Belle II Software development
PerfectLCA Class Reference
Inheritance diagram for PerfectLCA:

Public Member Functions

 __init__ (self, ignore_index, output_transform, device='cpu')
 
 reset (self)
 
 update (self, output)
 
 compute (self)
 

Public Attributes

 ignore_index = ignore_index if isinstance(ignore_index, list) else [ignore_index]
 Ignore index.
 
 device = device
 CPU or GPU.
 

Protected Attributes

int _per_corrects = None
 Good samples.
 
int _num_examples = None
 Total samples.
 

Detailed Description

Computes the rate of perfectly predicted LCAS matrices over a batch. ``output_transform`` should return the following items: ``(edge_pred, edge_y, edge_index, u_y, batch, num_graphs)``. * ``edge_pred`` must contain edge prediction logits and have shape (num_edges_in_batch, edge_classes); * ``edge_y`` must contain edge ground-truth class indices and have shape (num_edges_in_batch, 1); * ``edge index`` maps edges to its nodes; * ``u_y`` is the signal/background class (always 1 in the current setting); * ``batch`` maps nodes to their graph; * ``num_graphs`` is the number of graph in a batch (could be derived from ``batch`` also). .. seealso:: `Ignite metrics <https://pytorch.org/ignite/metrics.html>`_ :param ignore_index: Class or list of classes to ignore during the computation (e.g. padding). :type ignore_index: list[int] :param output_transform: Function to transform engine's output to desired output. :type output_transform: `function <https://docs.python.org/3/glossary.html#term-function>`_ :param device: ``cpu`` or ``gpu``. :type device: str

Definition at line 17 of file metrics.py.

Constructor & Destructor Documentation

◆ __init__()

__init__ ( self,
ignore_index,
output_transform,
device = 'cpu' )
Initialization.

Definition at line 41 of file metrics.py.

41 def __init__(self, ignore_index, output_transform, device='cpu'):
42 """
43 Initialization.
44 """
45
46 self.ignore_index = ignore_index if isinstance(ignore_index, list) else [ignore_index]
47
48 self.device = device
49
50 self._per_corrects = None
51
52 self._num_examples = None
53
54 super(PerfectLCA, self).__init__(output_transform=output_transform, device=device)
55

Member Function Documentation

◆ compute()

compute ( self)
Final result.

Definition at line 101 of file metrics.py.

101 def compute(self):
102 """
103 Final result.
104 """
105 if self._num_examples == 0:
106 raise NotComputableError(
107 "CustomAccuracy must have at least one example before it can be computed."
108 )
109 return self._per_corrects / self._num_examples
110
111

◆ reset()

reset ( self)
Resets counters.

Definition at line 57 of file metrics.py.

57 def reset(self):
58 """
59 Resets counters.
60 """
61 self._per_corrects = 0
62 self._num_examples = 0
63
64 super(PerfectLCA, self).reset()
65

◆ update()

update ( self,
output )
Updates counts.

Definition at line 67 of file metrics.py.

67 def update(self, output):
68 """
69 Updates counts.
70 """
71 edge_pred, edge_y, edge_index, u_y, batch, num_graphs = output
72
73 num_graphs = num_graphs.item()
74
75 probs = torch.softmax(edge_pred, dim=1)
76 winners = probs.argmax(dim=1)
77
78 assert winners.shape == edge_y.shape, 'Edge predictions shape does not match target shape'
79
80 # Create a mask for the zeroth elements (padded entries)
81 mask = torch.ones(edge_y.size(), dtype=torch.long, device=self.device)
82 for ig_class in self.ignore_index:
83 mask &= (edge_y != ig_class)
84
85 # Zero the respective entries in the predictions
86 y_pred_mask = winners * mask
87 y_mask = edge_y * mask
88
89 # (N) compare the masked predictions with the target. The padded will be equal due to masking
90 truth = y_pred_mask.eq(y_mask) + 0 # +0 so it's not bool but 0 and 1
91 truth = scatter(truth, edge_index[0], reduce="min")
92 truth = scatter(truth, batch, reduce="min")
93
94 # Count the number of zero wrong predictions across the batch
95 batch_perfect = truth.sum().item()
96
97 self._per_corrects += batch_perfect
98 self._num_examples += num_graphs
99

Member Data Documentation

◆ _num_examples

int _num_examples = None
protected

Total samples.

Definition at line 52 of file metrics.py.

◆ _per_corrects

int _per_corrects = None
protected

Good samples.

Definition at line 50 of file metrics.py.

◆ device

device = device

CPU or GPU.

Definition at line 48 of file metrics.py.

◆ ignore_index

ignore_index = ignore_index if isinstance(ignore_index, list) else [ignore_index]

Ignore index.

Definition at line 46 of file metrics.py.


The documentation for this class was generated from the following file: