Belle II Software development
histogram.py
1#!/usr/bin/env python3
2
3
10
11import numpy
12
13
14def binom_error(n_sig, n_tot):
15 """
16 for an efficiency = nSig/nTrueSig or purity = nSig / (nSig + nBckgrd), this function calculates the
17 standard deviation according to http://arxiv.org/abs/physics/0701199 .
18 """
19 variance = numpy.where(n_tot > 0, (n_sig + 1) * (n_sig + 2) / ((n_tot + 2) * (n_tot + 3)) -
20 (n_sig + 1) ** 2 / ((n_tot + 2) ** 2), 0)
21 return numpy.sqrt(variance)
22
23
24def poisson_error(n_tot):
25 """
26 use poisson error, except for 0 we use an 68% CL upper limit
27 """
28 return numpy.where(n_tot > 0, numpy.sqrt(n_tot), numpy.log(1.0 / (1 - 0.6827)))
29
30
31def weighted_mean_and_std(x, w):
32 """
33 Return the weighted average and standard deviation.
34 @param x values
35 @param w weights
36 """
37 mean = numpy.average(x, weights=w)
38 var = numpy.average((x-mean)**2, weights=w)
39 return (mean, numpy.sqrt(var))
40
41
43 """
44 Extracts information from a pandas.DataFrame and stores it
45 in a binned format.
46 Therefore the size independent from the size of the pandas.DataFrame.
47 Used by the plotting routines below.
48 """
49
50
51 hist = None
52
53 bins = None
54
55 bin_centers = None
56
57 bin_widths = None
58
59 hists = None
60
61 def __init__(self, data, column, masks=dict(), weight_column=None, bins=100, equal_frequency=True, range_in_std=None):
62 """
63 Creates a common binning of the given column of the given pandas.Dataframe,
64 and stores for each given mask the histogram of the column
65 @param data pandas.DataFrame like object containing column and weight_column
66 @param column string identifiying the column in the pandas.DataFrame which is binned.
67 @param masks dictionary of names and boolean arrays, which select the data
68 used for the creation of histograms with these names
69 @param weight_column identifiying the column in the pandas.DataFrame which is used as weight
70 @param bins use given bins instead of default 100
71 @param equal_frequency perform an equal_frequency binning
72 @param range_in_std show only the data in a windows around +- range_in_std * standard_deviation around the mean
73 """
74 isfinite = numpy.isfinite(data[column])
75 if range_in_std is not None:
76 mean, std = weighted_mean_and_std(data[column][isfinite],
77 None if weight_column is None else data[weight_column][isfinite])
78 # Everything outside mean +- range_in_std * std is considered infinite
79 isfinite = isfinite & (data[column] > (mean - range_in_std * std)) & (data[column] < (mean + range_in_std * std))
80
81 if equal_frequency:
82 if data[column][isfinite].size > 0:
83 bins = numpy.unique(numpy.percentile(data[column][isfinite], q=range(bins + 1)))
84 else:
85 print('Empty Array')
86 bins = [1]
87 # If all values are unique, we make at least one bin
88 if len(bins) == 1:
89 bins = numpy.array([bins[0]-1, bins[0]+1])
90
91
92 self.hist, self.binsbins = numpy.histogram(data[column][isfinite], bins=bins,
93 weights=None if weight_column is None else data[weight_column])
94
95 self.bin_centersbin_centers = (self.binsbins + numpy.roll(self.binsbins, 1))[1:] / 2.0
96
97 self.bin_widthsbin_widths = (self.binsbins - numpy.roll(self.binsbins, 1))[1:] - 0.00001
98
99 self.histshists = dict()
100 for name, mask in masks.items():
101 self.histshists[name] = numpy.histogram(data[column][mask & isfinite], bins=self.binsbins,
102 weights=None if weight_column is None else data[weight_column][mask & isfinite])[0]
103
104 def get_hist(self, name=None):
105 """
106 Return histogram with the given name. If none returns histogram of the full data.
107 @param name name of the histogram
108 @return numpy.array with hist data, numpy.array with corresponding poisson errors
109 """
110 if name is None:
111 return self.hist, poisson_error(self.hist)
112 return self.get_summed_hist([name])
113
114 def get_summed_hist(self, names):
115 """
116 Return the sum of histograms with the given names.
117 @param names names of the histograms
118 @return numpy.array with hist data, numpy.array with corresponding poisson errors
119 """
120 default = numpy.zeros(len(self.bin_centersbin_centers))
121 hist = numpy.sum(self.histshists.get(v, default) for v in names)
122 hist_error = poisson_error(hist)
123 return hist, hist_error
124
125 def get_efficiency(self, signal_names):
126 """
127 Return the cumulative efficiency in each bin of the sum of the histograms with the given names.
128 @param signal_names of the histograms
129 @return numpy.array with hist data, numpy.array with corresponding binomial errors
130 """
131 signal, _ = self.get_summed_hist(signal_names)
132 cumsignal = (signal.sum() - signal.cumsum()).astype('float')
133
134 efficiency = 0
135 efficiency_error = 0
136 if signal.sum() > 0:
137 efficiency = cumsignal / signal.sum()
138 efficiency_error = binom_error(cumsignal, signal.sum())
139 return efficiency, efficiency_error
140
141 def get_true_positives(self, signal_names):
142 """
143 Return the cumulative true positives in each bin of the sum of the histograms with the given names.
144 @param names names of the histograms
145 @return numpy.array with hist data, numpy.array with corresponding binomial errors
146 """
147 signal, _ = self.get_summed_hist(signal_names)
148 cumsignal = (signal.sum() - signal.cumsum()).astype('float')
149 signal_error = poisson_error(cumsignal)
150 return cumsignal, signal_error
151
152 def get_false_positives(self, bckgrd_names):
153 """
154 Return the cumulative false positives in each bin of the sum of the histograms with the given names.
155 @param names names of the histograms
156 @return numpy.array with hist data, numpy.array with corresponding binomial errors
157 """
158 background, _ = self.get_summed_hist(bckgrd_names)
159 cumbackground = (background.sum() - background.cumsum()).astype('float')
160 background_error = poisson_error(cumbackground)
161 return cumbackground, background_error
162
163 def get_purity(self, signal_names, bckgrd_names):
164 """
165 Return the cumulative purity in each bin of the sum of the histograms with the given names.
166 @param names names of the histograms
167 @return numpy.array with hist data, numpy.array with corresponding binomial errors
168 """
169 signal, _ = self.get_summed_hist(signal_names)
170 bckgrd, _ = self.get_summed_hist(bckgrd_names)
171 cumsignal = (signal.sum() - signal.cumsum()).astype('float')
172 cumbckgrd = (bckgrd.sum() - bckgrd.cumsum()).astype('float')
173
174 purity = cumsignal / (cumsignal + cumbckgrd)
175 purity_error = binom_error(cumsignal, cumsignal + cumbckgrd)
176 return purity, purity_error
177
178 def get_signal_to_noise(self, signal_names, bckgrd_names):
179 """
180 Return the cumulative signal to noise ratio in each bin of the sum of the histograms with the given names.
181 @param names names of the histograms
182 @return numpy.array with hist data, numpy.array with corresponding binomial errors
183 """
184 signal, _ = self.get_summed_hist(signal_names)
185 bckgrd, _ = self.get_summed_hist(bckgrd_names)
186 cumsignal = (signal.sum() - signal.cumsum()).astype('float')
187 cumbckgrd = (bckgrd.sum() - bckgrd.cumsum()).astype('float')
188
189 signal2noise = cumsignal / (cumsignal + cumbckgrd)**0.5
190 signal2noise_error = numpy.sqrt(cumsignal / (cumsignal + cumbckgrd) + (cumsignal / (2 * (cumsignal + cumbckgrd)))**2)
191 return signal2noise, signal2noise_error
192
193 def get_purity_per_bin(self, signal_names, bckgrd_names):
194 """
195 Return the purity in each bin of the sum of the histograms with the given names.
196 @param names names of the histograms
197 @return numpy.array with hist data, numpy.array with corresponding binomial errors
198 """
199 signal, _ = self.get_summed_hist(signal_names)
200 bckgrd, _ = self.get_summed_hist(bckgrd_names)
201 signal = signal.astype('float')
202 bckgrd = bckgrd.astype('float')
203
204 purity = signal / (signal + bckgrd)
205 purity_error = binom_error(signal, signal + bckgrd)
206 return purity, purity_error
None bins
Binning.
Definition: histogram.py:53
def __init__(self, data, column, masks=dict(), weight_column=None, bins=100, equal_frequency=True, range_in_std=None)
Definition: histogram.py:61
def get_purity(self, signal_names, bckgrd_names)
Definition: histogram.py:163
None hists
Dictionary of histograms for the given masks.
Definition: histogram.py:59
bin_centers
bin centers
Definition: histogram.py:95
None hist
Histogram of the full data.
Definition: histogram.py:51
None bin_centers
Bin centers.
Definition: histogram.py:55
def get_hist(self, name=None)
Definition: histogram.py:104
bin_widths
Subtract a small number from the bin width, otherwise the errorband plot is unstable.
Definition: histogram.py:97
None bin_widths
Bin widths.
Definition: histogram.py:57
def get_efficiency(self, signal_names)
Definition: histogram.py:125
def get_false_positives(self, bckgrd_names)
Definition: histogram.py:152
def get_true_positives(self, signal_names)
Definition: histogram.py:141
def get_summed_hist(self, names)
Definition: histogram.py:114
bins
create histogram
Definition: histogram.py:92
def get_signal_to_noise(self, signal_names, bckgrd_names)
Definition: histogram.py:178
def get_purity_per_bin(self, signal_names, bckgrd_names)
Definition: histogram.py:193
hists
initialize empty dictionary for histograms
Definition: histogram.py:99