Belle II Software development
CDCTrajectory2D Class Reference

Particle trajectory as it is seen in xy projection represented as a circle. More...

#include <CDCTrajectory2D.h>

Public Member Functions

 CDCTrajectory2D ()
 Default constructor for ROOT compatibility.
 
 CDCTrajectory2D (const UncertainPerigeeCircle &perigeeCircle)
 Constructs a trajectory from a generalized circle.
 
 CDCTrajectory2D (const Vector2D &localOrigin, const UncertainPerigeeCircle &localPerigeeCircle, double flightTime=NAN)
 Constructs a trajectory from a generalized circle and a start point.
 
 CDCTrajectory2D (const Vector2D &pos2D, double time, const Vector2D &mom2D, double charge, double bZ)
 Construct a trajectory with given start point, transverse momentum at the start point, the given charge and the magnetic field value in z direction.
 
 CDCTrajectory2D (const Vector2D &pos2D, double time, const Vector2D &mom2D, double charge)
 Construct a trajectory with given start point, transverse momentum at the start point and given charge.
 
bool isFitted () const
 Checks if the circle is already set to a valid value.
 
void clear ()
 Clears all information from this trajectory.
 
void reverse ()
 Reverses the trajectory in place.
 
CDCTrajectory2D reversed () const
 Returns the reverse trajectory as a copy.
 
std::array< double, 2 > reconstructBothZ (const CDC::WireLine &wireLine, double distance=0.0, double z=0) const
 Gives the two z positions where the given drift circle on the wire line touches the trajectory.
 
double reconstructZ (const CDC::WireLine &wireLine, double distance=0.0, double z=0) const
 Gives the one z positions within the CDC closest to the given z where the given drift circle on the wire line touches the trajectory.
 
std::array< Vector3D, 2 > reconstructBoth3D (const CDC::WireLine &wireLine, double distance=0.0, double z=0) const
 Gives the two three dimensional points where the drift circle touches the wire line.
 
Vector3D reconstruct3D (const CDC::WireLine &wireLine, double distance=0.0, double z=0) const
 Gives the one three dimensional positions within the CDC closest to the given z where the given drift circle on the wire line touches the trajectory.
 
Vector2D getClosest (const Vector2D &point) const
 Calculates the closest approach on the trajectory to the given point.
 
CDC::ISuperLayer getNextISuperLayer () const
 Indicates which superlayer the trajectory traverses after the one, where the start point of the trajectory is located.
 
CDC::ISuperLayer getPreviousISuperLayer () const
 Indicates which superlayer the trajectory traverses before the one, where the start point of the trajectory is located.
 
CDC::ISuperLayer getNextAxialISuperLayer () const
 Indicates which axial superlayer the trajectory traverses after the one, where the start point of the trajectory is located.
 
CDC::ISuperLayer getPreviousAxialISuperLayer () const
 Indicates which axial superlayer the trajectory traverses before the one, where the start point of the trajectory is located.
 
CDC::ISuperLayer getMaximalISuperLayer () const
 Indicates the maximal superlayer the trajectory traverses.
 
CDC::ISuperLayer getStartISuperLayer () const
 Indicates the superlayer the trajectory starts in.
 
CDC::ISuperLayer getMinimalISuperLayer () const
 Indicates the minimal superlayer the trajectory traverses.
 
template<class AHits>
EForwardBackward isForwardOrBackwardTo (const AHits &hits) const
 Calculates if this trajectory and the hits are coaligned Returns:
 
template<class AFromHits, class AToHits>
double getArcLength2DGap (const AFromHits &fromHits, const AToHits &toHits) const
 Calculates the perpendicular travel distance from the last position of the fromHits to the first position of the toHits.
 
template<class AFromHits, class AToHits>
double getArcLength2DFrontOffset (const AFromHits &fromHits, const AToHits &toHits) const
 Calculates the perpendicular travel distance from the first position of the fromHits to the first position of the toHits.
 
template<class AFromHits, class AToHits>
double getArcLength2DBackOffset (const AFromHits &fromHits, const AToHits &toHits) const
 Calculates the perpendicular travel distance from the last position of the fromHits to the last position of the toHits.
 
template<class AHits>
double getTotalArcLength2D (const AHits &hits) const
 Calculates the perpendicular travel distance from the first position of the hits to the last position of the hits.
 
double calcArcLength2D (const Vector2D &point) const
 Calculate the travel distance from the start position of the trajectory.
 
double calcArcLength2DBetween (const Vector2D &fromPoint, const Vector2D &toPoint) const
 Calculate the travel distance between the two given positions Returns the travel distance on the trajectory from the first given point to
the second given point.
 
double getArcLength2DPeriod () const
 Getter for the arc length for one round trip around the trajectory.
 
void setPosMom2D (const Vector2D &pos2D, const Vector2D &mom2D, double charge)
 Setter for start point and momentum at the start point subjected to the charge sign.
 
ESign getChargeSign () const
 Gets the charge sign of the trajectory.
 
double getAbsMom2D (double bZ) const
 Get the estimation for the absolute value of the transvers momentum.
 
double getAbsMom2D () const
 Get the estimation for the absolute value of the transvers momentum.
 
Vector2D getMom2DAtSupport (const double bZ) const
 Get the momentum at the support point of the trajectory.
 
Vector2D getMom2DAtSupport () const
 Get the momentum at the support point of the trajectory.
 
Vector2D getFlightDirection2D (const Vector2D &point) const
 Get the unit direction of flight at the given point, where arcLength2D = 0.
 
Vector2D getFlightDirection2DAtSupport () const
 Get the unit direction of flight at the support point, where arcLength2D = 0.
 
bool isMovingOutward () const
 Indicates if the trajectory is moving outwards or inwards (to or away from the origin) from the start point on.
 
Vector2D getPos2DAtArcLength2D (double arcLength2D)
 Getter for the position at a given two dimensional arc length.
 
Vector2D getSupport () const
 Get the support point of the trajectory in global coordinates.
 
Vector2D getGlobalPerigee () const
 Getter for the closest approach on the trajectory to the global origin.
 
Vector2D getGlobalCenter () const
 Getter for the center of the trajectory in global coordinates.
 
Vector2D getOuterExit (double factor=1) const
 Calculates the point where the trajectory meets the outer wall of the CDC.
 
Vector2D getInnerExit () const
 Calculates the point where the trajectory meets the inner wall of the CDC.
 
Vector2D getExit () const
 Calculates the point where the trajectory leaves the CDC.
 
bool isCurler (double factor=1) const
 Checks if the trajectory leaves the outer radius of the CDC times the given tolerance factor.
 
bool isOriginer (double factor=1) const
 Checks if the trajectory intersects with the inner radius of the CDC time the given tolerance factor.
 
double getMaximalCylindricalR () const
 Getter for the maximal distance from the origin.
 
double getMinimalCylindricalR () const
 Getter for the minimal distance from the origin - same as absolute value of the impact parameter.
 
double getGlobalImpact () const
 Getter for the signed impact parameter of the trajectory.
 
double getDist2D (const Vector2D &point) const
 Calculates the distance from the point to the trajectory as seen from the xy projection.
 
ERightLeft isRightOrLeft (const Vector2D &point) const
 Checks if the given point is to the right or to the left of the trajectory.
 
double getCurvature () const
 Getter for the curvature as seen from the xy projection.
 
double getLocalCovariance (EPerigeeParameter iRow, EPerigeeParameter iCol) const
 Getter for an individual element of the covariance matrix of the local helix parameters.
 
double getLocalVariance (EPerigeeParameter i) const
 Getter for an individual diagonal element of the covariance matrix of the local helix parameters.
 
PerigeeCircle getGlobalCircle () const
 Getter for the circle in global coordinates.
 
void setGlobalCircle (const UncertainPerigeeCircle &perigeeCircle)
 Setter for the generalized circle that describes the trajectory.
 
const UncertainPerigeeCirclegetLocalCircle () const
 Getter for the circle in local coordinates.
 
double getPValue () const
 Getter for p-value.
 
double getChi2 () const
 Getter for the chi2 value of the circle fit.
 
void setChi2 (const double chi2)
 Setter for the chi square value of the circle fit.
 
size_t getNDF () const
 Getter for the number of degrees of freedom of the circle fit.
 
void setNDF (std::size_t ndf)
 Setter for the number of degrees of freedom of the circle fit.
 
void setLocalCircle (const UncertainPerigeeCircle &localPerigeeCircle)
 Setter for the generalized circle that describes the trajectory.
 
const Vector2DgetLocalOrigin () const
 Getter for the origin of the local coordinate system.
 
double setLocalOrigin (const Vector2D &localOrigin)
 Setter for the origin of the local coordinate system.
 
double getFlightTime () const
 Getter for the time when the particle reached the support point position.
 
void setFlightTime (double flightTime)
 Setter for the time when the particle reached the support point position.
 

Private Member Functions

CDC::ISuperLayer getISuperLayerAfter (CDC::ISuperLayer iSuperLayer, bool movingOutward) const
 Returns which superlayer is traversed after the current one following the trajectory outward or inward as indicated by the boolean input.
 
CDC::ISuperLayer getISuperLayerAfterStart (bool movingOutward) const
 Returns which superlayer is traversed after the current one following the trajectory outward or inward as indicated by the boolean input.
 
CDC::ISuperLayer getISuperLayerAfterStart (EForwardBackward forwardBackwardInfo) const
 Indicates which superlayer is traversed after the current one following the trajectory forward or backward as indicated by the input.
 
CDC::ISuperLayer getAxialISuperLayerAfterStart (EForwardBackward forwardBackwardInfo) const
 Indicates which axial superlayer is traversed after the one, where the start point of the trajectory is located considering if you want to follow the trajectory in the forward or backward direction.
 

Private Attributes

Vector2D m_localOrigin
 Memory for local coordinate origin of the circle representing the trajectory in global coordinates.
 
UncertainPerigeeCircle m_localPerigeeCircle
 Memory for the generalized circle describing the trajectory in coordinates from the local origin.
 
double m_flightTime = NAN
 Memory for the estimation of the time at which the particle arrived at the support point.
 

Detailed Description

Particle trajectory as it is seen in xy projection represented as a circle.

Definition at line 38 of file CDCTrajectory2D.h.

Constructor & Destructor Documentation

◆ CDCTrajectory2D() [1/5]

Default constructor for ROOT compatibility.

Definition at line 38 of file CDCTrajectory2D.cc.

41{
42}
Vector2D m_localOrigin
Memory for local coordinate origin of the circle representing the trajectory in global coordinates.
UncertainPerigeeCircle m_localPerigeeCircle
Memory for the generalized circle describing the trajectory in coordinates from the local origin.

◆ CDCTrajectory2D() [2/5]

CDCTrajectory2D ( const UncertainPerigeeCircle & perigeeCircle)
explicit

Constructs a trajectory from a generalized circle.

Constructs a trajectory which is described by the given line or circle. The start point is set to the closest approach to the origin.

Definition at line 44 of file CDCTrajectory2D.cc.

45 : m_localOrigin(0.0, 0.0)
46 , m_localPerigeeCircle(perigeeCircle)
47{
48}

◆ CDCTrajectory2D() [3/5]

CDCTrajectory2D ( const Vector2D & localOrigin,
const UncertainPerigeeCircle & localPerigeeCircle,
double flightTime = NAN )

Constructs a trajectory from a generalized circle and a start point.

Constructs a trajectory which is described by the given line or circle and starts in the given point. The point is taken to be the closest approach to the circle.

Definition at line 50 of file CDCTrajectory2D.cc.

53 : m_localOrigin(localOrigin)
54 , m_localPerigeeCircle(localPerigeeCircle)
55 , m_flightTime(flightTime)
56{
57}
double m_flightTime
Memory for the estimation of the time at which the particle arrived at the support point.

◆ CDCTrajectory2D() [4/5]

CDCTrajectory2D ( const Vector2D & pos2D,
double time,
const Vector2D & mom2D,
double charge,
double bZ )

Construct a trajectory with given start point, transverse momentum at the start point, the given charge and the magnetic field value in z direction.

Definition at line 59 of file CDCTrajectory2D.cc.

64 : m_localOrigin(pos2D)
66 mom2D.unit(),
67 0.0)
68 , m_flightTime(time)
69{
70}
static double absMom2DToCurvature(double absMom2D, double charge, double bZ)
Conversion helper for momenta to two dimensional curvature.
Vector2D unit() const
Returns a unit vector colaligned with this.
Definition Vector2D.h:339
double norm() const
Calculates the length of the vector.
Definition Vector2D.h:193

◆ CDCTrajectory2D() [5/5]

CDCTrajectory2D ( const Vector2D & pos2D,
double time,
const Vector2D & mom2D,
double charge )

Construct a trajectory with given start point, transverse momentum at the start point and given charge.

Definition at line 72 of file CDCTrajectory2D.cc.

76 : m_localOrigin(pos2D)
78 mom2D.unit(),
79 0.0)
80 , m_flightTime(time)
81{
82}

Member Function Documentation

◆ calcArcLength2D()

double calcArcLength2D ( const Vector2D & point) const
inline

Calculate the travel distance from the start position of the trajectory.

Returns the travel distance on the trajectory from the start point to
the given point. This is subjected to a discontinuity at the far point
of the circle. Hence the value return is in the range from -pi*radius to pi*radius
If you have a heavily curling track you have care about the feasibility of this
calculation.

Definition at line 262 of file CDCTrajectory2D.h.

263 {
264 return getLocalCircle()->arcLengthBetween(Vector2D(0.0, 0.0), point - getLocalOrigin());
265 }

◆ calcArcLength2DBetween()

double calcArcLength2DBetween ( const Vector2D & fromPoint,
const Vector2D & toPoint ) const
inline

Calculate the travel distance between the two given positions Returns the travel distance on the trajectory from the first given point to
the second given point.

This is subjected to a discontinuity at the far point
of the circle. Hence the value return is in the range from -pi*radius to pi*radius
If you have a heavily curling track you have care about the feasibility of this
calculation.

Definition at line 275 of file CDCTrajectory2D.h.

276 {
277 return getLocalCircle()->arcLengthBetween(fromPoint - getLocalOrigin(),
278 toPoint - getLocalOrigin());
279 }

◆ clear()

void clear ( )

Clears all information from this trajectory.

Definition at line 89 of file CDCTrajectory2D.cc.

90{
91 m_localOrigin.set(0.0, 0.0);
92 m_localPerigeeCircle.invalidate();
93 m_flightTime = NAN;
94}

◆ getAbsMom2D() [1/2]

double getAbsMom2D ( ) const

Get the estimation for the absolute value of the transvers momentum.

Definition at line 289 of file CDCTrajectory2D.cc.

290{
291 Vector2D position = getSupport();
292 return CDCBFieldUtil::curvatureToAbsMom2D(getLocalCircle()->curvature(), position);
293}
static double curvatureToAbsMom2D(double curvature, double bZ)
Conversion helper for two dimensional curvature to momenta.
Vector2D getSupport() const
Get the support point of the trajectory in global coordinates.
const UncertainPerigeeCircle & getLocalCircle() const
Getter for the circle in local coordinates.

◆ getAbsMom2D() [2/2]

double getAbsMom2D ( double bZ) const

Get the estimation for the absolute value of the transvers momentum.

Definition at line 284 of file CDCTrajectory2D.cc.

285{
286 return CDCBFieldUtil::curvatureToAbsMom2D(getLocalCircle()->curvature(), bZ);
287}

◆ getArcLength2DBackOffset()

template<class AFromHits, class AToHits>
double getArcLength2DBackOffset ( const AFromHits & fromHits,
const AToHits & toHits ) const
inline

Calculates the perpendicular travel distance from the last position of the fromHits to the last position of the toHits.

Definition at line 236 of file CDCTrajectory2D.h.

237 {
238 const Vector2D& fromRecoPos2D = fromHits.back().getRecoPos2D();
239 const Vector2D& toRecoPos2D = toHits.back().getRecoPos2D();
240 return calcArcLength2DBetween(fromRecoPos2D, toRecoPos2D);
241 }

◆ getArcLength2DFrontOffset()

template<class AFromHits, class AToHits>
double getArcLength2DFrontOffset ( const AFromHits & fromHits,
const AToHits & toHits ) const
inline

Calculates the perpendicular travel distance from the first position of the fromHits to the first position of the toHits.

Definition at line 224 of file CDCTrajectory2D.h.

225 {
226 const Vector2D& fromRecoPos2D = fromHits.front().getRecoPos2D();
227 const Vector2D& toRecoPos2D = toHits.front().getRecoPos2D();
228 return calcArcLength2DBetween(fromRecoPos2D, toRecoPos2D);
229 }

◆ getArcLength2DGap()

template<class AFromHits, class AToHits>
double getArcLength2DGap ( const AFromHits & fromHits,
const AToHits & toHits ) const
inline

Calculates the perpendicular travel distance from the last position of the fromHits to the first position of the toHits.

Definition at line 212 of file CDCTrajectory2D.h.

213 {
214 const Vector2D& fromRecoPos2D = fromHits.back().getRecoPos2D();
215 const Vector2D& toRecoPos2D = toHits.front().getRecoPos2D();
216 return calcArcLength2DBetween(fromRecoPos2D, toRecoPos2D);
217 }

◆ getArcLength2DPeriod()

double getArcLength2DPeriod ( ) const
inline

Getter for the arc length for one round trip around the trajectory.

Definition at line 281 of file CDCTrajectory2D.h.

282 {
283 return getLocalCircle()->arcLengthPeriod();
284 }

◆ getAxialISuperLayerAfterStart()

ISuperLayer getAxialISuperLayerAfterStart ( EForwardBackward forwardBackwardInfo) const
private

Indicates which axial superlayer is traversed after the one, where the start point of the trajectory is located considering if you want to follow the trajectory in the forward or backward direction.

Definition at line 219 of file CDCTrajectory2D.cc.

220{
221 bool movingOutward = isMovingOutward();
222 if (forwardBackwardInfo == EForwardBackward::c_Backward) {
223 movingOutward = not movingOutward;
224 }
225 ISuperLayer startISuperLayer = getStartISuperLayer();
226 if (ISuperLayerUtil::isInvalid(startISuperLayer)) return ISuperLayerUtil::c_Invalid;
227
228 ISuperLayer nextISuperLayer = getISuperLayerAfter(startISuperLayer, movingOutward);
229 if (ISuperLayerUtil::isInvalid(nextISuperLayer)) return ISuperLayerUtil::c_Invalid;
230 if (ISuperLayerUtil::isAxial(nextISuperLayer)) return nextISuperLayer;
231
232 ISuperLayer iSuperLayerStep = nextISuperLayer - startISuperLayer;
233 assert(std::abs(iSuperLayerStep) == 1);
234 bool nextMovingOutward = iSuperLayerStep > 0;
235 return getISuperLayerAfter(nextISuperLayer, nextMovingOutward);
236}
CDC::ISuperLayer getISuperLayerAfter(CDC::ISuperLayer iSuperLayer, bool movingOutward) const
Returns which superlayer is traversed after the current one following the trajectory outward or inwar...
CDC::ISuperLayer getStartISuperLayer() const
Indicates the superlayer the trajectory starts in.
bool isMovingOutward() const
Indicates if the trajectory is moving outwards or inwards (to or away from the origin) from the start...
signed short ISuperLayer
The type of the layer and superlayer ids.
Definition ISuperLayer.h:24
static const ISuperLayer c_Invalid
Constant making an invalid superlayer id.
Definition ISuperLayer.h:65
static bool isAxial(ISuperLayer iSuperLayer)
Returns if the super layer with the given id is axial.
static bool isInvalid(ISuperLayer iSuperLayer)
Indicates if the given number corresponds to a true cdc superlayer - excludes the logic ids for inner...

◆ getChargeSign()

ESign getChargeSign ( ) const

Gets the charge sign of the trajectory.

Definition at line 279 of file CDCTrajectory2D.cc.

280{
281 return CDCBFieldUtil::ccwInfoToChargeSign(getLocalCircle()->orientation());
282}
static ESign ccwInfoToChargeSign(ERotation ccwInfo)
Conversion helper from clockwise or counterclockwise travel to the charge sign.

◆ getChi2()

double getChi2 ( ) const
inline

Getter for the chi2 value of the circle fit.

Definition at line 470 of file CDCTrajectory2D.h.

471 {
472 return getLocalCircle().chi2();
473 }

◆ getClosest()

Vector2D getClosest ( const Vector2D & point) const

Calculates the closest approach on the trajectory to the given point.

Definition at line 172 of file CDCTrajectory2D.cc.

173{
174 return getLocalCircle()->closest(point - getLocalOrigin()) + getLocalOrigin();
175}
const Vector2D & getLocalOrigin() const
Getter for the origin of the local coordinate system.
Vector2D closest(const Vector2D &point) const
Calculates the point of closest approach on the circle to the given point.

◆ getCurvature()

double getCurvature ( ) const
inline

Getter for the curvature as seen from the xy projection.

Definition at line 424 of file CDCTrajectory2D.h.

425 {
426 return getLocalCircle()->curvature();
427 }

◆ getDist2D()

double getDist2D ( const Vector2D & point) const
inline

Calculates the distance from the point to the trajectory as seen from the xy projection.

Definition at line 411 of file CDCTrajectory2D.h.

412 {
413 return getLocalCircle()->distance(point - getLocalOrigin());
414 }

◆ getExit()

Vector2D getExit ( ) const

Calculates the point where the trajectory leaves the CDC.

This method returns the first point in forward flight direction from the start point of the trajectory where it meets either the radius of the inner most layer or the outer radius of the outer most wall. If the trajectory does not leave the CDC by the inner or outer wall this will return Vector2D(nan,nan).

Definition at line 335 of file CDCTrajectory2D.cc.

336{
337 const Vector2D outerExit = getOuterExit();
338 const Vector2D innerExit = getInnerExit();
339 const Vector2D localExit = getLocalCircle()->chooseNextForwardOf(Vector2D(0, 0),
340 outerExit - getLocalOrigin(),
341 innerExit - getLocalOrigin());
342 return localExit + getLocalOrigin();
343}
Vector2D getOuterExit(double factor=1) const
Calculates the point where the trajectory meets the outer wall of the CDC.
Vector2D getInnerExit() const
Calculates the point where the trajectory meets the inner wall of the CDC.
Vector2D chooseNextForwardOf(const Vector2D &start, const Vector2D &end1, const Vector2D &end2) const
Returns the one of two end point which is first reached from the given start if one strictly follows ...

◆ getFlightDirection2D()

Vector2D getFlightDirection2D ( const Vector2D & point) const
inline

Get the unit direction of flight at the given point, where arcLength2D = 0.

Definition at line 312 of file CDCTrajectory2D.h.

313 {
314 return getLocalCircle()->tangential(point - getLocalOrigin());
315 }

◆ getFlightDirection2DAtSupport()

Vector2D getFlightDirection2DAtSupport ( ) const
inline

Get the unit direction of flight at the support point, where arcLength2D = 0.

Definition at line 318 of file CDCTrajectory2D.h.

319 {
320 return getLocalCircle()->tangential();
321 }

◆ getFlightTime()

double getFlightTime ( ) const
inline

Getter for the time when the particle reached the support point position.

Definition at line 524 of file CDCTrajectory2D.h.

525 {
526 return m_flightTime;
527 }

◆ getGlobalCenter()

Vector2D getGlobalCenter ( ) const
inline

Getter for the center of the trajectory in global coordinates.

Definition at line 349 of file CDCTrajectory2D.h.

350 {
351 return getLocalCircle()->center() + m_localOrigin;
352 }

◆ getGlobalCircle()

PerigeeCircle getGlobalCircle ( ) const
inline

Getter for the circle in global coordinates.

Definition at line 443 of file CDCTrajectory2D.h.

444 {
445 PerigeeCircle result = getLocalCircle();
446 result.passiveMoveBy(-getLocalOrigin());
447 return result;
448 }

◆ getGlobalImpact()

double getGlobalImpact ( ) const
inline

Getter for the signed impact parameter of the trajectory.

Definition at line 405 of file CDCTrajectory2D.h.

406 {
407 return getLocalCircle()->distance(-m_localOrigin);
408 }

◆ getGlobalPerigee()

Vector2D getGlobalPerigee ( ) const
inline

Getter for the closest approach on the trajectory to the global origin.

Definition at line 343 of file CDCTrajectory2D.h.

344 {
345 return getLocalCircle()->closest(-m_localOrigin) + m_localOrigin;
346 }

◆ getInnerExit()

Vector2D getInnerExit ( ) const

Calculates the point where the trajectory meets the inner wall of the CDC.

This method returns the first point in forward flight direction from the start point of the trajectory where it meets the inner radius of the inner most layer. If the trajectory does not meet the CDC by the inner wall this will return Vector2D(nan,nan)

Definition at line 295 of file CDCTrajectory2D.cc.

296{
297 const CDCWireTopology& topology = CDCWireTopology::getInstance();
298 const CDCWireLayer& innerMostLayer = topology.getWireLayers().front();
299 double innerCylindricalR = innerMostLayer.getInnerCylindricalR();
300
301 const Vector2D support = getSupport();
302 const PerigeeCircle globalCircle = getGlobalCircle();
303 if (support.cylindricalR() < innerCylindricalR) {
304 // If we start within the inner volume of the CDC we want the trajectory to enter the CDC
305 // and not stop at first intersection with the inner wall.
306 // Therefore we take the inner exit that comes after the apogee (far point of the circle).
307 const Vector2D apogee = globalCircle.apogee();
308 return globalCircle.atCylindricalRForwardOf(apogee, innerCylindricalR);
309
310 } else {
311 return globalCircle.atCylindricalRForwardOf(support, innerCylindricalR);
312 }
313}
double getInnerCylindricalR() const
Getter for inner radius of the layer as taken from the CDCGeometryPar.
const std::vector< CDCWireLayer > & getWireLayers() const
Getter for the underlying storing layer vector.
static CDCWireTopology & getInstance()
Getter for the singleton instance of the wire topology.
PerigeeCircle getGlobalCircle() const
Getter for the circle in global coordinates.
Vector2D atCylindricalRForwardOf(const Vector2D &startPoint, double cylindricalR) const
Approach on the circle with the given cylindrical radius that lies in the forward direction of a star...
Vector2D apogee() const
Getter for the apogee of the circle. If it was a line both components will be infinity.
double cylindricalR() const
Gives the cylindrical radius of the vector. Same as norm()
Definition Vector2D.h:584

◆ getISuperLayerAfter()

ISuperLayer getISuperLayerAfter ( CDC::ISuperLayer iSuperLayer,
bool movingOutward ) const
private

Returns which superlayer is traversed after the current one following the trajectory outward or inward as indicated by the boolean input.

Definition at line 177 of file CDCTrajectory2D.cc.

178{
180
181 ISuperLayer minimalISuperLayer = getMinimalISuperLayer();
182 ISuperLayer maximalISuperLayer = getMaximalISuperLayer();
183 if (minimalISuperLayer == maximalISuperLayer) return ISuperLayerUtil::c_Invalid; // No next super layer to go to
184 if (iSuperLayer == minimalISuperLayer) return ISuperLayerUtil::getNextOutwards(iSuperLayer);
185 if (iSuperLayer == maximalISuperLayer) return ISuperLayerUtil::getNextInwards(iSuperLayer);
186
187 if (movingOutward) {
188 return ISuperLayerUtil::getNextOutwards(iSuperLayer);
189 } else {
190 return ISuperLayerUtil::getNextInwards(iSuperLayer);
191 }
192}
CDC::ISuperLayer getMinimalISuperLayer() const
Indicates the minimal superlayer the trajectory traverses.
CDC::ISuperLayer getMaximalISuperLayer() const
Indicates the maximal superlayer the trajectory traverses.
static ISuperLayer getNextInwards(ISuperLayer iSuperLayer)
Returns the super layer that is inside of the given super layer.
static ISuperLayer getNextOutwards(ISuperLayer iSuperLayer)
Returns the super layer that is outside of the given super layer.

◆ getISuperLayerAfterStart() [1/2]

ISuperLayer getISuperLayerAfterStart ( bool movingOutward) const
private

Returns which superlayer is traversed after the current one following the trajectory outward or inward as indicated by the boolean input.

Definition at line 194 of file CDCTrajectory2D.cc.

195{
196 ISuperLayer iSuperLayer = getStartISuperLayer();
197 return getISuperLayerAfter(iSuperLayer, movingOutward);
198}

◆ getISuperLayerAfterStart() [2/2]

ISuperLayer getISuperLayerAfterStart ( EForwardBackward forwardBackwardInfo) const
private

Indicates which superlayer is traversed after the current one following the trajectory forward or backward as indicated by the input.

Definition at line 200 of file CDCTrajectory2D.cc.

201{
202 bool movingOutward = isMovingOutward();
203 if (forwardBackwardInfo == EForwardBackward::c_Backward) {
204 movingOutward = not movingOutward;
205 }
206 return getISuperLayerAfterStart(movingOutward);
207}
CDC::ISuperLayer getISuperLayerAfterStart(bool movingOutward) const
Returns which superlayer is traversed after the current one following the trajectory outward or inwar...

◆ getLocalCircle()

const UncertainPerigeeCircle & getLocalCircle ( ) const
inline

Getter for the circle in local coordinates.

Definition at line 458 of file CDCTrajectory2D.h.

459 {
460 return m_localPerigeeCircle;
461 }

◆ getLocalCovariance()

double getLocalCovariance ( EPerigeeParameter iRow,
EPerigeeParameter iCol ) const
inline

Getter for an individual element of the covariance matrix of the local helix parameters.

Definition at line 430 of file CDCTrajectory2D.h.

431 {
432 return getLocalCircle().covariance(iRow, iCol);
433 }

◆ getLocalOrigin()

const Vector2D & getLocalOrigin ( ) const
inline

Getter for the origin of the local coordinate system.

Definition at line 500 of file CDCTrajectory2D.h.

501 {
502 return m_localOrigin;
503 }

◆ getLocalVariance()

double getLocalVariance ( EPerigeeParameter i) const
inline

Getter for an individual diagonal element of the covariance matrix of the local helix parameters.

Definition at line 437 of file CDCTrajectory2D.h.

438 {
439 return getLocalCircle().variance(i);
440 }

◆ getMaximalCylindricalR()

double getMaximalCylindricalR ( ) const
inline

Getter for the maximal distance from the origin.

Definition at line 392 of file CDCTrajectory2D.h.

393 {
394 return std::fabs(getGlobalImpact() + 2 * getLocalCircle()->radius());
395 }

◆ getMaximalISuperLayer()

ISuperLayer getMaximalISuperLayer ( ) const

Indicates the maximal superlayer the trajectory traverses.

Definition at line 248 of file CDCTrajectory2D.cc.

249{
250 double maximalCylindricalR = getMaximalCylindricalR();
252}
ISuperLayer getISuperLayerAtCylindricalR(double cylindricalR)
Returns the logical superlayer number at the given radius.
double getMaximalCylindricalR() const
Getter for the maximal distance from the origin.

◆ getMinimalCylindricalR()

double getMinimalCylindricalR ( ) const
inline

Getter for the minimal distance from the origin - same as absolute value of the impact parameter.

Definition at line 399 of file CDCTrajectory2D.h.

400 {
401 return std::fabs(getGlobalImpact());
402 }

◆ getMinimalISuperLayer()

ISuperLayer getMinimalISuperLayer ( ) const

Indicates the minimal superlayer the trajectory traverses.

Definition at line 260 of file CDCTrajectory2D.cc.

261{
262 double minimalCylindricalR = getMinimalCylindricalR();
264}
double getMinimalCylindricalR() const
Getter for the minimal distance from the origin - same as absolute value of the impact parameter.

◆ getMom2DAtSupport() [1/2]

Vector2D getMom2DAtSupport ( ) const
inline

Get the momentum at the support point of the trajectory.

Definition at line 306 of file CDCTrajectory2D.h.

307 {
308 return getFlightDirection2DAtSupport() *= getAbsMom2D();
309 }

◆ getMom2DAtSupport() [2/2]

Vector2D getMom2DAtSupport ( const double bZ) const
inline

Get the momentum at the support point of the trajectory.

Definition at line 300 of file CDCTrajectory2D.h.

301 {
302 return getFlightDirection2DAtSupport() *= getAbsMom2D(bZ);
303 }

◆ getNDF()

size_t getNDF ( ) const
inline

Getter for the number of degrees of freedom of the circle fit.

Definition at line 482 of file CDCTrajectory2D.h.

483 {
484 return getLocalCircle().ndf();
485 }

◆ getNextAxialISuperLayer()

ISuperLayer getNextAxialISuperLayer ( ) const

Indicates which axial superlayer the trajectory traverses after the one, where the start point of the trajectory is located.

Definition at line 238 of file CDCTrajectory2D.cc.

239{
240 return getAxialISuperLayerAfterStart(EForwardBackward::c_Forward);
241}
CDC::ISuperLayer getAxialISuperLayerAfterStart(EForwardBackward forwardBackwardInfo) const
Indicates which axial superlayer is traversed after the one, where the start point of the trajectory ...

◆ getNextISuperLayer()

ISuperLayer getNextISuperLayer ( ) const

Indicates which superlayer the trajectory traverses after the one, where the start point of the trajectory is located.

Definition at line 209 of file CDCTrajectory2D.cc.

210{
211 return getISuperLayerAfterStart(EForwardBackward::c_Forward);
212}

◆ getOuterExit()

Vector2D getOuterExit ( double factor = 1) const

Calculates the point where the trajectory meets the outer wall of the CDC.

This method returns the first point in forward flight direction from the start point of the trajectory where it meets the outer radius of the outer most layer. If the trajectory does not meet the CDC by the outer wall this will return Vector2D(nan,nan) The factor can be used to virtually resize the CDC.

Definition at line 315 of file CDCTrajectory2D.cc.

316{
317 const CDCWireTopology& topology = CDCWireTopology::getInstance();
318 const CDCWireLayer& outerMostLayer = topology.getWireLayers().back();
319 double outerCylindricalR = outerMostLayer.getOuterCylindricalR() * factor;
320
321 const Vector2D support = getSupport();
322 const PerigeeCircle globalCircle = getGlobalCircle();
323 if (support.cylindricalR() > outerCylindricalR) {
324 // If we start outside of the volume of the CDC we want the trajectory to enter the CDC
325 // and not stop at first intersection with the outer wall.
326 // Therefore we take the outer exit that comes after the perigee.
327 const Vector2D perigee = globalCircle.perigee();
328 return globalCircle.atCylindricalRForwardOf(perigee, outerCylindricalR);
329
330 } else {
331 return getGlobalCircle().atCylindricalRForwardOf(support, outerCylindricalR);
332 }
333}
double getOuterCylindricalR() const
Getter for outer radius of the layer as taken from the CDCGeometryPar.
Vector2D perigee() const
Getter for the perigee point.

◆ getPos2DAtArcLength2D()

Vector2D getPos2DAtArcLength2D ( double arcLength2D)
inline

Getter for the position at a given two dimensional arc length.

Definition at line 331 of file CDCTrajectory2D.h.

332 {
333 return getLocalOrigin() + getLocalCircle()->atArcLength(arcLength2D);
334 }

◆ getPreviousAxialISuperLayer()

ISuperLayer getPreviousAxialISuperLayer ( ) const

Indicates which axial superlayer the trajectory traverses before the one, where the start point of the trajectory is located.

Definition at line 243 of file CDCTrajectory2D.cc.

244{
245 return getAxialISuperLayerAfterStart(EForwardBackward::c_Backward);
246}

◆ getPreviousISuperLayer()

ISuperLayer getPreviousISuperLayer ( ) const

Indicates which superlayer the trajectory traverses before the one, where the start point of the trajectory is located.

Definition at line 214 of file CDCTrajectory2D.cc.

215{
216 return getISuperLayerAfterStart(EForwardBackward::c_Backward);
217}

◆ getPValue()

double getPValue ( ) const
inline

Getter for p-value.

Definition at line 464 of file CDCTrajectory2D.h.

465 {
466 return TMath::Prob(getChi2(), getNDF());
467 }

◆ getStartISuperLayer()

ISuperLayer getStartISuperLayer ( ) const

Indicates the superlayer the trajectory starts in.

Definition at line 254 of file CDCTrajectory2D.cc.

255{
256 double startCylindricalR = getLocalOrigin().cylindricalR();
258}

◆ getSupport()

Vector2D getSupport ( ) const
inline

Get the support point of the trajectory in global coordinates.

Definition at line 337 of file CDCTrajectory2D.h.

338 {
339 return getLocalCircle()->perigee() + getLocalOrigin();
340 }

◆ getTotalArcLength2D()

template<class AHits>
double getTotalArcLength2D ( const AHits & hits) const
inline

Calculates the perpendicular travel distance from the first position of the hits to the last position of the hits.

Definition at line 246 of file CDCTrajectory2D.h.

247 {
248 Vector2D frontRecoPos2D = hits.front().getRecoPos2D();
249 Vector2D backRecoPos2D = hits.back().getRecoPos2D();
250 return calcArcLength2DBetween(frontRecoPos2D, backRecoPos2D);
251 }

◆ isCurler()

bool isCurler ( double factor = 1) const

Checks if the trajectory leaves the outer radius of the CDC times the given tolerance factor.

Definition at line 266 of file CDCTrajectory2D.cc.

267{
268 const CDCWireTopology& topology = CDCWireTopology::getInstance();
269 return getMaximalCylindricalR() < factor * topology.getOuterCylindricalR();
270}
double getOuterCylindricalR() const
Getter for the outer radius of the outer most wire layer.

◆ isFitted()

bool isFitted ( ) const

Checks if the circle is already set to a valid value.

Definition at line 84 of file CDCTrajectory2D.cc.

85{
86 return not getLocalCircle()->isInvalid();
87}
bool isInvalid() const
Indicates if all circle parameters are zero.

◆ isForwardOrBackwardTo()

template<class AHits>
EForwardBackward isForwardOrBackwardTo ( const AHits & hits) const
inline

Calculates if this trajectory and the hits are coaligned Returns:

  • EForwardBackward::c_Forward if the last entity lies behind the first.
  • EForwardBackward::c_Backward if the last entity lies before the first.

Definition at line 202 of file CDCTrajectory2D.h.

203 {
204 return static_cast<EForwardBackward>(sign(getTotalArcLength2D(hits)));
205 }
EForwardBackward
Enumeration to represent the distinct possibilities of the right left passage information.

◆ isMovingOutward()

bool isMovingOutward ( ) const
inline

Indicates if the trajectory is moving outwards or inwards (to or away from the origin) from the start point on.

Definition at line 325 of file CDCTrajectory2D.h.

326 {
327 return getFlightDirection2DAtSupport().dot(getSupport()) > 0;
328 }

◆ isOriginer()

bool isOriginer ( double factor = 1) const

Checks if the trajectory intersects with the inner radius of the CDC time the given tolerance factor.

Definition at line 272 of file CDCTrajectory2D.cc.

273{
274 const CDCWireTopology& topology = CDCWireTopology::getInstance();
275 return getMinimalCylindricalR() < factor * topology.getInnerCylindricalR();
276}
double getInnerCylindricalR() const
Getter for the inner radius of the inner most wire layer.

◆ isRightOrLeft()

ERightLeft isRightOrLeft ( const Vector2D & point) const
inline

Checks if the given point is to the right or to the left of the trajectory.

Definition at line 417 of file CDCTrajectory2D.h.

418 {
419 return getLocalCircle()->isRightOrLeft(point - getLocalOrigin());
420 }

◆ reconstruct3D()

Vector3D reconstruct3D ( const CDC::WireLine & wireLine,
double distance = 0.0,
double z = 0 ) const

Gives the one three dimensional positions within the CDC closest to the given z where the given drift circle on the wire line touches the trajectory.

This method makes the reconstruction of the z coordinate possible by using the skewness
stereo layer of the stereo wires. The point is determined such that it is at the (signed) distance to the wire line.

Parameters
wireLineThe geometrical wire line on which the hit is located-
distanceThe desired distance from the wire line a.k.a. drift length
zThe expected value of z to which to closest solution should be selected.

Definition at line 163 of file CDCTrajectory2D.cc.

166{
167 const double recoZ = reconstructZ(wireLine, distance, z);
168 const Vector3D recoWirePos2D = wireLine.sagPos3DAtZ(recoZ);
169 return Vector3D(getClosest(recoWirePos2D.xy()), recoZ);
170}
ROOT::Math::XYZVector sagPos3DAtZ(const double z) const
Gives the three dimensional position with wire sag effect of the line at the given z value.
Definition WireLine.h:61
double reconstructZ(const CDC::WireLine &wireLine, double distance=0.0, double z=0) const
Gives the one z positions within the CDC closest to the given z where the given drift circle on the w...
Vector2D getClosest(const Vector2D &point) const
Calculates the closest approach on the trajectory to the given point.
const Vector2D & xy() const
Getter for the xy projected vector ( reference ! )
Definition Vector3D.h:511
HepGeom::Vector3D< double > Vector3D
3D Vector
Definition Cell.h:34

◆ reconstructBoth3D()

std::array< Vector3D, 2 > reconstructBoth3D ( const CDC::WireLine & wireLine,
double distance = 0.0,
double z = 0 ) const

Gives the two three dimensional points where the drift circle touches the wire line.

Only works for the skew stereo wires.

Parameters
wireLineThe geometrical wire line on which the hit is located-
distanceThe desired distance from the wire line a.k.a. drift length
zThe expected value of z to which to closest solution should be selected.

Definition at line 150 of file CDCTrajectory2D.cc.

153{
154 const std::array<double, 2> solutionsZ = reconstructBothZ(wireLine, distance, z);
155
156 const Vector3D firstRecoWirePos3D = wireLine.sagPos3DAtZ(solutionsZ[0]);
157 const Vector3D secondRecoWirePos3D = wireLine.sagPos3DAtZ(solutionsZ[1]);
158 return {{{getClosest(firstRecoWirePos3D.xy()), firstRecoWirePos3D.z()},
159 {getClosest(secondRecoWirePos3D.xy()), secondRecoWirePos3D.z()}
160 }};
161}
std::array< double, 2 > reconstructBothZ(const CDC::WireLine &wireLine, double distance=0.0, double z=0) const
Gives the two z positions where the given drift circle on the wire line touches the trajectory.
double z() const
Getter for the z coordinate.
Definition Vector3D.h:499

◆ reconstructBothZ()

std::array< double, 2 > reconstructBothZ ( const CDC::WireLine & wireLine,
double distance = 0.0,
double z = 0 ) const

Gives the two z positions where the given drift circle on the wire line touches the trajectory.

Only works for the skew stereo wires

Parameters
wireLineThe geometrical wire line on which the hit is located-
distanceThe desired distance from the wire line a.k.a. drift length
zThe expected value of z to which to closest solution should be selected.

Definition at line 110 of file CDCTrajectory2D.cc.

113{
114 Vector2D globalPos2D = wireLine.sagPos2DAtZ(z);
115 Vector2D movePerZ = wireLine.sagMovePerZ(z);
116
117 Vector2D localPos2D = globalPos2D - getLocalOrigin();
118 const PerigeeCircle& localCircle = getLocalCircle();
119
120 double fastDistance = distance != 0.0 ? localCircle.fastDistance(distance) : 0.0;
121
122 double c = localCircle.fastDistance(localPos2D) - fastDistance;
123 double b = localCircle.gradient(localPos2D).dot(movePerZ);
124 double a = localCircle.n3() * movePerZ.normSquared();
125
126 const std::pair<double, double> solutionsDeltaZ = solveQuadraticABC(a, b, c);
127
128 // Put the solution of smaller deviation first
129 const std::array<double, 2> solutionsZ{solutionsDeltaZ.second + z, solutionsDeltaZ.first + z};
130 return solutionsZ;
131}
ROOT::Math::XYVector sagPos2DAtZ(const double z) const
Gives the two dimensional position with wire sag effect of the line at the given z value.
Definition WireLine.h:68
ROOT::Math::XYVector sagMovePerZ(const double z) const
Gives the two dimensional position with wire sag effect of the line at the given z value.
Definition WireLine.h:83
double fastDistance(const Vector2D &point) const
Getter for the linearised distance measure to a point.
Vector2D gradient(const Vector2D &point) const
Gradient of the distance field, hence indicates the direction of increasing distance.
double n3() const
Getter for the generalised circle parameter n3.
double dot(const Vector2D &rhs) const
Calculates the two dimensional dot product.
Definition Vector2D.h:176
double normSquared() const
Calculates .
Definition Vector2D.h:187

◆ reconstructZ()

double reconstructZ ( const CDC::WireLine & wireLine,
double distance = 0.0,
double z = 0 ) const

Gives the one z positions within the CDC closest to the given z where the given drift circle on the wire line touches the trajectory.

Only works for the skew stereo wires.

Parameters
wireLineThe geometrical wire line on which the hit is located-
distanceThe desired distance from the wire line a.k.a. drift length
zThe expected value of z to which to closest solution should be selected.

Definition at line 133 of file CDCTrajectory2D.cc.

136{
137 const std::array<double, 2> solutionsZ = reconstructBothZ(wireLine, distance, z);
138
139 bool firstIsInCDC = (wireLine.backwardZ() < solutionsZ[0] and
140 solutionsZ[0] < wireLine.forwardZ());
141 bool secondIsInCDC = (wireLine.backwardZ() < solutionsZ[1] and
142 solutionsZ[1] < wireLine.forwardZ());
143
144 // Prefer the solution with the smaller deviation from the given z position which is the first
145 assert(not(std::fabs(solutionsZ[0] - z) > std::fabs(solutionsZ[1] - z)));
146 const double recoZ = (firstIsInCDC or not secondIsInCDC) ? solutionsZ[0] : solutionsZ[1];
147 return recoZ;
148}
double backwardZ() const
Gives the backward z coordinate.
Definition WireLine.h:152
double forwardZ() const
Gives the forward z coordinate.
Definition WireLine.h:148

◆ reverse()

void reverse ( )

Reverses the trajectory in place.

Definition at line 96 of file CDCTrajectory2D.cc.

97{
98 m_localPerigeeCircle.reverse();
100}

◆ reversed()

CDCTrajectory2D reversed ( ) const

Returns the reverse trajectory as a copy.

Definition at line 103 of file CDCTrajectory2D.cc.

104{
105 CDCTrajectory2D result = *this;
106 result.reverse();
107 return result;
108}
CDCTrajectory2D()
Default constructor for ROOT compatibility.

◆ setChi2()

void setChi2 ( const double chi2)
inline

Setter for the chi square value of the circle fit.

Definition at line 476 of file CDCTrajectory2D.h.

477 {
478 return m_localPerigeeCircle.setChi2(chi2);
479 }

◆ setFlightTime()

void setFlightTime ( double flightTime)
inline

Setter for the time when the particle reached the support point position.

Definition at line 530 of file CDCTrajectory2D.h.

531 {
532 m_flightTime = flightTime;
533 }

◆ setGlobalCircle()

void setGlobalCircle ( const UncertainPerigeeCircle & perigeeCircle)
inline

Setter for the generalized circle that describes the trajectory.

Definition at line 451 of file CDCTrajectory2D.h.

452 {
453 m_localPerigeeCircle = perigeeCircle;
454 m_localPerigeeCircle.passiveMoveBy(getLocalOrigin());
455 }

◆ setLocalCircle()

void setLocalCircle ( const UncertainPerigeeCircle & localPerigeeCircle)
inline

Setter for the generalized circle that describes the trajectory.

Definition at line 494 of file CDCTrajectory2D.h.

495 {
496 m_localPerigeeCircle = localPerigeeCircle;
497 }

◆ setLocalOrigin()

double setLocalOrigin ( const Vector2D & localOrigin)

Setter for the origin of the local coordinate system.

This sets the origin point the local circle representation is subjected. The local circle is also changed such that the set of points in global space is not changed on repositioning the local parameterisation. It also implicitly sets up a new reference position for all travel distances.
To be able to keep track how the travel distances have to be shifted by this change
the setter returns the value by which the coordinate s parameter was moved ( passively ).
The relation "old traveldistance - return value == new traveldistance" holds.
(if they are not to far away from the reference points, up to the discontinuity at the
far point on the circle)

Parameters
localOriginNew local reference point in the global coordinate system
Returns
Travel distance from the old to the new origin point

Definition at line 356 of file CDCTrajectory2D.cc.

357{
358 double arcLength2D = calcArcLength2D(localOrigin);
359 m_flightTime += arcLength2D / Const::speedOfLight;
360 m_localPerigeeCircle.passiveMoveBy(localOrigin - m_localOrigin);
361 m_localOrigin = localOrigin;
362 return arcLength2D;
363}
static const double speedOfLight
[cm/ns]
Definition Const.h:695
double calcArcLength2D(const Vector2D &point) const
Calculate the travel distance from the start position of the trajectory.

◆ setNDF()

void setNDF ( std::size_t ndf)
inline

Setter for the number of degrees of freedom of the circle fit.

Definition at line 488 of file CDCTrajectory2D.h.

489 {
490 return m_localPerigeeCircle.setNDF(ndf);
491 }

◆ setPosMom2D()

void setPosMom2D ( const Vector2D & pos2D,
const Vector2D & mom2D,
double charge )

Setter for start point and momentum at the start point subjected to the charge sign.

Definition at line 345 of file CDCTrajectory2D.cc.

348{
349 m_localOrigin = pos2D;
350 double curvature = CDCBFieldUtil::absMom2DToCurvature(mom2D.norm(), charge, pos2D);
351 Vector2D phiVec = mom2D.unit();
352 double impact = 0.0;
353 m_localPerigeeCircle = UncertainPerigeeCircle(curvature, phiVec, impact);
354}

Member Data Documentation

◆ m_flightTime

double m_flightTime = NAN
private

Memory for the estimation of the time at which the particle arrived at the support point.

Definition at line 543 of file CDCTrajectory2D.h.

◆ m_localOrigin

Vector2D m_localOrigin
private

Memory for local coordinate origin of the circle representing the trajectory in global coordinates.

Definition at line 537 of file CDCTrajectory2D.h.

◆ m_localPerigeeCircle

UncertainPerigeeCircle m_localPerigeeCircle
private

Memory for the generalized circle describing the trajectory in coordinates from the local origin.

Definition at line 540 of file CDCTrajectory2D.h.


The documentation for this class was generated from the following files: