181 Called internally by PyTorch to propagate the input through the network.
183 x, u, edge_index, edge_attr, torch_batch = (
192 x=x, edge_index=edge_index, edge_attr=edge_attr, u=u, batch=torch_batch
199 edge_skip = edge_attr
202 x, edge_attr, u = ML(
203 x=x, edge_index=edge_index, edge_attr=edge_attr, u=u, batch=torch_batch
208 edge_attr += edge_skip
211 del x_skip, edge_skip, u_skip
213 x, edge_attr, u = self.
last_ML(
214 x=x, edge_index=edge_index, edge_attr=edge_attr, u=u, batch=torch_batch
218 edge_index_t = edge_index[[1, 0]]
220 for i
in range(edge_attr.shape[1]):
222 edge_matrix = torch.sparse_coo_tensor(
223 edge_index, edge_attr[:, i]
226 edge_matrix_t = torch.sparse_coo_tensor(
227 edge_index_t, edge_attr[:, i]
232 ((edge_matrix + edge_matrix_t) / 2.0).coalesce()
235 return x, edge_attr, u