Belle II Software development
CsIDigitizerModule Class Reference

Digitizer for the BEAST CsI system. More...

#include <CsIDigitizerModule.h>

Inheritance diagram for CsIDigitizerModule:
Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 CsIDigitizerModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
virtual ~CsIDigitizerModule ()
 Default destructor.
 
virtual void initialize () override
 Register input and output data.
 
virtual void beginRun () override
 To do before each runs.
 
virtual void event () override
 Each event This is where the actual digitization is done, and the hits are written to the DataStore.
 
virtual void endRun () override
 Clean up.
 
virtual void terminate () override
 Final clean up.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

Signal genTimeSignal (double _energy, double _timeAvg, double _timeRMS, int iChannel, bool _save=0)
 Generates a time signal for a mean energy deposit The energy deposit is modelled at a Gaussian whose parameters are given as inputs.
 
double genTimeSignal (Signal *_output, Signal _energies, Signal _times, int _iChannel, int _dt, int _nsam, bool _save=0)
 Generates a time signal for a set of hits.
 
Signal genSignalTemplate (int _n, int _i0, double _t1, double _t2=0.0, double _rFastTot=1.0)
 Generates the template for a signal (obsolete)
 
Signal firstOrderResponse (double _gain, Signal _u, double _y0, double _dt, double _tSlow, double _delay)
 Calculates the time response of a first order system (such as crystal, PMT, etc)
 
uint16_t doChargeIntegration (Signal _u, int _NsamBL, uint16_t *BSL, uint32_t *Q, uint32_t *t, std::vector< uint16_t > *_Waveform, std::vector< uint8_t > *_DPPCIBits, int _Treshold, double _TriggerHoldoff=0.0, double _GateWidth=320.0, double _GateOffset=40.0, bool _recordTraces=false)
 Realizes the charge integration of the input signal.
 
int addNoise (Signal *y, double _rms, double _offset)
 Adds noise to the signal.
 
DigitalSignal doDigitization (Signal _v, double _LSB)
 Digitizes the signal the signal.
 
double f (double fi, double u_i, double u_j, double y, double invtau)
 This returns the RHS of first order differential equation.
 
int getnSamples () const
 Gets the number of points in the waveforms arrays.
 
void setnSamples (int nsamples)
 Sets the number of points in the waveforms arrays.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

int m_hitNum
 index of csiHit
 
double m_TrueEdep
 Sum of the MC (true) deposited energies in the event-channel.
 
double m_Resolution
 Parameter: Resolution (in mV) of the ACD.
 
double m_SampleRate
 Parameter: Sample rate (in samples/sec) of the ADC.
 
double m_dt
 Time interval (in ns) (calculated from m_SampleRate.
 
int m_nWaveforms
 Number of waveforms to save.
 
int m_nWFcounter
 Counter for the number of waveforms to save.
 
uint8_t m_CellId
 Cell ID.
 
uint16_t m_Baseline
 Baseline (pedestal) frozen during charge integration.
 
uint32_t m_Charge
 Integrated Charge.
 
uint16_t m_MaxADC
 Max ACD of the hit (to check saturations)
 
uint32_t m_Time
 Trigger Time.
 
int m_nSamples
 Number of points requested in the waveform arrays.
 
std::vector< uint16_t > m_Waveform
 Saved waveform.
 
std::vector< uint8_t > m_DPPCIBits
 status of the DPP-CI
 
const double m_tRisePMT = 2
 2.6 Rise time of the PMT signal (in ns)
 
const double m_tTransitPMT = 48
 48Mean transit time of the PMT signal (in ns)
 
const double m_Zl = 50
 Line impedance of the analog chain (to get voltage from anode current)
 
StoreArray< CsiSimHitm_aSimHit
 Each simulated particle in the crystal.
 
StoreArray< CsiDigiHitm_aDigiHit
 Output: a digitized hit.
 
Signal m_CsITlSignalTemplate
 Template Signal of a CsITl trace.
 
std::vector< double > m_calibConstants
 Calibration constants for each channel (in V/keV)
 
std::vector< double > m_noiseLevels
 Noise level for each channel (in V)
 
std::vector< double > m_LY
 Light yield for each channel (gamma per GeV)
 
std::vector< double > m_tRatio
 Ratio fast light / slow light for each channel.
 
std::vector< double > m_tFast
 Fast time constant for each channel (ns)
 
std::vector< double > m_tSlow
 Slow time constant for each channel (ns)
 
std::vector< double > m_LCE
 Light collection efficiency for each channel.
 
std::vector< double > m_PmtQE
 PMT quantum efficiency for each channel.
 
std::vector< double > m_PmtGain
 PMT gain for each channel.
 
Signal m_SimHitTimes [16]
 Array of signals (each corresponding to one channel)
 
Signal m_SimHitEdeps [16]
 Array of signals (each corresponding to one channel)
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Digitizer for the BEAST CsI system.

This modules reads CsiHits for deposited energy, associates a pulse shape then fits it for amplitude and time. In a future version: calculate pulse shape from sim hits. *

Definition at line 38 of file CsIDigitizerModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ CsIDigitizerModule()

Constructor: Sets the description, the properties and the parameters of the module.

Definition at line 42 of file CsIDigitizerModule.cc.

42 : Module(), m_hitNum(0),
43 m_TrueEdep(0.0),
44 m_nWFcounter(0),
45 m_aDigiHit("CsiDigiHits"),
46 m_calibConstants(16, 5),
47 m_noiseLevels(16, 0.25e-3),
48 m_LY(16, 40e6),
49 m_tRatio(16, 0),
50 m_tFast(16, 1),
51 m_tSlow(16, 1),
52 m_LCE(16, 0.1),
53 m_PmtQE(16, 0.05),
54 m_PmtGain(16, 1e5)
55{
56 // Set module properties
57 setDescription("Digitizer for the BEAST CsI system");
58
59 // Parameter definitions
60 addParam("Resolution", m_Resolution, "Resolution (in mV) of the ACD", 4.8828e-4);
61 addParam("SampleRate", m_SampleRate, "Sample rate (in samples/sec) of the ADC", 250e6);
62 addParam("nWaveforms", m_nWaveforms, "Number of waveforms to save. 0: none, -1: all ", 0);
63}
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
Module()
Constructor.
Definition: Module.cc:30
double m_Resolution
Parameter: Resolution (in mV) of the ACD.
double m_TrueEdep
Sum of the MC (true) deposited energies in the event-channel.
std::vector< double > m_noiseLevels
Noise level for each channel (in V)
int m_nWFcounter
Counter for the number of waveforms to save.
std::vector< double > m_LCE
Light collection efficiency for each channel.
std::vector< double > m_LY
Light yield for each channel (gamma per GeV)
std::vector< double > m_PmtGain
PMT gain for each channel.
std::vector< double > m_PmtQE
PMT quantum efficiency for each channel.
std::vector< double > m_tSlow
Slow time constant for each channel (ns)
std::vector< double > m_calibConstants
Calibration constants for each channel (in V/keV)
std::vector< double > m_tRatio
Ratio fast light / slow light for each channel.
StoreArray< CsiDigiHit > m_aDigiHit
Output: a digitized hit.
double m_SampleRate
Parameter: Sample rate (in samples/sec) of the ADC.
int m_nWaveforms
Number of waveforms to save.
std::vector< double > m_tFast
Fast time constant for each channel (ns)
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:559

◆ ~CsIDigitizerModule()

~CsIDigitizerModule ( )
virtual

Default destructor.

Definition at line 65 of file CsIDigitizerModule.cc.

66{
67}

Member Function Documentation

◆ addNoise()

int addNoise ( Signal y,
double  _rms,
double  _offset 
)
private

Adds noise to the signal.

Parameters
ya pointer to the signal to noisify
_rmsthe rms of the high-frequency noise to add
_offsetthe offset to apply to the signal (e.g. to simulate low-frew noise)
Returns
The number of samples in the signal

Definition at line 442 of file CsIDigitizerModule.cc.

443{
444 for (Signal::iterator it = y->begin() ; it != y->end(); ++it)
445 *it += _offset + gRandom->Gaus(0, _rms);
446
447 return y->size();
448}

◆ beginRun()

void beginRun ( void  )
overridevirtual

To do before each runs.

NOOP.

Reimplemented from Module.

Definition at line 99 of file CsIDigitizerModule.cc.

100{
101 //Signal tempo = genTimeSignal(10, 10, 2, 0, 1);
102}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:362
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:186
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:511
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:513
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:520
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:509
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 425 of file Module.h.

425{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:146

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 438 of file Module.h.

438{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:165

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 431 of file Module.h.

431{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:156

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 419 of file Module.h.

419{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 444 of file Module.h.

444{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:175

◆ doChargeIntegration()

uint16_t doChargeIntegration ( Signal  _u,
int  _NsamBL,
uint16_t *  BSL,
uint32_t *  Q,
uint32_t *  t,
std::vector< uint16_t > *  _Waveform,
std::vector< uint8_t > *  _DPPCIBits,
int  _Treshold,
double  _TriggerHoldoff = 0.0,
double  _GateWidth = 320.0,
double  _GateOffset = 40.0,
bool  _recordTraces = false 
)
private

Realizes the charge integration of the input signal.

Parameters
_uThe input signal in Volts
_NsamBLNumber of samples to conduct the baseline measurement (8,32,128)
BSLA pointer to the value of the baseline (in LSB)
QA pointer to the value holding the total charge (in LSB.sample)
tA pointer to the value holding the trigger time
_WaveformA pointer to the vector holding all waveform data points
_DPPCIBitsA pointer to the vector holding the bits of the DPP-CI status. Order [MSB-LSB] is [stop,holdoff,gate,trigger]
_TresholdThreshold above which generate a trigger (in LSB)
_TriggerHoldoffWidth of signal integration (in ns)
_GateWidthWidth of signal integration (in ns)
_GateOffsetWidth of signal integration (in ns)
_recordTracesRecord traces
Returns
The maximum ADC value (to check for saturations)

< 1 / N_samples used for baseline averaging for most of the signal

< 1 / N_samples used for baseline averaging (at beginning of signal)

Definition at line 211 of file CsIDigitizerModule.cc.

216{
217
218 B2DEBUG(80, "Arguments: " << &_u << ", " << _NsamBL << ", " << _BSL << ", " << _Q << ", " << _t
219 << ", " << _Waveform << ", " << _Treshold << ", " << _TriggerHoldoff << ", " << _GateWidth
220 << ", " << _GateOffset << ", " << _recordTraces);
221
222 vector<int> x = doDigitization(_u, m_Resolution);
223 int nSam = x.size();
224
225 // Plots for debugging (see CAEN DPP-CI figs 2.2,2.3
226 TH1I h_trigger("h_trigger", "Trigger", nSam, 0, nSam - 1);
227 TH1I h_gate("h_gate", "Gate", nSam, 0, nSam - 1);
228 TH1I h_holdoff("h_holdoff", "Holdoff", nSam, 0, nSam - 1);
229 TH1I h_baseline("h_baseline", "Baseline", nSam, 0, nSam - 1);
230 TH1I h_charge("h_charge", "Charge", nSam, 0, nSam - 1);
231 TH1F h_signal("h_signal", "Continuous signal", nSam, 0, nSam - 1);
232 TH1I h_digsig("h_digsig", "Digital signal", nSam, 0, nSam - 1);
233
234
235 int max_gated = (int) floor(_GateWidth / m_dt);
236 int gate_offset = (int) floor(_GateOffset / m_dt);
237 int max_holdoff = (int) floor(_TriggerHoldoff / m_dt);
238
239 int baseline = 0;
240 int charge = 0;
241 int n_holdoff = 0;
242 int n_gated = 0;
243
244 bool gate = false;
245 bool holdoff = false;
246 bool stop = false;
247 bool trigger = false;
248
249 // Find trigger position
250 int i = 0;
251 int iFirstTrigger = 0;
252 list<int> baselineBuffer;
253 vector<int>::iterator it;
254 float tempBaseline;
255
256 // Saving inverse number of samples used for baseline averaging (avoid division)
257 const double invMaxNavgBL = 1.0 / _NsamBL;
258 double invNavgBL;
260 _Waveform->resize(nSam, 0);
261 _DPPCIBits->resize(nSam, 0);
262
263 B2DEBUG(140, "Scanning vector: all should have nSam=" << nSam);
264
265 uint16_t maxval = 0;
266
267 for (it = x.begin(); (it != x.end()); ++it, ++i) {
268
269 if (*it > maxval)
270 maxval = *it;
271
272 _Waveform->at(i) = *it;
273 _DPPCIBits->at(i) = trigger + (gate << 1) + (holdoff << 2) + (stop << 3);
274
275 if (_recordTraces) {
276
277 h_trigger.Fill(i, (int) trigger) ;
278 h_gate.Fill(i, (int) gate) ;
279 h_holdoff.Fill(i, (int) holdoff) ;
280 h_baseline.Fill(i, baseline) ;
281 h_charge.Fill(i, charge) ;
282 h_digsig.Fill(i, *it) ;
283 h_signal.Fill(i, _u.at(i)) ;
284 }
285
286 if (!gate && !holdoff) {
287
288 baselineBuffer.push_back(*it);
289
290
291 if ((i + 1) > _NsamBL) {
292 baselineBuffer.pop_front();
293 invNavgBL = invMaxNavgBL;
294 } else {
295 invNavgBL = (1.0 / i);
296 }
297
298 tempBaseline = 0;
299 for (list<int>::iterator itbl = baselineBuffer.begin(); itbl != baselineBuffer.end(); ++itbl)
300 tempBaseline += (float) * itbl;
301
302 tempBaseline *= invNavgBL;
303
304 baseline = (int) round(tempBaseline);
305
306 trigger = (*it - baseline) > _Treshold;
307
308 //first time we see a trigger
309 if (trigger && !iFirstTrigger)
310 iFirstTrigger = i;
311
312 } else {
313
314 if (gate) {
315 charge += (*(it - gate_offset) - baseline);
316 *_BSL = baseline;
317 n_gated++;
318 }
319
320 if (holdoff) {
321 n_holdoff++;
322 }
323
324 trigger = false;
325 }
326
327 holdoff = trigger || (holdoff && (n_holdoff < max_holdoff));
328 gate = trigger || (gate && (n_gated < max_gated));
329
330 stop = iFirstTrigger && !gate && !holdoff;
331 }
332
333 *_Q = charge;
334 // from the doc: 2 sample uncertainty.
335 *_t = (uint)(iFirstTrigger + 2.0 * (gRandom->Rndm() - 0.5));
336
337 if (not(_recordTraces)) {
338 _Waveform->clear();
339 _DPPCIBits->clear();
340 }
341
342 return maxval;
343}
DigitalSignal doDigitization(Signal _v, double _LSB)
Digitizes the signal the signal.
double m_dt
Time interval (in ns) (calculated from m_SampleRate.
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ doDigitization()

vector< int > doDigitization ( Signal  _v,
double  _LSB 
)
private

Digitizes the signal the signal.

param _y: The input signal in Volts param _LSB: The value of a LSB in volts (=resolution)

return a std<vector> containing the signal in LSB

Definition at line 345 of file CsIDigitizerModule.cc.

346{
347 vector<int> output(_v.size(), 0);
348 double invLSB = 1.0 / _LSB;
349
350 int i = 0;
351 for (Signal::iterator it = _v.begin() ; it != _v.end(); ++it, ++i) {
352 output.at(i) = (int) round(*it * invLSB);
353 }
354
355 return output;
356}

◆ endRun()

void endRun ( void  )
overridevirtual

Clean up.

NOOP.

Reimplemented from Module.

Definition at line 203 of file CsIDigitizerModule.cc.

204{
205}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:518
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:517

◆ event()

void event ( void  )
overridevirtual

Each event This is where the actual digitization is done, and the hits are written to the DataStore.

< Number of Crystal hits

< Index of the Cell

< Energy deposited in the current hit

< Distance between the hit and the PIN-diode end of the crystal (cm).

< Time when photons from the hit reach the PIN-diode (in ns).

Reimplemented from Module.

Definition at line 104 of file CsIDigitizerModule.cc.

105{
106 StoreObjPtr<EventMetaData> eventMetaDataPtr;
107 int m_currentEventNumber = eventMetaDataPtr->getEvent();
108
109 B2DEBUG(80, "Digitingevent " << m_currentEventNumber);
110
111 //Loop over CsiSimHits
112 if (m_aSimHit.getEntries() > 0) {
113 int hitNum = m_aSimHit.getEntries();
115 // double E_tmp[16] = {0}; /**< Sum energy deposited in each cell */
116 // double edepSum = 0; /**< Sum energy deposited in all cells */
117
118 for (int i = 0 ; i < 16 ; i++) {
119 m_SimHitTimes[i].clear();
120 m_SimHitEdeps[i].clear();
121 }
122
123
124 B2DEBUG(150, "Looping over CsISimHits");
125 for (int i = 0; i < hitNum; i++) { // Loop over CsISimHits
126 CsiSimHit* aCsISimHit = m_aSimHit[i];
127 int m_cellID = aCsISimHit->getCellId();
128 double edep = aCsISimHit->getEnergyDep();
129 double tof = aCsISimHit->getFlightTime();
130 // double hitTime = aCsISimHit->getTimeAve(); /**< Time average of the hit*/
131 // double hitTimeRMS = sqrt( aCsISimHit->getTimeVar()/aCsISimHit->getEnergyDep()); /**< Time rms of the hit*/
133
134 ROOT::Math::XYZVector hitPos = aCsISimHit->getPosition();
135 ROOT::Math::XYZVector cellPos = csip->GetPosition(m_cellID);
136 ROOT::Math::XYZVector cellAngle = csip->GetOrientation(m_cellID);
137
138 double localPos = (15. - (hitPos - cellPos).Dot(
139 cellAngle));
141 // 0.06 is the speed of light in CsI(Tl)
142 double propagTime = m_SampleRate *
143 (0.0600 * localPos + (tof / CLHEP::ns)) * 1E-9;
146 m_SimHitTimes[m_cellID].push_back(propagTime);
147 m_SimHitEdeps[m_cellID].push_back(edep);
148
149 /*
150 if (i<10){
151 B2INFO("Hit No = : " << i );
152 B2INFO("Deposited energy = : " << edep );
153 B2INFO("Average time = : " << hitTime );
154 B2INFO("Time RMS = : " << hitTimeRMS );
155
156 csip->Print(m_cellID);
157 }
158 */
159
160 }
161
162 for (int iCh = 0; iCh < 16; iCh++) {
163
164 int n = m_SimHitTimes[iCh].size();
165
166 if (n > 0) {
167
168 B2DEBUG(140, "Generating Time signal");
169 Signal tempSignal;
170 m_TrueEdep = genTimeSignal(&tempSignal, m_SimHitEdeps[iCh], m_SimHitTimes[iCh], iCh, m_dt, m_nSamples, false);
171
172
173 B2DEBUG(140, "Launching Charge integration");
174 bool recordWaveform = false;
175 if ((m_nWaveforms == -1) || (m_nWFcounter < m_nWaveforms)) {
176 m_nWFcounter++;
177 recordWaveform = true;
178 B2DEBUG(80, "Recording WF");
179 }
180 uint16_t max = doChargeIntegration(tempSignal, 128, &m_Baseline, &m_Charge, &m_Time, &m_Waveform,
181 &m_DPPCIBits, 5, 1.2e4, 1e4, 1e3, recordWaveform);
182
183 if (m_Charge > 0) {
184 m_aDigiHit.appendNew();
185 m_hitNum = m_aDigiHit.getEntries() - 1;
186 m_aDigiHit[m_hitNum]->setCellId(iCh);
187 m_aDigiHit[m_hitNum]->setCharge(m_Charge);
188 m_aDigiHit[m_hitNum]->setTime(m_Time);
189 m_aDigiHit[m_hitNum]->setBaseline(m_Baseline);
190 m_aDigiHit[m_hitNum]->setTrueEdep(m_TrueEdep);
191
192 m_aDigiHit[m_hitNum]->setMaxVal(max);
193
194 m_aDigiHit[m_hitNum]->setWaveform(&m_Waveform);
195 m_aDigiHit[m_hitNum]->setStatusBits(&m_DPPCIBits);
196 }
197 }
198 }
199 }
200}
R E
internal precision of FFTW codelets
ClassCsiSimHit - Geant4 simulated hits in CsI crystals in BEAST.
Definition: CsiSimHit.h:31
int getCellId() const
Get Cell ID.
Definition: CsiSimHit.h:87
double getFlightTime() const
Get Flight time from IP.
Definition: CsiSimHit.h:102
double getEnergyDep() const
Get Deposit energy.
Definition: CsiSimHit.h:107
ROOT::Math::XYZVector getPosition() const
Get Position.
Definition: CsiSimHit.h:122
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
uint16_t m_Baseline
Baseline (pedestal) frozen during charge integration.
Signal m_SimHitEdeps[16]
Array of signals (each corresponding to one channel)
std::vector< uint16_t > m_Waveform
Saved waveform.
Signal genTimeSignal(double _energy, double _timeAvg, double _timeRMS, int iChannel, bool _save=0)
Generates a time signal for a mean energy deposit The energy deposit is modelled at a Gaussian whose ...
StoreArray< CsiSimHit > m_aSimHit
Each simulated particle in the crystal.
int m_nSamples
Number of points requested in the waveform arrays.
std::vector< uint8_t > m_DPPCIBits
status of the DPP-CI
uint16_t doChargeIntegration(Signal _u, int _NsamBL, uint16_t *BSL, uint32_t *Q, uint32_t *t, std::vector< uint16_t > *_Waveform, std::vector< uint8_t > *_DPPCIBits, int _Treshold, double _TriggerHoldoff=0.0, double _GateWidth=320.0, double _GateOffset=40.0, bool _recordTraces=false)
Realizes the charge integration of the input signal.
Signal m_SimHitTimes[16]
Array of signals (each corresponding to one channel)
uint32_t m_Charge
Integrated Charge.
The Class for CSI Geometry Parameters.
ROOT::Math::XYZVector GetOrientation(int cid)
Get the orientation of the crystal.
ROOT::Math::XYZVector GetPosition(int cid)
Get the position of the crystal.
static CsiGeometryPar * Instance()
Static method to get a reference to the CsiGeometryPar instance.
std::vector< double > Signal
Designed to hold a "continuous" (in time and amplitude) signal

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional paths */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:224
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:229
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:201
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:310
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:196
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:213
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ f()

double f ( double  fi,
double  u_i,
double  u_j,
double  y,
double  invtau 
)
private

This returns the RHS of first order differential equation.

param fi: index at which we should evaluate the function. Do linear interpolation of the input in case fi isn't an integer param u_i: input at index i param u_j: input at index j=i+1 param y : output function param invtau: 1 / (time constant)

Definition at line 521 of file CsIDigitizerModule.cc.

522{
523 //linear interpolation of the input at fractional index fi
524 double u = u_i * (fi - floor(fi)) + u_j * (ceil(fi) - fi);
525
526 return u - invtau * y;
527}

◆ firstOrderResponse()

Signal firstOrderResponse ( double  _gain,
Signal  _u,
double  _y0,
double  _dt,
double  _tSlow,
double  _delay 
)
private

Calculates the time response of a first order system (such as crystal, PMT, etc)

Parameters
_gainOverall gain applied to the output
_uThe input to the system
_y0Initial value of the output
_dtIntegration step (in ns)
_tSlowTime constant of the system
_delayTime delay of the system (in ns)
Returns
a Signal corresponding tot he time response

Definition at line 468 of file CsIDigitizerModule.cc.

469{
470
471 B2DEBUG(80, "Generating 1st order response with arguments");
472 B2DEBUG(80, " _gain: " << _gain);
473 B2DEBUG(80, " length(_u): " << _u.size());
474 B2DEBUG(80, " _y0: " << _y0);
475 B2DEBUG(80, " _dt: " << _dt);
476 B2DEBUG(80, " _tau: " << _tau);
477 B2DEBUG(80, " _delay: " << _delay);
478
479
480 // First skip everything if the time constant in infinitely short.
481 if (_tau == 0)
482 return _u;
483
484 int n = _u.size();
485 Signal y;
486 double k[4] = {0};
487
488 static const double invSix = 1.0 / 6.0;
489 double invtau = 1.0 / _tau;
490 y.push_back(_y0);
491
492 // Apply delay to input
493 int n_delay = (int) round(_delay / _dt);
494 Signal::iterator it = _u.begin();
495 double _u_0 = _u.front();
496 _u.insert(it, n_delay, _u_0);
497 _u.resize(n);
498
499 // Apply that input to the good old Runge-Kutta 4 routine.
500 for (int i = 0, j = 0; i < (n - 1); i++) {
501 j = i + 1;
502 k[0] = f(i, _u[i], _u[j], y[i], invtau);
503 k[1] = f(i + 0.5, _u[i], _u[j], y[i] + 0.5 * _dt * k[0], invtau);
504 k[2] = f(i + 0.5, _u[i], _u[j], y[i] + 0.5 * _dt * k[1], invtau);
505 k[3] = f(j, _u[i], _u[j], y[i] + _dt * k[2], invtau);
506
507 y.push_back(y[i] + _dt * invSix * (k[0] + 2 * k[1] + 2 * k[2] + k[3]));
508 }
509
510
511 // Apply gain
512 if (_gain != 1) {
513 for (Signal::iterator it2 = y.begin() ; it2 != y.end(); ++it2)
514 *it2 *= _gain;
515 }
516
517 return y;
518}
double f(double fi, double u_i, double u_j, double y, double invtau)
This returns the RHS of first order differential equation.

◆ genSignalTemplate()

Signal genSignalTemplate ( int  _n,
int  _i0,
double  _t1,
double  _t2 = 0.0,
double  _rFastTot = 1.0 
)
private

Generates the template for a signal (obsolete)

param _n: number of time samples in the signal to create param _i0: index of the first input param _t1: Fast time constant (in ns) param _t2: Slow time constant (in ns) param _rFastTot: Ratio of the fast light to the total light

◆ genTimeSignal() [1/2]

Signal genTimeSignal ( double  _energy,
double  _timeAvg,
double  _timeRMS,
int  iChannel,
bool  _save = 0 
)
private

Generates a time signal for a mean energy deposit The energy deposit is modelled at a Gaussian whose parameters are given as inputs.

Parameters
_energyTO BE COMPLETED
_timeAvgTO BE COMPLETED
_timeRMSTO BE COMPLETED
iChannelTO BE COMPLETED
_saveTO BE COMPLETED

◆ genTimeSignal() [2/2]

double genTimeSignal ( Signal _output,
Signal  _energies,
Signal  _times,
int  _iChannel,
int  _dt,
int  _nsam,
bool  _save = 0 
)
private

Generates a time signal for a set of hits.

The hits correspond to all CsiSimHits of a single event, each are recorded at specific times so the energies and times vectors are given as inputs.

Parameters
_outputTO BE COMPLETED
_energiesTO BE COMPLETED
_timesTO BE COMPLETED
_iChannelTO BE COMPLETED
_dtTO BE COMPLETED
_nsamTO BE COMPLETED
_saveTO BE COMPLETED

Definition at line 358 of file CsIDigitizerModule.cc.

360{
361
362 double invdt = 1.0 / _dt;
363
364 double tf = 0;
365 double t0 = 1e9;
366 double sumEnergies = 0.0;
367
368 for (Signal::iterator it = _times.begin() ; it != _times.end(); ++it) {
369 if (*it < t0)
370 t0 = *it;
371
372 if (*it > tf)
373 tf = *it;
374 }
375
376 Signal edepos(_nsam, 0.0);
377
378 int i = 0;
379 int ioffset = floor(_nsam * 0.25);
380 B2DEBUG(150, "Filling edepos vector. Container length is " << _nsam);
381
382 for (Signal::iterator it = _times.begin() ; it != _times.end(); ++it, ++i) {
383 sumEnergies += _energies.at(i);
384 // time index +/- 1 time bin
385 int timeIndex = ((int)(*it - t0) * invdt + ioffset);
386 if ((timeIndex - 1) > (int) edepos.size()) {
387 B2WARNING(" genTimeSignal: TimeIndex greater than length of signal container. Skipping deposit of " << _energies.at(i) << "GeV");
388 } else {
389 edepos.at(timeIndex) += _energies.at(i);
390 }
391 }
392
393 B2DEBUG(80, "Generating time responses for channel " << _iChannel);
394 B2DEBUG(80, " Fast time constant " << m_tFast[_iChannel]);
395 B2DEBUG(80, " Slow time constant " << m_tSlow[_iChannel]);
396 /*
397 Signal Qcathode = firstOrderResponse(m_LY[_iChannel] * m_LCE[_iChannel] * m_PmtQE[_iChannel],
398 edepos, 0, _dt, m_tSlow[_iChannel], 0.0, m_tRatio[_iChannel], m_tFast[_iChannel]);
399 */
400
401 Signal Qcathode = firstOrderResponse((1 - m_tRatio[_iChannel]) * m_LY[_iChannel] * m_LCE[_iChannel] * m_PmtQE[_iChannel], edepos, 0,
402 _dt, m_tSlow[_iChannel], 0.0);
403
404
405 if (m_tRatio[_iChannel]) {
406 Signal QcathodeF = firstOrderResponse(m_tRatio[_iChannel] * m_LY[_iChannel] * m_LCE[_iChannel] * m_PmtQE[_iChannel], edepos, 0, _dt,
407 m_tFast[_iChannel], 0.0);
408
409 int j = 0;
410 for (Signal::iterator it = Qcathode.begin() ; it != Qcathode.end(); ++it, ++j)
411 *it += QcathodeF.at(j);
412 }
413
414 Signal Vanode = firstOrderResponse(1.602e-10 * m_Zl * invdt * m_PmtGain[_iChannel], Qcathode, 0, _dt, m_tRisePMT, m_tTransitPMT);
415
416 B2DEBUG(150, "Adding noise. Container length is " << Vanode.size());
417 addNoise(&Vanode, m_noiseLevels[_iChannel], 5e-3 * gRandom->Rndm() + 1e-2);
418
419 if (_save) {
420 Signal t(_nsam, 0);
421 t.at(0) = t0;
422
423 for (i = 1; i < _nsam; i++)
424 t.at(i) = t.at(i - 1) + _dt;
425
426 TGraph gPlot1(_nsam, &t[0], &edepos[0]);
427 gPlot1.SaveAs("EdeposOut.root");
428
429 TGraph gPlot2(_nsam, &t[0], &Qcathode[0]);
430 gPlot2.SaveAs("QOut.root");
431
432 TGraph gPlot3(_nsam, &t[0], &Vanode[0]);
433 gPlot3.SaveAs("VOut.root");
434 }
435
436 *_output = Vanode;
437
438 return sumEnergies;
439}
int addNoise(Signal *y, double _rms, double _offset)
Adds noise to the signal.
const double m_Zl
Line impedance of the analog chain (to get voltage from anode current)
Signal firstOrderResponse(double _gain, Signal _u, double _y0, double _dt, double _tSlow, double _delay)
Calculates the time response of a first order system (such as crystal, PMT, etc)
const double m_tTransitPMT
48Mean transit time of the PMT signal (in ns)
const double m_tRisePMT
2.6 Rise time of the PMT signal (in ns)

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 323 of file Module.h.

324 {
325 return m_conditions;
326 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 313 of file Module.h.

314 {
315 if (m_conditions.empty()) {
316 return nullptr;
317 } else {
318 return &m_conditions.front();
319 }
320 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 201 of file Module.h.

201{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:510

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 133 of file Module.h.

134 {
135 return std::vector<std::string>();
136 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 224 of file Module.h.

224{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 505 of file Module.h.

505{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 186 of file Module.h.

186{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:507

◆ getnSamples()

int getnSamples ( ) const
inlineprivate

Gets the number of points in the waveforms arrays.

Definition at line 181 of file CsIDigitizerModule.h.

181{ return m_nSamples; }

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 196 of file Module.h.

196{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:515

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 362 of file Module.h.

362{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 380 of file Module.h.

380{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:508

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 310 of file Module.h.

310{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 377 of file Module.h.

377{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Register input and output data.

Reimplemented from Module.

Definition at line 69 of file CsIDigitizerModule.cc.

70{
71
72 B2DEBUG(100, "Initializing ");
73
74 m_aSimHit.isRequired();
75 m_aDigiHit.registerInDataStore();
76
77 //Calculation of the derived parameters
78 m_dt = 1e9 / m_SampleRate;
79 setnSamples(8192);
80
81 //Get crystal and PMT constants from xml files
83 for (uint i = 0; i != m_LY.size(); ++i) {
84 csip->Print(i, 80);
85
86 m_LY.at(i) = 1;//1e3 * csip->GetMaterialProperty(i, "SCINTILLATIONYIELD");
87 m_tFast.at(i) = 1;//csip->GetMaterialProperty(i, "FASTTIMECONSTANT");
88 m_tSlow.at(i) = 1;//csip->GetMaterialProperty(i, "SLOWTIMECONSTANT");
89 m_tRatio.at(i) = 1;//csip->GetMaterialProperty(i, "YIELDRATIO");
90 }
91
92 //Operate the pure CsI at higher gain to compensate for lower light yield
93 for (int i = 8; i < 16; i++) {
94 m_PmtGain[i] = 35e5;
95 }
96
97}
void setnSamples(int nsamples)
Sets the number of points in the waveforms arrays.
void Print(const int cid, int debuglevel=80)
Print crystal information.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 229 of file Module.h.

229{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 213 of file Module.h.

213{ m_name = name; };

◆ setnSamples()

void setnSamples ( int  nsamples)
inlineprivate

Sets the number of points in the waveforms arrays.

Definition at line 185 of file CsIDigitizerModule.h.

185{ m_nSamples = nsamples; }

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 500 of file Module.h.

500{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

Final clean up.

CPU clock stops

Reimplemented from Module.

Definition at line 207 of file CsIDigitizerModule.cc.

208{
209}

Member Data Documentation

◆ m_aDigiHit

StoreArray<CsiDigiHit> m_aDigiHit
private

Output: a digitized hit.

Definition at line 216 of file CsIDigitizerModule.h.

◆ m_aSimHit

StoreArray<CsiSimHit> m_aSimHit
private

Each simulated particle in the crystal.

Definition at line 215 of file CsIDigitizerModule.h.

◆ m_Baseline

uint16_t m_Baseline
private

Baseline (pedestal) frozen during charge integration.

Definition at line 203 of file CsIDigitizerModule.h.

◆ m_calibConstants

std::vector<double> m_calibConstants
private

Calibration constants for each channel (in V/keV)

Definition at line 220 of file CsIDigitizerModule.h.

◆ m_CellId

uint8_t m_CellId
private

Cell ID.

Definition at line 202 of file CsIDigitizerModule.h.

◆ m_Charge

uint32_t m_Charge
private

Integrated Charge.

Definition at line 204 of file CsIDigitizerModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 520 of file Module.h.

◆ m_CsITlSignalTemplate

Signal m_CsITlSignalTemplate
private

Template Signal of a CsITl trace.

Definition at line 218 of file CsIDigitizerModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 510 of file Module.h.

◆ m_DPPCIBits

std::vector<uint8_t> m_DPPCIBits
private

status of the DPP-CI

Definition at line 209 of file CsIDigitizerModule.h.

◆ m_dt

double m_dt
private

Time interval (in ns) (calculated from m_SampleRate.

Definition at line 197 of file CsIDigitizerModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 517 of file Module.h.

◆ m_hitNum

int m_hitNum
private

index of csiHit

Definition at line 191 of file CsIDigitizerModule.h.

◆ m_LCE

std::vector<double> m_LCE
private

Light collection efficiency for each channel.

Definition at line 226 of file CsIDigitizerModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 513 of file Module.h.

◆ m_LY

std::vector<double> m_LY
private

Light yield for each channel (gamma per GeV)

Definition at line 222 of file CsIDigitizerModule.h.

◆ m_MaxADC

uint16_t m_MaxADC
private

Max ACD of the hit (to check saturations)

Definition at line 205 of file CsIDigitizerModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 515 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 507 of file Module.h.

◆ m_noiseLevels

std::vector<double> m_noiseLevels
private

Noise level for each channel (in V)

Definition at line 221 of file CsIDigitizerModule.h.

◆ m_nSamples

int m_nSamples
private

Number of points requested in the waveform arrays.

Definition at line 207 of file CsIDigitizerModule.h.

◆ m_nWaveforms

int m_nWaveforms
private

Number of waveforms to save.

0: none, -1: all

Definition at line 198 of file CsIDigitizerModule.h.

◆ m_nWFcounter

int m_nWFcounter
private

Counter for the number of waveforms to save.

Definition at line 199 of file CsIDigitizerModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 509 of file Module.h.

◆ m_PmtGain

std::vector<double> m_PmtGain
private

PMT gain for each channel.

Definition at line 228 of file CsIDigitizerModule.h.

◆ m_PmtQE

std::vector<double> m_PmtQE
private

PMT quantum efficiency for each channel.

Definition at line 227 of file CsIDigitizerModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 511 of file Module.h.

◆ m_Resolution

double m_Resolution
private

Parameter: Resolution (in mV) of the ACD.

Definition at line 195 of file CsIDigitizerModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 518 of file Module.h.

◆ m_SampleRate

double m_SampleRate
private

Parameter: Sample rate (in samples/sec) of the ADC.

Definition at line 196 of file CsIDigitizerModule.h.

◆ m_SimHitEdeps

Signal m_SimHitEdeps[16]
private

Array of signals (each corresponding to one channel)

Definition at line 231 of file CsIDigitizerModule.h.

◆ m_SimHitTimes

Signal m_SimHitTimes[16]
private

Array of signals (each corresponding to one channel)

Definition at line 230 of file CsIDigitizerModule.h.

◆ m_tFast

std::vector<double> m_tFast
private

Fast time constant for each channel (ns)

Definition at line 224 of file CsIDigitizerModule.h.

◆ m_Time

uint32_t m_Time
private

Trigger Time.

Definition at line 206 of file CsIDigitizerModule.h.

◆ m_tRatio

std::vector<double> m_tRatio
private

Ratio fast light / slow light for each channel.

Definition at line 223 of file CsIDigitizerModule.h.

◆ m_tRisePMT

const double m_tRisePMT = 2
private

2.6 Rise time of the PMT signal (in ns)

Definition at line 211 of file CsIDigitizerModule.h.

◆ m_TrueEdep

double m_TrueEdep
private

Sum of the MC (true) deposited energies in the event-channel.

Definition at line 194 of file CsIDigitizerModule.h.

◆ m_tSlow

std::vector<double> m_tSlow
private

Slow time constant for each channel (ns)

Definition at line 225 of file CsIDigitizerModule.h.

◆ m_tTransitPMT

const double m_tTransitPMT = 48
private

48Mean transit time of the PMT signal (in ns)

Definition at line 212 of file CsIDigitizerModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 508 of file Module.h.

◆ m_Waveform

std::vector<uint16_t> m_Waveform
private

Saved waveform.

Definition at line 208 of file CsIDigitizerModule.h.

◆ m_Zl

const double m_Zl = 50
private

Line impedance of the analog chain (to get voltage from anode current)

Definition at line 213 of file CsIDigitizerModule.h.


The documentation for this class was generated from the following files: