18from ROOT
import Belle2
24from ROOT
import gSystem
25gSystem.Load(
'libtracking')
26gSystem.Load(
'libtrackFindingCDC')
30 return logging.getLogger(__name__)
34 """Generate, postprocess and inspect MC events for track segment-pair validation"""
36 segment_finder_module = basf2.register_module(
"TFCDC_SegmentCreatorMCTruth")
37 segment_finder_module.param({
"MinCDCHits": 4})
40 segment_pair_finder_module = basf2.register_module(
"TFCDC_TrackFinderSegmentPairAutomaton")
41 segment_pair_finder_module.param({
42 "WriteSegmentPairs":
True,
43 "SegmentPairFilter":
"all",
44 "SegmentPairRelationFilter":
"none",
50 output_file_name =
"SegmentPairCreationValidation.root"
53 """Convert command-line arguments to basf2 argument list"""
55 return argument_parser
57 def create_path(self):
59 Sets up a path that plays back pregenerated events or generates events
60 based on the properties
in the base
class.
62 main_path = super().create_path()
65 main_path.add_module(segment_finder_module)
67 main_path.add_module("TFCDC_SegmentFitter")
70 main_path.add_module(segment_pair_finder_module)
75 main_path.add_module(metamodules.PyProfilingModule(validation_module))
77 main_path.add_module(validation_module)
84 """Module to collect information about the generated segments and compose validation plots on terminate."""
88 super().__init__(foreach="CDCSegmentPairVector",
89 output_file_name=output_file_name)
98 """Receive signal at the start of event processing"""
105 """Initialize the MC-hit lookup method"""
108 def pick(self, segment_pair_relation):
109 """Select segment pairs with 4 or more hit in each segments and a matching primary MC particle"""
111 start_segment = segment_pair_relation.getStartSegment()
112 end_segment = segment_pair_relation.getEndSegment()
113 mc_particle = mc_segment_lookup.getMCParticle(start_segment)
114 return (mc_particle
and
115 is_primary(mc_particle)
and
116 start_segment.size() > 3
and
117 end_segment.size() > 3)
119 def peel(self, segment_pair_relation):
120 """Aggregate the track and MC information for track segment-pair analysis"""
122 crops.update(self.
peel_mc(segment_pair_relation))
123 crops.update(self.
peel_fit(segment_pair_relation))
127 """Create a dictionary of MC-truth (weight,decision) pairs"""
129 mc_decision = np.isfinite(mc_weight)
133 mc_decision=mc_decision,
137 """Create a dictionary of MC-truth (curvature,tanlambda) pairs"""
140 end_segment = segment_pair_relation.getEndSegment()
144 fit3d_truth = mc_segment_lookup.getTrajectory3D(end_segment)
147 curvature_truth=fit3d_truth.getCurvatureXY(),
148 tan_lambda_truth=fit3d_truth.getTanLambda(),
152 """Create a dictionary of track-segment-fit information"""
153 fitless_crops = self.
peel_fitless(segment_pair_relation)
155 select_fitless = fitless_crops[
"select_fitless"]
158 self.
fit(segment_pair_relation)
159 fit3d = segment_pair_relation.getTrajectory3D()
164 chi2 = fit3d.getChi2()
167 curvature_estimate = fit3d.getCurvatureXY()
168 curvature_variance = fit3d.getLocalVariance(i_curv)
170 tan_lambda_estimate = fit3d.getTanLambda()
171 tan_lambda_variance = fit3d.getLocalVariance(i_tan_lambda)
175 p_value = prob(chi2, ndf)
180 curvature_estimate = nan
181 curvature_variance = nan
183 tan_lambda_estimate = nan
184 tan_lambda_variance = nan
191 curvature_estimate=curvature_estimate,
192 curvature_variance=curvature_variance,
194 tan_lambda_estimate=tan_lambda_estimate,
195 tan_lambda_variance=tan_lambda_variance,
203 crops[
"select"] = self.
select(crops)
205 crops[
"select"] =
False
207 crops.update(fitless_crops)
212 """Create a dictionary of track-segments-without-fit information"""
215 start_segment = segment_pair_relation.getStartSegment()
216 end_segment = segment_pair_relation.getEndSegment()
218 start_fit2d = start_segment.getTrajectory2D()
219 end_fit2d = end_segment.getTrajectory2D()
221 start_superlayer_id = start_segment.getISuperLayer()
222 end_superlayer_id = end_segment.getISuperLayer()
224 sorted_superlayer_ids = sorted([start_superlayer_id, end_superlayer_id])
226 superlayer_id_pair = 10.0 * sorted_superlayer_ids[1] + sorted_superlayer_ids[0]
228 fitless_crops = dict(
229 start_superlayer_id=start_superlayer_id,
230 end_superlayer_id=end_superlayer_id,
231 superlayer_id_pair=superlayer_id_pair,
233 start_size=start_segment.size(),
234 end_size=end_segment.size(),
236 start_curvature_estimate=start_fit2d.getCurvature(),
237 end_curvature_estimate=end_fit2d.getCurvature(),
239 delta_phi=segment_pair_relation.computeDeltaPhiAtSuperLayerBound(),
240 is_coaligned=segment_pair_relation.computeIsCoaligned(),
242 start_is_before_end=segment_pair_relation.computeStartIsBeforeEnd(),
243 end_is_after_start=segment_pair_relation.computeEndIsAfterStart(),
246 fitless_crops[
"select_fitless"] = self.
select_fitless(fitless_crops)
249 def fit(self, segment_pair_relation):
250 """Fit the segment pair"""
254 delta_phi_cut_value = 1.0
256 is_after_cut_value = 1.0
259 """Selection of track-segments-without-fit"""
260 delta_phi = fitless_crops[
"delta_phi"]
261 start_is_before_end = fitless_crops[
"start_is_before_end"]
262 end_is_after_start = fitless_crops[
"end_is_after_start"]
267 """Select every track-segment-pair"""
272 save_histograms = refiners.save_histograms(outlier_z_score=5.0, allow_discrete=
True)
274 save_tree = refiners.save_tree()
278 save_fitless_selection_variables_histograms = refiners.save_histograms(
279 select=[
"mc_decision",
"delta_phi",
"start_is_before_end",
"end_is_after_start",
"is_coaligned"],
282 stackby=
"mc_decision",
283 folder_name=
"fitless_selection_variables",
287 save_view_is_after_cut_histograms = refiners.save_histograms(
288 select=[
"mc_decision",
"start_is_before_end",
"end_is_after_start"],
289 lower_bound=-is_after_cut_value,
290 upper_bound=is_after_cut_value,
291 stackby=
"mc_decision",
292 folder_name=
"view_fitless_cuts",
296 save_view_delta_phi_cut_histograms = refiners.save_histograms(
297 select=[
"mc_decision",
"delta_phi"],
298 lower_bound=-delta_phi_cut_value,
299 upper_bound=delta_phi_cut_value,
300 stackby=
"mc_decision",
301 folder_name=
"view_fitless_cuts",
306 save_selection_variables_after_fitless_selection_histograms = refiners.save_histograms(
307 select=[
"mc_decision",
"chi2",
"ndf",
"p_value"],
310 stackby=
"mc_decision",
311 folder_name=
"selection_variables_after_fitless_selection",
312 filter_on=
"select_fitless",
317 save_p_value_over_curvature_profile = refiners.save_profiles(
318 select={
"p_value":
"p-value",
"curvature_truth":
"true curvature"},
320 folder_name=
"selection_variables_after_fitless_selection",
321 title=
r"$p$-value versus true curvature after fitless selection",
322 filter_on=
"select_fitless",
326 @refiners.context(groupby=[None, "superlayer_id_pair"], exclude_groupby=False)
329 """Print diagnostic information about the track-segment-pair selection"""
330 info = get_logger().info
335 superlayer_id_pair = crops[
"superlayer_id_pair"]
336 info(
"Number of pairs in superlayers %s : %s", np.unique(superlayer_id_pair), len(superlayer_id_pair))
338 mc_decisions = crops[
"mc_decision"]
339 n = len(mc_decisions)
340 n_signal = np.sum(mc_decisions)
341 n_background = n - n_signal
342 info(
"#Signal : %s", n_signal)
343 info(
"#Background : %s", n_background)
345 fitless_selections = np.nonzero(crops[
"select_fitless"])
346 info(
"#Signal after precut : %s", np.sum(mc_decisions[fitless_selections]))
347 info(
"#Background after precut : %s", np.sum(1 - mc_decisions[fitless_selections]))
352 run.configure_and_execute_from_commandline()
355if __name__ ==
"__main__":
356 logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=
'%(levelname)s:%(message)s')
Utility class implementing the Kalmanesk combination of to two dimensional trajectories to one three ...
static const CDCMCHitLookUp & getInstance()
Getter for the singletone instance.
static const CDCMCSegment2DLookUp & getInstance()
Getter for the singletone instance.
Filter for the construction of axial to stereo segment pairs based on MC information.
def peel_target(self, segment_pair_relation)
def peel_fitless(self, segment_pair_relation)
float delta_phi_cut_value
default selection for the delta-phi of the segment pair
def peel_mc(self, segment_pair_relation)
def pick(self, segment_pair_relation)
mc_segment_pair_filter
defer reference to MCSegmentPairFilter until after it is constructed
segment_pair_fusion
defer reference to CDCAxialStereoFusion until after it is constructed
mc_segment_lookup
defer reference to CDCMCSegment2dLookUp singleton until after it is constructed
def peel_fit(self, segment_pair_relation)
def select_fitless(self, fitless_crops)
def print_signal_number(self, crops, tdirectory, **kwds)
float is_after_cut_value
default selection for the ordering of the segment pair
def fit(self, segment_pair_relation)
def peel(self, segment_pair_relation)
def __init__(self, output_file_name)
def create_argument_parser(self, **kwds)
basf2 segment_finder_module
Use the SegmentFinderFacetAutomaton for track-segment creation with MC truth-matching.
basf2 segment_pair_finder_module
use the TrackFinderSegmentPairAutomaton for track-segment finding
bool py_profile
post-process with profiling validation
str output_file_name
specify the output ROOT file
None output_file_name
There is no default for the name of the output TFile.