Belle II Software development
eclTimeShiftsAlgorithm.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9/* Own header. */
10#include <ecl/calibration/eclTimeShiftsAlgorithm.h>
11
12/* ECL headers. */
13#include <ecl/dbobjects/ECLCrystalCalib.h>
14#include <ecl/dbobjects/ECLReferenceCrystalPerCrateCalib.h>
15#include <ecl/digitization/EclConfiguration.h>
16#include <ecl/mapper/ECLChannelMapper.h>
17
18/* Basf2 headers. */
19#include <framework/dbobjects/HardwareClockSettings.h>
20
21/* ROOT headers. */
22#include <TCanvas.h>
23#include <TDirectory.h>
24#include <TFile.h>
25#include <TGraphErrors.h>
26#include <TH1F.h>
27#include <TLatex.h>
28#include <TString.h>
29
30/* C++ headers. */
31#include <iomanip>
32#include <sstream>
33
34using namespace std;
35using namespace Belle2;
36using namespace ECL;
37using namespace Calibration;
38
40//eclTimeShiftsAlgorithm::eclTimeShiftsAlgorithm(): CalibrationAlgorithm("DummyCollector"),
42 CalibrationAlgorithm("eclTimeShiftsPlottingCollector"),
43 debugFilenameBase("ECL_time_offsets"),
44 timeShiftForPlotStyle{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
45 crysCrateShift_min(-20),
46 crysCrateShift_max(20),
47 algorithmReadPayloads(false),
48 m_ECLCrystalTimeOffset("ECLCrystalTimeOffset"),
49 m_ECLCrateTimeOffset("ECLCrateTimeOffset"),
50 m_refCrysIDzeroingCrate("ECLReferenceCrystalPerCrateCalib")//,
51{
53 "Plots the ecl crystal and crate time calibations."
54 );
55}
56
58{
60 gROOT->SetBatch();
61
62 B2INFO("eclTimeShiftsAlgorithm parameters:");
63 B2INFO("debugFilenameBase = " << debugFilenameBase);
64 B2INFO("algorithmReadPayloads = " << algorithmReadPayloads);
65 B2INFO("timeShiftForPlotStyle = {");
66 for (int crateTest = 0; crateTest < 51; crateTest++) {
67 B2INFO(timeShiftForPlotStyle[crateTest] << ",");
68 }
69 B2INFO(timeShiftForPlotStyle[51] << "}");
70
71
72 //------------------------------------------------------------------------
73 /* Conversion coefficient from ADC ticks to nanoseconds
74 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency.
75 Same for all crystals. */
76
77 //..First need to set event, run, exp number
78 const auto expRunList = getRunList();
79 const int iEvt = 1;
80 const int iRun = expRunList[0].second;
81 const int iExp = expRunList[0].first;
82 DBObjPtr<Belle2::HardwareClockSettings> clock_info("HardwareClockSettings");
83 updateDBObjPtrs(iEvt, iRun, iExp);
84 const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
85
86
87 //------------------------------------------------------------------------
88 /* Set up variables for storing timing information and cutting on
89 timing quality */
90
91 vector< vector<double> > allCrates_crate_times ;
92 vector< vector<double> > allCrates_run_nums ; // not an integer for plotting purposes
93 vector< vector<double> > allCrates_time_unc ;
94 vector< vector<double> > allCrates_crystalCrate_times ;
95 vector< vector<double> > allCrates_crystalCrate_times_unc ;
96
97 vector<int> allRunNums;
98
99 vector<double> mean_crystalCrate_time_ns(m_numCrates, 0);
100
101 vector< double > blank_vector = {} ;
102 vector< int > blank_vector_int = {} ;
103 for (int temp_crate_id = 0; temp_crate_id < m_numCrates; temp_crate_id++) {
104 allCrates_crate_times.push_back(blank_vector) ;
105 allCrates_run_nums.push_back(blank_vector) ;
106 allCrates_time_unc.push_back(blank_vector) ;
107 allCrates_crystalCrate_times.push_back(blank_vector) ;
108 allCrates_crystalCrate_times_unc.push_back(blank_vector) ;
109 }
110 // This results in : allCrates_crate_time[index for crate number][index for run number]
111
112
113
114 //------------------------------------------------------------------------
115 /* Extract the crystal and crate calibration constant information from the
116 tree as extracted by the collector. */
117
118 // Pulling in data from collector output. It now returns shared_ptr<T> so the underlying pointer
119 // will delete itself automatically at the end of this scope unless you do something
120 auto tree_perCrys = getObjectPtr<TTree>("tree_perCrystal");
121 if (!tree_perCrys) {
122 B2ERROR("Tree of calibration constants does not exist.");
123 return c_Failure;
124 }
125 B2INFO("Number of Entries in tree_perCrystal was " << tree_perCrys->GetEntries());
126 B2INFO("Number of Entries in tree_perCrystal / 8736 = " << float(tree_perCrys->GetEntries()) / ECLElementNumbers::c_NCrystals);
127
128
129 // Define the variables to be read in from the tree
130 tree_perCrys->SetBranchAddress("run", &m_run_perCrystal);
131 tree_perCrys->SetBranchAddress("exp", &m_exp_perCrystal);
132 tree_perCrys->SetBranchAddress("crystalID", &m_crystalID);
133 tree_perCrys->SetBranchAddress("crateID", &m_crateID);
134 tree_perCrys->SetBranchAddress("crateTimeConst", &m_crateTimeConst);
135 tree_perCrys->SetBranchAddress("crateTimeUnc", &m_crateTimeUnc);
136 tree_perCrys->SetBranchAddress("crystalTimeConst", &m_crystalTimeConst);
137 tree_perCrys->SetBranchAddress("crystalTimeUnc", &m_crystalTimeUnc);
138 tree_perCrys->SetBranchAddress("refCrystalID", &m_refCrystalID);
139
140
141 int referenceRunNum = -1;
142 int referenceExpNum = -1;
143 //int numAnalysedRuns = 0 ;
144 int previousRunNumTree = -1 ;
145 vector<double> Crate_time_ns_tree(m_numCrates) ;
146 vector<double> Crate_time_tick_tree(m_numCrates) ;
147 vector<double> Crate_time_unc_ns_tree(m_numCrates) ;
148 vector<double> crystalCrate_time_ns_tree(m_numCrates);
149 vector<double> crystalCrate_time_unc_ns_tree(m_numCrates);
150
151
152 Int_t numEntriesCrysTree = (Int_t)tree_perCrys->GetEntries();
153
154 // Loop through the entire tree
155 for (Int_t tree_crys_i = 0; tree_crys_i < numEntriesCrysTree; tree_crys_i++) {
156 for (Int_t tree_crys_j = 0; tree_crys_j < m_numCrystals; tree_crys_j++) {
157 tree_perCrys->GetEntry(tree_crys_i);
158 //B2INFO("tree_crys_i, tree_crys_j = " << tree_crys_i << ", " << tree_crys_j);
159 if (tree_crys_j != m_numCrystals - 1) {
160 tree_crys_i++;
161 }
162
163 // Make sure that all the information read in for 8736 crystals are all from one (exp,run).
164 if (tree_crys_j == 0) {
165 referenceExpNum = m_exp_perCrystal;
166 referenceRunNum = m_run_perCrystal;
167 B2INFO("Looking at exp,run " << m_exp_perCrystal << ", " << m_run_perCrystal);
168 }
169 if ((m_exp_perCrystal != referenceExpNum) or
170 (m_run_perCrystal != referenceRunNum) or
171 (m_run_perCrystal == previousRunNumTree)) {
172
173 B2ERROR("m_exp_perCrystal, referenceExpNum" << m_exp_perCrystal << ", " << referenceExpNum);
174 B2ERROR("m_run_perCrystal, referenceRunNum" << m_run_perCrystal << ", " << referenceRunNum);
175 B2ERROR("m_run_perCrystal, previousRunNumTree" << m_run_perCrystal << ", " << previousRunNumTree);
176 B2ERROR("Exp/run number problem");
177 return c_Failure;
178 }
179
180
181 int crateID_temp = m_crateID;
182 Crate_time_ns_tree[crateID_temp - 1] = m_crateTimeConst * TICKS_TO_NS ;
183 Crate_time_tick_tree[crateID_temp - 1] = m_crateTimeConst ;
184 Crate_time_unc_ns_tree[crateID_temp - 1] = m_crateTimeUnc * TICKS_TO_NS ;
185
187 B2INFO("m_exp_perCrystal, m_run_perCrystal, cell ID (0..8735), m_crateID, m_crateTimeConst = " << m_exp_perCrystal << ", " <<
188 m_run_perCrystal << ", " << tree_crys_j << ", " << m_crateID << ", " << m_crateTimeConst << " ticks") ;
189 crystalCrate_time_ns_tree[crateID_temp - 1] = (m_crystalTimeConst + m_crateTimeConst) * TICKS_TO_NS;
190
191 crystalCrate_time_unc_ns_tree[crateID_temp - 1] = TICKS_TO_NS * sqrt(
194 } else if (tree_crys_j == 0 || tree_crys_j == 8735) {
195 B2INFO("m_exp_perCrystal, m_run_perCrystal, cell ID (0..8735), m_crateID, m_crateTimeConst = " << m_exp_perCrystal << ", " <<
196 m_run_perCrystal << ", " << tree_crys_j << ", " << m_crateID << ", " << m_crateTimeConst << " ns") ;
197 } else {
198 B2DEBUG(22, "m_exp_perCrystal, m_run_perCrystal, cell ID (0..8735), m_crateID, m_crateTimeConst = " << m_exp_perCrystal << ", " <<
199 m_run_perCrystal << ", " << tree_crys_j << ", " << m_crateID << ", " << m_crateTimeConst << " ns") ;
200 }
201
202 }
203
204 //------------------------------------------------------------------------
207 bool savedThisRunNum = false;
208 for (int iCrate = 0; iCrate < m_numCrates; iCrate++) {
209 double tcrate = Crate_time_ns_tree[iCrate] ;
210 double tcrate_unc = Crate_time_unc_ns_tree[iCrate];
211 double tcrystalCrate = crystalCrate_time_ns_tree[iCrate];
212 double tcrystalCrate_unc = crystalCrate_time_unc_ns_tree[iCrate];
213
214 if ((tcrate < m_tcrate_max_cut) &&
215 (tcrate > m_tcrate_min_cut) &&
216 (fabs(tcrate_unc) > m_tcrate_unc_min_cut) &&
217 (fabs(tcrate_unc) < m_tcrate_unc_max_cut)) {
218 allCrates_crate_times[iCrate].push_back(tcrate) ;
219 allCrates_run_nums[iCrate].push_back(m_run_perCrystal) ;
220 allCrates_time_unc[iCrate].push_back(tcrate_unc) ;
221 allCrates_crystalCrate_times[iCrate].push_back(tcrystalCrate) ;
222 allCrates_crystalCrate_times_unc[iCrate].push_back(tcrystalCrate_unc) ;
223
224 mean_crystalCrate_time_ns[iCrate] += tcrystalCrate ;
225
226 if (!savedThisRunNum) {
227 allRunNums.push_back(m_run_perCrystal);
228 savedThisRunNum = true;
229 }
230 }
231 }
232
233 //------------------------------------------------------------------------
235 for (int ic = 0; ic < m_numCrates; ic++) {
236 B2INFO("Crate " << ic + 1 << ", t_crate = " << Crate_time_tick_tree[ic] << " ticks = "
237 << Crate_time_ns_tree[ic] << " +- " << Crate_time_unc_ns_tree[ic]
238 << " ns; t crys+crate (no shifts) = " << crystalCrate_time_ns_tree[ic] << " +- "
239 << crystalCrate_time_unc_ns_tree[ic] << " ns") ;
240 }
241
242 previousRunNumTree = m_run_perCrystal;
243
244 }
245
246
247 B2INFO("Finished reading tree calibration constants. Now extracting here by stepping through runs.");
248
249
250
251
252
253 //------------------------------------------------------------------------
257 bool minRunNumBool = false;
258 bool maxRunNumBool = false;
259 int minRunNum = -1;
260 int maxRunNum = -1;
261 int minExpNum = -1;
262 int maxExpNum = -1;
263 for (auto expRun : getRunList()) {
264 int expNumber = expRun.first;
265 int runNumber = expRun.second;
266 if (!minRunNumBool) {
267 minExpNum = expNumber;
268 minRunNum = runNumber;
269 minRunNumBool = true;
270 }
271 if (!maxRunNumBool) {
272 maxExpNum = expNumber;
273 maxRunNum = runNumber;
274 maxRunNumBool = true;
275 }
276 if (((minRunNum > runNumber) && (minExpNum >= expNumber)) ||
277 (minExpNum > expNumber)) {
278 minExpNum = expNumber;
279 minRunNum = runNumber;
280 }
281 if (((maxRunNum < runNumber) && (maxExpNum <= expNumber)) ||
282 (maxExpNum < expNumber)) {
283 maxExpNum = expNumber;
284 maxRunNum = runNumber;
285 }
286 }
287
288 B2INFO("minExpNum = " << minExpNum) ;
289 B2INFO("minRunNum = " << minRunNum) ;
290 B2INFO("maxExpNum = " << maxExpNum) ;
291 B2INFO("maxRunNum = " << maxRunNum) ;
292
293
294 if (minExpNum != maxExpNum) {
295 B2ERROR("The runs must all come from the same experiment");
296 return c_Failure;
297 }
298
299 int experiment = minExpNum;
300
301
302 //------------------------------------------------------------------------
303 //------------------------------------------------------------------------
304 //------------------------------------------------------------------------
305 //------------------------------------------------------------------------
306 /* Extract out the time offset information from the database directly.
307 This method loops over all run numbers so it can more easily pick up
308 old payloads. It is not the preferred method to use if the payloads
309 have iov gaps.*/
310
312 //------------------------------------------------------------------------
313 // Get the input run list (should be only 1) for us to use to update the DBObjectPtrs
314 auto runs = getRunList();
315 /* Take the first run. For the crystal cosmic calibrations, because of the crate
316 calibrations, there is not a known correct run to use within the range. */
317 ExpRun chosenRun = runs.front();
318 B2INFO("merging using the ExpRun (" << chosenRun.second << "," << chosenRun.first << ")");
319 // After here your DBObjPtrs are correct
320 updateDBObjPtrs(1, chosenRun.second, chosenRun.first);
321
322 //------------------------------------------------------------------------
323 // Test the DBObjects we want to exist and fail if not all of them do.
324 bool allObjectsFound = true;
325
327 // Check that the payloads we want to merge are sufficiently loaded
329 allObjectsFound = false;
330 B2ERROR("No valid DBObject found for 'ECLCrystalTimeOffset'");
331 }
332
333 // Check that the crate payload is loaded (used for transforming cosmic payload)
335 allObjectsFound = false;
336 B2ERROR("No valid DBObject found for 'ECLCrateTimeOffset'");
337 }
338
340 allObjectsFound = false;
341 B2ERROR("No valid DBObject found for 'refCrysIDzeroingCrate'");
342 }
343
344
345 if (allObjectsFound) {
346 B2INFO("Valid objects found for 'ECLCrystalTimeOffset'");
347 B2INFO("Valid object found for 'ECLCrateTimeOffset'");
348 B2INFO("Valid object found for 'refCrysIDzeroingCrate'");
349 } else {
350 B2INFO("eclTimeShiftsAlgorithm: Exiting with failure. Some missing valid objects.");
351 return c_Failure;
352 }
353
354
355 //------------------------------------------------------------------------
357 vector<float> crystalCalib = m_ECLCrystalTimeOffset->getCalibVector();
358 vector<float> crystalCalibUnc = m_ECLCrystalTimeOffset->getCalibUncVector();
359 B2INFO("Loaded 'ECLCrystalTimeOffset' calibrations");
360
361 vector<float> crateCalib = m_ECLCrateTimeOffset->getCalibVector();
362 vector<float> crateCalibUnc = m_ECLCrateTimeOffset->getCalibUncVector();
363
364 B2INFO("Loaded 'ECLCrateTimeOffset' calibration with default exp/run");
365
366 B2INFO("eclTimeShiftsAlgorithm:: loaded ECLCrateTimeOffset from the database"
367 << LogVar("IoV", m_ECLCrateTimeOffset.getIoV())
368 << LogVar("Checksum", m_ECLCrateTimeOffset.getChecksum()));
369
370 for (int cellID = 1; cellID <= m_numCrystals; cellID += 511) {
371 B2INFO("crystalCalib = " << crystalCalib[cellID - 1]);
372 B2INFO("crateCalib = " << crateCalib[cellID - 1]);
373 }
374
375 vector<short> refCrystals = m_refCrysIDzeroingCrate->getReferenceCrystals();
376 for (int icrate = 0; icrate < m_numCrates; icrate++) {
377 B2INFO("reference crystal for crate " << icrate + 1 << " = " << refCrystals[icrate]);
378 }
379
380
381
382 //------------------------------------------------------------------------
384 for (int run = minRunNum; run <= maxRunNum; run++) {
385 B2INFO("---------") ;
386 B2INFO("Looking at run " << run) ;
387
388 vector<int>::iterator it = find(allRunNums.begin(), allRunNums.end(), run);
389 if (it != allRunNums.end()) {
390 int pos = it - allRunNums.begin() ;
391 B2INFO("allRunNums[" << pos << "] = " << allRunNums[pos]);
392 B2INFO("Run " << run << " already processed so skipping it.");
393 continue;
394 } else {
395 B2INFO("New run. Starting to extract information");
396 }
397
398 // Forloading database for a specific run
399 int eventNumberForCrates = 1;
400
402 // simulate the initialize() phase where we can register objects in the DataStore
404 evtPtr.registerInDataStore();
406 // now construct the event metadata
407 evtPtr.construct(eventNumberForCrates, run, experiment);
408 // and update the database contents
409 DBStore& dbstore = DBStore::Instance();
410 dbstore.update();
411 // this is only needed it the payload might be intra-run dependent,
412 // that is if it might change during one run as well
413 dbstore.updateEvent();
414 updateDBObjPtrs(eventNumberForCrates, run, experiment);
415
416
417 //------------------------------------------------------------------------
419 shared_ptr< ECL::ECLChannelMapper > crystalMapper(new ECL::ECLChannelMapper()) ;
420 crystalMapper->initFromDB();
421
423 B2INFO("eclTimeShiftsAlgorithm:: loaded ECLCrystalTimeOffset from the database"
424 << LogVar("IoV", m_ECLCrystalTimeOffset.getIoV())
425 << LogVar("Checksum", m_ECLCrystalTimeOffset.getChecksum()));
426 B2INFO("eclTimeShiftsAlgorithm:: loaded ECLCrateTimeOffset from the database"
427 << LogVar("IoV", m_ECLCrateTimeOffset.getIoV())
428 << LogVar("Checksum", m_ECLCrateTimeOffset.getChecksum()));
429
430
431 //------------------------------------------------------------------------
434 vector<float> crystalTimeOffsetsCalib;
435 vector<float> crystalTimeOffsetsCalibUnc;
436 crystalTimeOffsetsCalib = m_ECLCrystalTimeOffset->getCalibVector();
437 crystalTimeOffsetsCalibUnc = m_ECLCrystalTimeOffset->getCalibUncVector();
438
439 vector<float> crateTimeOffsetsCalib;
440 vector<float> crateTimeOffsetsCalibUnc;
441 crateTimeOffsetsCalib = m_ECLCrateTimeOffset->getCalibVector();
442 crateTimeOffsetsCalibUnc = m_ECLCrateTimeOffset->getCalibUncVector();
443
444 //------------------------------------------------------------------------
448 vector<double> Crate_time_ns(m_numCrates) ;
449 vector<double> Crate_time_tick(m_numCrates) ;
450 vector<double> Crate_time_unc_ns(m_numCrates) ;
451 vector<double> crystalCrate_time_ns(m_numCrates);
452 vector<double> crystalCrate_time_unc_ns(m_numCrates);
453
454 for (int crysID = 1; crysID <= m_numCrystals; crysID++) {
455 int crateID_temp = crystalMapper->getCrateID(crysID) ;
456 Crate_time_ns[crateID_temp - 1] = crateTimeOffsetsCalib[crysID - 1] * TICKS_TO_NS ;
457 Crate_time_tick[crateID_temp - 1] = crateTimeOffsetsCalib[crysID - 1] ;
458 Crate_time_unc_ns[crateID_temp - 1] = crateTimeOffsetsCalibUnc[crysID - 1] * TICKS_TO_NS ;
459
460 if (crysID == refCrystals[crateID_temp - 1]) {
461 crystalCrate_time_ns[crateID_temp - 1] = (crystalTimeOffsetsCalib[crysID - 1] +
462 crateTimeOffsetsCalib[crysID - 1]) * TICKS_TO_NS;
463
464 crystalCrate_time_unc_ns[crateID_temp - 1] = TICKS_TO_NS * sqrt(
465 (crateTimeOffsetsCalibUnc[crysID - 1] * crateTimeOffsetsCalibUnc[crysID - 1]) +
466 (crystalTimeOffsetsCalibUnc[crysID - 1] * crystalTimeOffsetsCalibUnc[crysID - 1])) ;
467 }
468 }
469
470
471 for (int iCrate = 0; iCrate < m_numCrates; iCrate++) {
472 double tcrate = Crate_time_ns[iCrate] ;
473 double tcrate_unc = Crate_time_unc_ns[iCrate];
474 double tcrystalCrate = crystalCrate_time_ns[iCrate];
475 double tcrystalCrate_unc = crystalCrate_time_unc_ns[iCrate];
476
477 if ((tcrate < m_tcrate_max_cut) &&
478 (tcrate > m_tcrate_min_cut) &&
479 (fabs(tcrate_unc) > m_tcrate_unc_min_cut) &&
480 (fabs(tcrate_unc) < m_tcrate_unc_max_cut)) {
481 allCrates_crate_times[iCrate].push_back(tcrate) ;
482 allCrates_run_nums[iCrate].push_back(run) ;
483 allCrates_time_unc[iCrate].push_back(tcrate_unc) ;
484 allCrates_crystalCrate_times[iCrate].push_back(tcrystalCrate) ;
485 allCrates_crystalCrate_times_unc[iCrate].push_back(tcrystalCrate_unc) ;
486
487 mean_crystalCrate_time_ns[iCrate] += tcrystalCrate ;
488 }
489 }
490
491
492 //------------------------------------------------------------------------
494 for (int ic = 0; ic < m_numCrates; ic++) {
495 B2INFO("Crate " << ic + 1 << ", t_crate = " << Crate_time_tick[ic] << " ticks = "
496 << Crate_time_ns[ic] << " +- " << Crate_time_unc_ns[ic]
497 << " ns; t crys+crate (no shift) = " << crystalCrate_time_ns[ic] << " +- "
498 << crystalCrate_time_unc_ns[ic] << " ns") ;
499 }
500
501 /* Shift the run number to the end of the iov so that we can skip runs
502 that have the payload with the same revision number */
503 int IOV_exp_high = m_ECLCrateTimeOffset.getIoV().getExperimentHigh() ;
504 int IOV_run_high = m_ECLCrateTimeOffset.getIoV().getRunHigh() ;
505 B2INFO(LogVar("IOV_exp_high", IOV_exp_high));
506 B2INFO(LogVar("IOV_run_high", IOV_run_high));
507 if (IOV_run_high == -1) {
508 B2INFO("IOV_run_high is -1 so stop looping over all runs");
509 break;
510 } else {
511 B2INFO("Set run number to higher iov run number");
512 run = IOV_run_high;
513 }
514 B2INFO("now set run = " << run);
515 }
516 }
517
518
519
520
521 //------------------------------------------------------------------------
522 //------------------------------------------------------------------------
523 //------------------------------------------------------------------------
524 //------------------------------------------------------------------------
527 B2INFO("Shift all run crys+crate+off times. Show the results for a subset of crates/runs:");
528 for (int iCrate = 0; iCrate < m_numCrates; iCrate++) {
529 double mean_time = mean_crystalCrate_time_ns[iCrate] / allCrates_crate_times[iCrate].size() ;
530 B2INFO("Mean crys+crate times for all runs used as offset (crate " << iCrate + 1 << ") = " << mean_time);
531
532 for (long unsigned int jRun = 0; jRun < allCrates_crate_times[iCrate].size(); jRun++) {
533 allCrates_crystalCrate_times[iCrate][jRun] += -mean_time + timeShiftForPlotStyle[iCrate] ;
534 if (jRun < 50 || iCrate == 1 || iCrate == 40 || iCrate == 51) {
535 B2INFO("allCrates_crystalCrate_times(crate " << iCrate + 1 << ", run counter " << jRun + 1 << ", runNum " <<
536 allCrates_run_nums[iCrate][jRun] << " | after shifting mean) = " <<
537 allCrates_crystalCrate_times[iCrate][jRun]);
538 }
539 }
540 }
541
542
543
544 //------------------------------------------------------------------------
545 //------------------------------------------------------------------------
548 TFile* tcratefile = 0;
549
550 B2INFO("Debug output rootfile: " << debugFilenameBase);
551 string runNumsString = string("_") + to_string(minExpNum) + "_" + to_string(minRunNum) + string("-") +
552 to_string(maxExpNum) + "_" + to_string(maxRunNum);
553 string debugFilename = debugFilenameBase + runNumsString + string(".root");
554 TString fname = debugFilename;
555
556 tcratefile = new TFile(fname, "recreate");
557 tcratefile->cd();
558 B2INFO("Debugging histograms written to " << fname);
559
560 for (int i = 0; i < m_numCrates; i++) {
561 B2INFO("Starting to make crate time jump plots for crate " << i + 1);
562 shared_ptr< TCanvas > cSmart(new TCanvas);
563
564 Double_t* single_crate_crate_times = &allCrates_crate_times[i][0] ;
565 Double_t* single_crate_run_nums = &allCrates_run_nums[i][0] ;
566 Double_t* single_crate_time_unc = &allCrates_time_unc[i][0] ;
567 Double_t* single_crate_crystalCrate_times = &allCrates_crystalCrate_times[i][0] ;
568 Double_t* single_crate_crystalCrate_times_unc = &allCrates_crystalCrate_times_unc[i][0] ;
569 B2INFO("Done setting up the arrays for the crate " << i + 1);
570
571 ostringstream ss;
572 ss << setw(2) << setfill('0') << i + 1 ;
573 string paddedCrateID(ss.str());
574
575 // ----- crate time constants vs run number ------
576 shared_ptr< TGraphErrors > g_tcrate_vs_runNum(new TGraphErrors(allCrates_crate_times[i].size(), single_crate_run_nums,
577 single_crate_crate_times, NULL, single_crate_time_unc)) ;
578 // NULL for run number errors = 0 for all
579
580 string tgraph_title = string("e") + to_string(minExpNum) + string("r") + to_string(minRunNum) +
581 string("-e") + to_string(maxExpNum) + string("r") + to_string(maxRunNum) ;
582
583 string tgraph_name_short = "crateTimeVSrunNum_" ;
584 tgraph_name_short = tgraph_name_short + runNumsString + "_crate";
585
586 tgraph_title = tgraph_title + string("_crate") + paddedCrateID ;
587 tgraph_name_short = tgraph_name_short + paddedCrateID ;
588 tgraph_title = tgraph_title + string(" (") + to_string(m_tcrate_min_cut) + string(" < tcrate < ") +
589 to_string(m_tcrate_max_cut) + string(" ns, ") + to_string(m_tcrate_unc_min_cut) +
590 string(" < tcrate unc. < ") + to_string(m_tcrate_unc_max_cut) + string(" ns cuts)") ;
591
592 g_tcrate_vs_runNum->SetName(tgraph_name_short.c_str()) ;
593 g_tcrate_vs_runNum->SetTitle(tgraph_title.c_str()) ;
594 g_tcrate_vs_runNum->GetXaxis()->SetTitle("Run number") ;
595 g_tcrate_vs_runNum->GetYaxis()->SetTitle("Crate time [ns]") ;
596
597 g_tcrate_vs_runNum->GetYaxis()->SetRangeUser(m_tcrate_min_cut, m_tcrate_max_cut) ;
598
599 g_tcrate_vs_runNum->Draw("AP") ;
600 g_tcrate_vs_runNum->SetMarkerSize(0.8) ;
601 g_tcrate_vs_runNum->Draw("AP") ;
602
603 shared_ptr< TLatex > Leg1(new TLatex);
604 Leg1->SetNDC();
605 Leg1->SetTextAlign(11);
606 Leg1->SetTextFont(42);
607 Leg1->SetTextSize(0.035);
608 Leg1->SetTextColor(1);
609 Leg1->AppendPad();
610
611 g_tcrate_vs_runNum->Write() ;
612 cSmart->SaveAs((tgraph_name_short + string(".pdf")).c_str()) ;
613
614 B2INFO("Saved pdf: " << tgraph_name_short << ".pdf");
615
616
617 // ----- crystal + crate time constants + offset vs run number ------
618 shared_ptr< TGraphErrors > g_crateCrystalTime_vs_runNum(new TGraphErrors(allCrates_crystalCrate_times[i].size(),
619 single_crate_run_nums,
620 single_crate_crystalCrate_times, NULL, single_crate_crystalCrate_times_unc)) ;
621
622 tgraph_title = string("e") + to_string(minExpNum) + string("r") + to_string(minRunNum) +
623 string("-e") + to_string(maxExpNum) + string("r") + to_string(maxRunNum) ;
624
625 tgraph_name_short = "crystalCrateTimeVSrunNum_" ;
626 tgraph_name_short = tgraph_name_short + runNumsString + "_crate";
627
628 tgraph_title = tgraph_title + string("_crate") + paddedCrateID ;
629 tgraph_name_short = tgraph_name_short + paddedCrateID ;
630 tgraph_title = tgraph_title + string(" (") + to_string(m_tcrate_min_cut) + string(" < tcrate < ") +
631 to_string(m_tcrate_max_cut) + string(" ns, ") + to_string(m_tcrate_unc_min_cut) +
632 string(" < tcrate unc. < ") + to_string(m_tcrate_unc_max_cut) + string(" ns cuts)") ;
633
634
635 g_crateCrystalTime_vs_runNum->SetName(tgraph_name_short.c_str()) ;
636 g_crateCrystalTime_vs_runNum->SetTitle(tgraph_title.c_str()) ;
637 g_crateCrystalTime_vs_runNum->GetXaxis()->SetTitle("Run number") ;
638 g_crateCrystalTime_vs_runNum->GetYaxis()->SetTitle("Crate time + Crystal time + centring overall offset [ns]") ;
639
640 g_crateCrystalTime_vs_runNum->GetYaxis()->SetRangeUser(crysCrateShift_min, crysCrateShift_max) ;
641
642 g_crateCrystalTime_vs_runNum->Draw("AP") ;
643 g_crateCrystalTime_vs_runNum->SetMarkerSize(0.8) ;
644 g_crateCrystalTime_vs_runNum->Draw("AP") ;
645
646 g_crateCrystalTime_vs_runNum->Write() ;
647 cSmart->SaveAs((tgraph_name_short + string(".pdf")).c_str()) ;
648
649 B2INFO("Saved pdf: " << tgraph_name_short << ".pdf");
650
651 // ----- crystal + crate time constants + offset vs run counter------
652 // This will remove gaps and ignore the actual run number
653
654 /* Define a vector to store a renumbering of the run numbers, incrementing
655 by +1 so that there are no gaps. The runs are not in order so the
656 run numbers&indices first have to be sorted before the "run counter"
657 numbers can used.*/
658 int numRunsWithCrateTimes = allCrates_crystalCrate_times[i].size();
659 vector<Double_t> counterVec(numRunsWithCrateTimes);
660
661
662 // Vector to store element
663 // with respective present index
664 vector<pair<int, double> > runNum_index_pairs;
665
666 // Inserting element in pair vector
667 // to keep track of previous indexes
668 for (int pairIndex = 0; pairIndex < numRunsWithCrateTimes; pairIndex++) {
669 runNum_index_pairs.push_back(make_pair(allCrates_run_nums[i][pairIndex], pairIndex));
670 }
671
672 B2INFO("Crate id = " << i + 1);
673 B2INFO("Unsorted run numbers");
674 for (int runCounter = 0; runCounter < numRunsWithCrateTimes; runCounter++) {
675 B2INFO("Run number, run number vector index = " << runNum_index_pairs[runCounter].first << ", " <<
676 runNum_index_pairs[runCounter].second);
677 }
678
679 // Sorting pair vector
680 sort(runNum_index_pairs.begin(), runNum_index_pairs.end());
681
682 // Fill the run counter vector
683 for (int runCounter = 0; runCounter < numRunsWithCrateTimes; runCounter++) {
684 counterVec[runNum_index_pairs[runCounter].second] = runCounter + 1;
685 }
686
687 B2INFO("Run numbers with index and times");
688 for (int runCounter = 0; runCounter < numRunsWithCrateTimes; runCounter++) {
689 int idx = (int) round(counterVec[runCounter]);
690 B2INFO("Vector index, Run number, run number sorting order index, tcrystal+tcrate+shifts = " << runCounter << ", " <<
691 allCrates_run_nums[i][runCounter] << ", " << idx << ", " << single_crate_crystalCrate_times[idx - 1] << " ns");
692 }
693
694
695 if (numRunsWithCrateTimes > 0) {
696 shared_ptr< TGraphErrors > g_crateCrystalTime_vs_runCounter(new TGraphErrors(numRunsWithCrateTimes, &counterVec[0],
697 single_crate_crystalCrate_times, NULL, single_crate_crystalCrate_times_unc)) ;
698
699 tgraph_title = string("e") + to_string(minExpNum) + string("r") + to_string(minRunNum) +
700 string("-e") + to_string(maxExpNum) + string("r") + to_string(maxRunNum) ;
701
702
703 tgraph_name_short = "crystalCrateTimeVSrunCounter_" ;
704 tgraph_name_short = tgraph_name_short + runNumsString + "_crate";
705
706
707 tgraph_title = tgraph_title + string("_crate") + paddedCrateID ;
708 tgraph_name_short = tgraph_name_short + paddedCrateID ;
709 tgraph_title = tgraph_title + string(" (") + to_string(m_tcrate_min_cut) + string(" < tcrate < ") +
710 to_string(m_tcrate_max_cut) + string(" ns, ") + to_string(m_tcrate_unc_min_cut) +
711 string(" < tcrate unc. < ") + to_string(m_tcrate_unc_max_cut) + string(" ns cuts)") ;
712
713
714 g_crateCrystalTime_vs_runCounter->SetName(tgraph_name_short.c_str()) ;
715 g_crateCrystalTime_vs_runCounter->SetTitle(tgraph_title.c_str()) ;
716 g_crateCrystalTime_vs_runCounter->GetXaxis()->SetTitle("Run counter (remove gaps from run numbers)") ;
717 g_crateCrystalTime_vs_runCounter->GetYaxis()->SetTitle("Crate time + Crystal time + centring overall offset [ns]") ;
718
719 g_crateCrystalTime_vs_runCounter->GetYaxis()->SetRangeUser(crysCrateShift_min, crysCrateShift_max) ;
720 g_crateCrystalTime_vs_runCounter->GetXaxis()->SetRangeUser(0, numRunsWithCrateTimes + 1) ;
721
722 g_crateCrystalTime_vs_runCounter->Draw("AP") ;
723 g_crateCrystalTime_vs_runCounter->SetMarkerSize(0.8) ;
724 g_crateCrystalTime_vs_runCounter->Draw("AP") ;
725
726 g_crateCrystalTime_vs_runCounter->Write() ;
727 cSmart->SaveAs((tgraph_name_short + string(".pdf")).c_str()) ;
728 B2INFO("Saved pdf: " << tgraph_name_short << ".pdf");
729
730 B2INFO("Finished making crate time jump plots for crate " << i + 1);
731 } else {
732 B2INFO("Crate " << i + 1 << " has no entries that pass all the cuts so no crystalCrateTimeVSrunCounter_crate plot will be made.");
733 }
734 }
735
736
737
738
739 /* Loop over all the runs and crates and let the user know when a crate time jump
740 has occurred. Jumps can be of various sizes so have different thresholds. */
741 double smallThreshold = 1 ; //ns
742 double largeThreshold = 6.5 ; //ns
743
744 B2INFO("======================= Crate time jumps =========================");
745 B2INFO("======================= Small threshold jumps ====================");
746 B2INFO("Crate ID = 1..52");
747 B2INFO("==================================================================");
748
749 for (int i = 0; i < m_numCrates; i++) {
750 int numRunsWithCrateTimes = allCrates_crystalCrate_times[i].size();
751 for (int runCounter = 0; runCounter < numRunsWithCrateTimes - 1; runCounter++) {
752 int run_i = allCrates_run_nums[i][runCounter] ;
753 int run_f = allCrates_run_nums[i][runCounter + 1] ;
754 double time_i = allCrates_crystalCrate_times[i][runCounter] ;
755 double time_f = allCrates_crystalCrate_times[i][runCounter + 1] ;
756
757 if (fabs(time_f - time_i) > smallThreshold) {
758 B2INFO("Crate " << i + 1 << " has crate time jump > " << smallThreshold << " ns: t(run " << run_f << ") = " << time_f <<
759 " ns - t(run " << run_i << ") = " << time_i << " ns = " << time_f - time_i);
760 }
761 }
762 }
763
764
765 B2INFO("~~~~~~~~~~~~~~~~~~~~~~~ Large threshold jumps ~~~~~~~~~~~~~~~~~~~~");
766 B2INFO("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
767
768 for (int i = 0; i < m_numCrates; i++) {
769 int numRunsWithCrateTimes = allCrates_crystalCrate_times[i].size();
770 for (int runCounter = 0; runCounter < numRunsWithCrateTimes - 1; runCounter++) {
771 int run_i = allCrates_run_nums[i][runCounter] ;
772 int run_f = allCrates_run_nums[i][runCounter + 1] ;
773 double time_i = allCrates_crystalCrate_times[i][runCounter] ;
774 double time_f = allCrates_crystalCrate_times[i][runCounter + 1] ;
775
776 if (fabs(time_f - time_i) > largeThreshold) {
777 B2INFO("WARNING: Crate " << i + 1 << " has crate time jump > " << largeThreshold << " ns: t(run " << run_f << ") = " << time_f <<
778 " ns - t(run " << run_i << ") = " << time_i << " ns = " << time_f - time_i);
779 }
780 }
781 }
782
783
784
785
786 // Just in case, we remember the current TDirectory so we can return to it
787 TDirectory* executeDir = gDirectory;
788
789 tcratefile->Write();
790 tcratefile->Close();
791 // Go back to original TDirectory
792 executeDir->cd();
793
794 return c_OK;
795}
Base class for calibration algorithms.
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.
EResult
The result of calibration.
@ c_OK
Finished successfully =0 in Python.
@ c_Failure
Failed =3 in Python.
Class for accessing objects in the database.
Definition: DBObjPtr.h:21
Singleton class to cache database objects.
Definition: DBStore.h:31
static DataStore & Instance()
Instance of singleton Store.
Definition: DataStore.cc:54
void setInitializeActive(bool active)
Setter for m_initializeActive.
Definition: DataStore.cc:94
This class provides access to ECL channel map that is either a) Loaded from the database (see ecl/dbo...
static double getRF()
See m_rf.
Double_t m_crateTimeConst
Crate time calibration constant.
double m_tcrate_unc_min_cut
Minimum value cut for the crate time calibration constant uncertainty for plotting.
bool algorithmReadPayloads
Whether or not to have the algorithm code to loop over all the runs and read the payloads itself.
const int m_numCrates
Number of Crates expected.
double m_tcrate_max_cut
Maximum value cut for the crate time calibration constant for plotting
double m_tcrate_min_cut
Minimum value cut for the crate time calibration constant for plotting.
const int m_numCrystals
Number of Crystals expected.
Double_t m_crystalTimeUnc
Uncertainty on the crystal time calibration constant.
Double_t m_crateTimeUnc
Uncertainty on the crate time calibration constant.
DBObjPtr< ECLReferenceCrystalPerCrateCalib > m_refCrysIDzeroingCrate
payload that we want to read from the DB
double m_tcrate_unc_max_cut
Maximum value cut for the crate time calibration constant uncertainty for plotting.
DBObjPtr< ECLCrystalCalib > m_ECLCrateTimeOffset
ECLCrateTimeOffset payload that we want to read from the DB.
Double_t m_crystalTimeConst
Crystal time calibration constant.
Int_t m_refCrystalID
Crystal ID number for the reference crystal.
EResult calibrate() override
..Run algorithm
double crysCrateShift_max
Plotting time max for crystal+crate shift plots.
double crysCrateShift_min
Plotting time min for crystal+crate shift plots.
std::string debugFilenameBase
Name of file with debug output, eclTimeShiftsAlgorithm.root by default.
DBObjPtr< ECLCrystalCalib > m_ECLCrystalTimeOffset
ECLCrystalTimeOffset payload that we want to read from the DB.
double timeShiftForPlotStyle[52]
List of time offsets, one per crate, used just to centre the time constants around zero.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
bool construct(Args &&... params)
Construct an object of type T in this StoreObjPtr, using the provided constructor arguments.
Definition: StoreObjPtr.h:119
Class to store variables with their name which were sent to the logging service.
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
const int c_NCrystals
Number of crystals.
Abstract base class for different kinds of events.
STL namespace.
Struct containing exp number and run number.
Definition: Splitter.h:51