables.
 
MayBePtr< Float_t > find (const std::string &varName) override
 Pointer to the variable with the given name.
 
virtual bool extract (const Object *obj)
 Main method that extracts the variable values from the complex object.
 
bool extract (const Object &obj)
 Method for extraction from an object instead of a pointer.
 
std::map< std::string, Float_t > getNamedValues (const std::string &prefix) const
 Getter for a map of names to float values.
 
std::map< std::string, Float_t > getNamedValues () const
 Getter for a map of names to float values.
 
void initialize () override
 Receive and dispatch signal before the start of the event processing.
 
void beginRun () override
 Receive and dispatch signal for the beginning of a new run.
 
void beginEvent () override
 Receive and dispatch signal for the start of a new event.
 
void endRun () override
 Receive and dispatch signal for the end of the run.
 
void terminate () override
 Receive and dispatch Signal for termination of the event processing.
 
virtual void exposeParameters (ModuleParamList *moduleParamList, const std::string &prefix)
 Expose the set of parameters of the filter to the module parameter list.
 

Protected Member Functions

Float_t get () const
 Getter for the value of the ith variable. Static version.
 
Float_t & var ()
 Reference getter for the value of the ith variable. Static version.
 
AssignFinite< Float_t > finitevar ()
 Reference getter for the value of the ith variable. Transforms non-finite values to finite value.
 
void addProcessingSignalListener (ProcessingSignalListener *psl)
 Register a processing signal listener to be notified.
 
int getNProcessingSignalListener ()
 Get the number of currently registered listeners.
 

Static Protected Member Functions

static constexpr int named (const char *name)
 Getter for the index from the name.
 

Private Types

using Super
 Type of the super class.
 

Private Attributes

FixedSizeNamedFloatTuple< SegmentTrackVarNamesm_variables
 Memory for nVars floating point values.
 
std::vector< ProcessingSignalListener * > m_subordinaryProcessingSignalListeners
 References to subordinary signal processing listener contained in this findlet.
 
bool m_initialized
 Flag to keep track whether initialization happened before.
 
bool m_terminated
 Flag to keep track whether termination happened before.
 
std::string m_initializedAs
 Name of the type during initialisation.
 

Static Private Attributes

static const size_t nVars
 Number of floating point values represented by this class.
 

Detailed Description

Class to compute floating point variables from a segment to track match which can be recorded as a flat TNtuple or serve as input to a MVA method.

Definition at line 77 of file SegmentTrackVarSet.h.

Member Typedef Documentation

◆ Object

using Object
inherited

Type from which variables should be extracted.

Definition at line 44 of file VarSet.h.

◆ Super

using Super
privateinherited

Type of the super class.

Definition at line 40 of file VarSet.h.

Member Function Documentation

◆ addProcessingSignalListener()

void addProcessingSignalListener ( ProcessingSignalListener * psl)
protectedinherited

Register a processing signal listener to be notified.

Definition at line 53 of file CompositeProcessingSignalListener.cc.

56{
58}
Generic class that generates some named float values from a given object.
Definition BaseVarSet.h:34

◆ beginEvent()

void beginEvent ( )
overrideinherited

Receive and dispatch signal for the start of a new event.

Definition at line 36 of file CompositeProcessingSignalListener.cc.

32{
35 psl->beginEvent();
36 }
37}
void beginEvent() override
Receive and dispatch signal for the start of a new event.
virtual void beginEvent()
Receive signal for the start of a new event.

◆ beginRun()

void beginRun ( )
overrideinherited

Receive and dispatch signal for the beginning of a new run.

Definition at line 33 of file CompositeProcessingSignalListener.cc.

24{
27 psl->beginRun();
28 }
29}
void beginRun() override
Receive and dispatch signal for the beginning of a new run.
virtual void beginRun()
Receive signal for the beginning of a new run.

◆ endRun()

void endRun ( )
overrideinherited

Receive and dispatch signal for the end of the run.

Definition at line 39 of file CompositeProcessingSignalListener.cc.

40{
42 psl->endRun();
43 }
45}
void endRun() override
Receive and dispatch signal for the end of the run.
virtual void endRun()
Receive signal for the end of the run.

◆ exposeParameters()

virtual void exposeParameters ( ModuleParamList * moduleParamList,
const std::string & prefix )
inlinevirtualinherited

Expose the set of parameters of the filter to the module parameter list.

Parameters
moduleParamListModule parameter list to add the new parameters to
prefixPrefix (or sometimes postfix) to be added to all nely added parameters.

Definition at line 47 of file CompositeProcessingSignalListener.h.

49 {};

◆ extract() [1/3]

bool extract ( const BaseSegmentTrackFilter::Object * testPair)
final

Generate and assign the contained variables.

Definition at line 28 of file SegmentTrackVarSet.cc.

29{
30 const CDCTrack* track = testPair->getFrom();
31 const CDCSegment2D* segment = testPair->getTo();
32
33 assert(segment);
34 assert(track);
35
36 double maxmimumTrajectoryDistanceFront = 0;
37 double maxmimumTrajectoryDistanceBack = 0;
38 double maxmimumHitDistanceFront = 0;
39 double maxmimumHitDistanceBack = 0;
40 double outOfCDC = 0; // 0 means no, 1 means yes
41 double hitsInSameRegion = 0;
42 double hitsInCommon = 0;
43
44 const CDCRecoHit2D& front = segment->front();
45 const CDCRecoHit2D& back = segment->back();
46
47 // Calculate distances
48 const CDCTrajectory3D& trajectoryTrack3D = track->getStartTrajectory3D();
49 const CDCTrajectory2D& trajectoryTrack2D = trajectoryTrack3D.getTrajectory2D();
50 const CDCTrajectorySZ& szTrajectoryTrack = trajectoryTrack3D.getTrajectorySZ();
51 double radius = trajectoryTrack2D.getGlobalCircle().absRadius();
52
53 maxmimumTrajectoryDistanceFront = trajectoryTrack2D.getDist2D(front.getWireHit().getRefPos2D());
54 maxmimumTrajectoryDistanceBack = trajectoryTrack2D.getDist2D(back.getWireHit().getRefPos2D());
55
56 var<named("z_distance")>() = 0;
57 var<named("theta_distance")>() = 0;
58
59 if (segment->getStereoKind() == EStereoKind::c_Axial) {
60 CDCTrajectory2D& trajectorySegment = segment->getTrajectory2D();
61 if (not trajectoryTrack2D.isFitted()) {
62 const CDCRiemannFitter& fitter = CDCRiemannFitter::getFitter();
63 fitter.update(trajectorySegment, *segment);
64 }
65 } else {
66 CDCObservations2D observations;
67 for (const CDCRecoHit2D& recoHit : *segment) {
68 const CDCRLWireHit& rlWireHit = recoHit.getRLWireHit();
69 CDCRecoHit3D recoHit3D = CDCRecoHit3D::reconstruct(rlWireHit, trajectoryTrack2D);
70 double s = recoHit3D.getArcLength2D();
71 double z = recoHit3D.getRecoZ();
72 observations.fill(s, z);
73 }
74
75 if (observations.size() > 3) {
76 const CDCSZFitter& fitter = CDCSZFitter::getFitter();
77 const CDCTrajectorySZ& szTrajectorySegments = fitter.fit(observations);
78
79 double startZTrack = szTrajectoryTrack.getZ0();
80 double startZSegments = szTrajectorySegments.getZ0();
81
82 var<named("z_distance")>() = startZTrack - startZSegments;
83 var<named("theta_distance")>() = szTrajectoryTrack.getTanLambda() - szTrajectorySegments.getTanLambda();
84 }
85 }
86
87 // Calculate if it is out of the CDC
88 Vector3D frontRecoPos3D = front.reconstruct3D(trajectoryTrack2D);
89 Vector3D backRecoPos3D = back.reconstruct3D(trajectoryTrack2D);
90
91 if (segment->getStereoKind() != EStereoKind::c_Axial) {
92 double forwardZ = front.getWire().getWireLine().forwardZ();
93 double backwardZ = front.getWire().getWireLine().backwardZ();
94
95 if (frontRecoPos3D.z() > forwardZ or frontRecoPos3D.z() < backwardZ or backRecoPos3D.z() > forwardZ
96 or backRecoPos3D.z() < backwardZ) {
97 outOfCDC = 1.0;
98 }
99 }
100
101 // Get perpS of track in the beginning and the end
102 double perpSOfFront = trajectoryTrack2D.calcArcLength2D(segment->front().getRecoPos2D());
103 double perpSOfBack = trajectoryTrack2D.calcArcLength2D(segment->back().getRecoPos2D());
104
105 double perpSMinimum = std::min(perpSOfFront, perpSOfBack);
106 double perpSMaximum = std::max(perpSOfFront, perpSOfBack);
107
108 // Count number of hits in the same region
109 for (const CDCRecoHit3D& recoHit : *track) {
110 if (recoHit.getArcLength2D() < 0.8 * perpSMinimum or
111 recoHit.getArcLength2D() > 1.2 * perpSMaximum) {
112 continue;
113 }
114 if (recoHit.getISuperLayer() == segment->getISuperLayer()) {
115 hitsInSameRegion++;
116 } else if (abs(recoHit.getISuperLayer() - segment->getISuperLayer()) == 1) {
117 double distanceFront = (front.getWireHit().getRefPos2D() - recoHit.getRecoPos2D()).norm();
118 if (distanceFront > maxmimumHitDistanceFront) {
119 maxmimumHitDistanceFront = distanceFront;
120 }
121 double distanceBack = (back.getWireHit().getRefPos2D() - recoHit.getRecoPos2D()).norm();
122 if (distanceBack > maxmimumHitDistanceBack) {
123 maxmimumHitDistanceBack = distanceBack;
124 }
125 }
126 }
127
128 // Count number of common hits
129 for (const CDCRecoHit3D& trackHit : *track) {
130 if (std::find_if(segment->begin(), segment->end(), [&trackHit](const CDCRecoHit2D & segmentHit) {
131 return segmentHit.getWireHit().getHit() == trackHit.getWireHit().getHit();
132 }) != segment->end()) {
133 hitsInCommon += 1;
134 }
135 }
136
137 // Make a fit with all the hits and one with only the hits in the near range
138 CDCObservations2D observationsFull;
139 CDCObservations2D observationsNeigh;
140
141 // Collect the observations
142 bool isAxialSegment = segment->getStereoKind() != EStereoKind::c_Axial;
143
144 for (const CDCRecoHit3D& recoHit : *track) {
145 if (isAxialSegment and recoHit.getStereoKind() == EStereoKind::c_Axial) {
146 observationsFull.fill(recoHit.getWireHit().getRefPos2D());
147 if (abs(recoHit.getISuperLayer() - segment->getISuperLayer()) < 3) {
148 observationsNeigh.fill(recoHit.getWireHit().getRefPos2D());
149 }
150 } else if (not isAxialSegment and recoHit.getStereoKind() != EStereoKind::c_Axial) {
151 double s = recoHit.getArcLength2D();
152 double z = recoHit.getRecoZ();
153 observationsFull.fill(s, z);
154 if (abs(recoHit.getISuperLayer() - segment->getISuperLayer()) < 3) {
155 observationsNeigh.fill(s, z);
156 }
157 }
158 }
159
160 const CDCTrajectorySZ& trajectorySZ = track->getStartTrajectory3D().getTrajectorySZ();
161 double tanLambda = trajectorySZ.getTanLambda();
162
163 bool hasZInformation = tanLambda != 0;
164 double max_hit_z_distance = -1;
165 double sum_hit_z_distance = 0;
166 double stereo_quad_tree_distance = 0;
167
168 if (hasZInformation) {
169 double thetaFirstSegmentHit = -10;
170
171 for (const CDCRecoHit2D& recoHit2D : *segment) {
172 Vector3D reconstructedPosition = recoHit2D.reconstruct3D(trajectoryTrack2D);
173 const Vector2D& recoPos2D = recoHit2D.getRecoPos2D();
174 double perpS = trajectoryTrack2D.calcArcLength2D(recoPos2D);
175
176
177 double current_z_distance = std::abs(trajectorySZ.getZDist(perpS, reconstructedPosition.z()));
178 if (std::isnan(current_z_distance)) {
179 continue;
180 }
181
182 if (thetaFirstSegmentHit == -10) {
183 thetaFirstSegmentHit = reconstructedPosition.theta();
184 }
185 sum_hit_z_distance += current_z_distance;
186 if (current_z_distance > max_hit_z_distance) {
187 max_hit_z_distance = current_z_distance;
188 }
189 }
190
191 double thetaTrack = trajectoryTrack3D.getFlightDirection3DAtSupport().theta();
192 stereo_quad_tree_distance = thetaTrack - thetaFirstSegmentHit;
193 }
194
195
196 for (const CDCRecoHit2D& recoHit : *segment) {
197 if (isAxialSegment) {
198 observationsFull.fill(recoHit.getRecoPos2D());
199 observationsNeigh.fill(recoHit.getRecoPos2D());
200 } else {
201 const CDCRLWireHit& rlWireHit = recoHit.getRLWireHit();
202 CDCRecoHit3D recoHit3D = CDCRecoHit3D::reconstruct(rlWireHit, trajectoryTrack2D);
203 double s = recoHit3D.getArcLength2D();
204 double z = recoHit3D.getRecoZ();
205 observationsFull.fill(s, z);
206 observationsNeigh.fill(s, z);
207 }
208 }
209
210 // Do the fit
211 var<named("fit_neigh")>() = 0;
212 var<named("fit_full")>() = 0;
213 if (segment->getStereoKind() == EStereoKind::c_Axial) {
214 const CDCRiemannFitter& fitter = CDCRiemannFitter::getFitter();
215 var<named("fit_full")>() = fitter.fit(observationsFull).getPValue();
216 } else {
217 const CDCSZFitter& fitter = CDCSZFitter::getFitter();
218 var<named("fit_full")>() = toFinite(fitter.fit(observationsFull).getPValue(), 0);
219
220 if (observationsNeigh.size() > 3) {
221 var<named("fit_neigh")>() = toFinite(fitter.fit(observationsNeigh).getPValue(), 0);
222 } else {
223 var<named("fit_neigh")>() = 0;
224 }
225 }
226
227 if (observationsFull.size() == observationsNeigh.size()) {
228 var<named("fit_neigh")>() = -1;
229 }
230
231 var<named("is_stereo")>() = segment->getStereoKind() != EStereoKind::c_Axial;
232 var<named("segment_size")>() = segment->size();
233 var<named("track_size")>() = track->size();
234 var<named("mean_hit_z_distance")>() = sum_hit_z_distance;
235 var<named("max_hit_z_distance")>() = max_hit_z_distance;
236 var<named("stereo_quad_tree_distance")>() = toFinite(stereo_quad_tree_distance, 0);
237
238 var<named("pt_of_track")>() = toFinite(std::isnan(trajectoryTrack2D.getAbsMom2D()) ? 0.0 : trajectoryTrack2D.getAbsMom2D(), 0);
239 var<named("track_is_curler")>() = trajectoryTrack2D.getExit().hasNAN();
240
241 var<named("superlayer_already_full")>() = not trajectoryTrack2D.getOuterExit().hasNAN() and hitsInSameRegion > 5;
242
243 var<named("maxmimum_trajectory_distance_front")>() = toFinite(maxmimumTrajectoryDistanceFront, 999);
244 var<named("maxmimum_trajectory_distance_back")>() = toFinite(maxmimumTrajectoryDistanceBack, 999);
245
246 var<named("maxmimum_hit_distance_front")>() = maxmimumHitDistanceFront;
247 var<named("maxmimum_hit_distance_back")>() = maxmimumHitDistanceBack;
248
249 var<named("out_of_CDC")>() = outOfCDC;
250 var<named("hits_in_same_region")>() = hitsInSameRegion;
251
252 var<named("number_of_hits_in_common")>() = hitsInCommon;
253
254 var<named("segment_super_layer")>() = segment->getISuperLayer();
255
256 double phiBetweenTrackAndSegment = trajectoryTrack2D.getMom2DAtSupport().angleWith(segment->front().getRecoPos2D());
257
258 var<named("phi_between_track_and_segment")>() = toFinite(phiBetweenTrackAndSegment, 0);
259 var<named("perp_s_of_front")>() = toFinite(perpSOfFront / radius, 0);
260 var<named("perp_s_of_back")>() = toFinite(perpSOfBack / radius, 0);
261
262 return true;
263}
const WireLine & getWireLine() const
Getter for the wire line representation of the wire.
Definition CDCWire.h:180
double backwardZ() const
Gives the backward z coordinate.
Definition WireLine.h:152
double forwardZ() const
Gives the forward z coordinate.
Definition WireLine.h:148
std::size_t fill(double x, double y, double signedRadius=0.0, double weight=1.0)
Appends the observed position.
std::size_t size() const
Returns the number of observations stored.
static const CDCRiemannFitter & getFitter()
Static getter for a general Riemann fitter.
static const CDCSZFitter & getFitter()
Getter for a standard sz line fitter instance.
const CDCWireHit & getWireHit() const
Getter for the wire hit associated with the reconstructed hit.
Vector3D reconstruct3D(const CDCTrajectory2D &trajectory2D, const double z=0) const
Reconstruct the three dimensional position (especially of stereo hits) by determining the z coordinat...
const CDC::CDCWire & getWire() const
Getter for the wire the reconstructed hit associated to.
static CDCRecoHit3D reconstruct(const CDCRecoHit2D &recoHit2D, const CDCTrajectory2D &trajectory2D)
Reconstructs the three dimensional hit from the two dimensional and the two dimensional trajectory.
double getRecoZ() const
Getter for the z coordinate of the reconstructed position.
double getArcLength2D() const
Getter for the travel distance in the xy projection.
Vector2D getMom2DAtSupport(const double bZ) const
Get the momentum at the support point of the trajectory.
PerigeeCircle getGlobalCircle() const
Getter for the circle in global coordinates.
Vector2D getOuterExit(double factor=1) const
Calculates the point where the trajectory meets the outer wall of the CDC.
double calcArcLength2D(const Vector2D &point) const
Calculate the travel distance from the start position of the trajectory.
double getAbsMom2D(double bZ) const
Get the estimation for the absolute value of the transvers momentum.
bool isFitted() const
Checks if the circle is already set to a valid value.
Vector2D getExit() const
Calculates the point where the trajectory leaves the CDC.
double getDist2D(const Vector2D &point) const
Calculates the distance from the point to the trajectory as seen from the xy projection.
CDCTrajectory2D getTrajectory2D() const
Getter for the two dimensional trajectory.
Vector3D getFlightDirection3DAtSupport() const
Get the unit momentum at the start point of the trajectory.
CDCTrajectorySZ getTrajectorySZ() const
Getter for the sz trajectory.
double getTanLambda() const
Getter for the slope over the travel distance coordinate.
double getZDist(const double s, const double z) const
Calculates the distance along between the given point at the sz trajectory.
double getZ0() const
Getter for the z coordinate at zero travel distance.
const ROOT::Math::XYVector & getRefPos2D() const
The two dimensional reference position (z=0) of the underlying wire.
double absRadius() const
Gives the signed radius of the circle. If it was a line this will be infinity.
static constexpr int named(const char *name)
Definition VarSet.h:78
bool hasNAN() const
Checks if one of the coordinates is NAN.
Definition Vector2D.h:169
double angleWith(const Vector2D &rhs) const
The angle between this and rhs.
Definition Vector2D.h:228
double z() const
Getter for the z coordinate.
Definition Vector3D.h:501
double theta() const
Getter for the polar angle.
Definition Vector3D.h:551
From * getFrom() const
Getter for the pointer to the from side object.
To * getTo() const
Getter for the pointer to the to side object.
HepGeom::Vector3D< double > Vector3D
3D Vector
Definition Cell.h:34

◆ extract() [2/3]

bool extract ( const Object & obj)
inlineinherited

Method for extraction from an object instead of a pointer.

Definition at line 57 of file BaseVarSet.h.

58 {
59 return extract(&obj);
60 }

◆ extract() [3/3]

virtual bool extract ( const Object * obj)
inlinevirtualinherited

Main method that extracts the variable values from the complex object.

Returns indication whether the extraction could be completed successfully. Base implementation returns always true.

Parameters
objdummy object not used
Returns
: always true for the base implementation

Definition at line 51 of file BaseVarSet.h.

52 {
53 return true;
54 }

◆ find()

MayBePtr< Float_t > find ( const std::string & varName)
inlineoverridevirtualinherited

Pointer to the variable with the given name.

Returns nullptr if not found.

Reimplemented from BaseVarSet< SegmentTrackVarNames::Object >.

Definition at line 64 of file VarSet.h.

65 {
66 return m_variables.find(varName);
67 }

◆ finitevar()

AssignFinite< Float_t > finitevar ( )
inlineprotectedinherited

Reference getter for the value of the ith variable. Transforms non-finite values to finite value.

Definition at line 130 of file VarSet.h.

131 {
132 static_assert(I < nVars, "Requested variable index exceeds number of variables.");
133 return AssignFinite<Float_t>(m_variables[I]);
134 }

◆ get()

Float_t get ( ) const
inlineprotectedinherited

Getter for the value of the ith variable. Static version.

Definition at line 85 of file VarSet.h.

86 {
87 static_assert(I < nVars, "Requested variable index exceeds number of variables.");
88 return m_variables.get(I);
89 }

◆ getNamedValues() [1/2]

std::map< std::string, Float_t > getNamedValues ( ) const
inlineinherited

Getter for a map of names to float values.

Definition at line 96 of file BaseVarSet.h.

97 {
98 const std::string prefix = "";
99 return this->getNamedValues(prefix);
100 }

◆ getNamedValues() [2/2]

std::map< std::string, Float_t > getNamedValues ( const std::string & prefix) const
inlineinherited

Getter for a map of names to float values.

Parameters
prefixName prefix to apply to all variable names.

Definition at line 84 of file BaseVarSet.h.

85 {
86 std::map<std::string, Float_t> result;
87 std::vector<Named<Float_t*> > namedVariables = this->getNamedVariables(prefix);
88 for (const Named<Float_t*>& namedVariable : namedVariables) {
89 Float_t* variable = namedVariable;
90 result[namedVariable.getName()] = *variable;
91 }
92 return result;
93 }

◆ getNamedVariables() [1/2]

std::vector< Named< Float_t * > > getNamedVariables ( )
inlineinherited

Getter for the named references to the individual variables.

Definition at line 74 of file BaseVarSet.h.

75 {
76 const std::string prefix = "";
77 return this->getNamedVariables(prefix);
78 }

◆ getNamedVariables() [2/2]

std::vector< Named< Float_t * > > getNamedVariables ( const std::string & prefix)
inlineoverridevirtualinherited

Getter for the named references to the individual variables Base implementation returns empty vector.

Reimplemented from BaseVarSet< SegmentTrackVarNames::Object >.

Definition at line 55 of file VarSet.h.

56 {
57 return m_variables.getNamedVariables(prefix);
58 }

◆ getNProcessingSignalListener()

int getNProcessingSignalListener ( )
protectedinherited

Get the number of currently registered listeners.

Definition at line 56 of file CompositeProcessingSignalListener.cc.

61{
63}

◆ initialize()

void initialize ( )
overrideinherited

Receive and dispatch signal before the start of the event processing.

Definition at line 30 of file CompositeProcessingSignalListener.cc.

16{
19 psl->initialize();
20 }
21}
void initialize() override
Receive and dispatch signal before the start of the event processing.
virtual void initialize()
Receive signal before the start of the event processing.

◆ named()

static constexpr int named ( const char * name)
inlinestaticconstexprprotectedinherited

Getter for the index from the name.

Looks through the associated names and returns the right index if found Returns nVars (one after the last element) if not found.

Parameters
nameName of the sought variable
Returns
Index of the name, nVars if not found.

Definition at line 78 of file VarSet.h.

79 {
80 return index<nVars>(AVarNames::getName, name);
81 }

◆ terminate()

void terminate ( )
overrideinherited

Receive and dispatch Signal for termination of the event processing.

Definition at line 42 of file CompositeProcessingSignalListener.cc.

48{
50 psl->terminate();
51 }
53}
void terminate() override
Receive and dispatch Signal for termination of the event processing.
virtual void terminate()
Receive Signal for termination of the event processing.

◆ var()

Float_t & var ( )
inlineprotectedinherited

Reference getter for the value of the ith variable. Static version.

Definition at line 93 of file VarSet.h.

94 {
95 static_assert(I < nVars, "Requested variable index exceeds number of variables.");
96 return m_variables[I];
97 }

Member Data Documentation

◆ m_initialized

bool m_initialized
privateinherited

Flag to keep track whether initialization happened before.

Definition at line 52 of file ProcessingSignalListener.h.

◆ m_initializedAs

std::string m_initializedAs
privateinherited

Name of the type during initialisation.

Definition at line 58 of file ProcessingSignalListener.h.

◆ m_subordinaryProcessingSignalListeners

std::vector<ProcessingSignalListener*> m_subordinaryProcessingSignalListeners
privateinherited

References to subordinary signal processing listener contained in this findlet.

Definition at line 60 of file CompositeProcessingSignalListener.h.

◆ m_terminated

bool m_terminated
privateinherited

Flag to keep track whether termination happened before.

Definition at line 55 of file ProcessingSignalListener.h.

◆ m_variables

FixedSizeNamedFloatTuple<SegmentTrackVarNames> m_variables
privateinherited

Memory for nVars floating point values.

Definition at line 138 of file VarSet.h.

◆ nVars

const size_t nVars
staticprivateinherited

Number of floating point values represented by this class.

Definition at line 48 of file VarSet.h.


The documentation for this class was generated from the following files: