Belle II Software development
segmentPairCreationValidation.py
1#!/usr/bin/env python3
2
3
10
11import logging
12from tracking.run.mixins import BrowseTFileOnTerminateRunMixin
13from tracking.run.event_generation import StandardEventGenerationRun
14import tracking.metamodules as metamodules
15import tracking.harvest.refiners as refiners
16import tracking.harvest.harvesting as harvesting
17from tracking.validation.utilities import prob, is_primary
18from ROOT import Belle2 # make Belle2 namespace available
19import sys
20import numpy as np
21
22import basf2
23
24from ROOT import gSystem
25gSystem.Load('libtracking')
26gSystem.Load('libtrackFindingCDC')
27
28
29def get_logger():
30 return logging.getLogger(__name__)
31
32
33CONTACT = "oliver.frost@desy.de"
34
35
37 """Generate, postprocess and inspect MC events for track segment-pair validation"""
38
39 segment_finder_module = basf2.register_module("TFCDC_SegmentCreatorMCTruth")
40 segment_finder_module.param({"MinCDCHits": 4})
41
42
43 segment_pair_finder_module = basf2.register_module("TFCDC_TrackFinderSegmentPairAutomaton")
44 segment_pair_finder_module.param({
45 "WriteSegmentPairs": True,
46 "SegmentPairFilter": "all",
47 "SegmentPairRelationFilter": "none",
48 })
49
50
51 py_profile = True
52
53 output_file_name = "SegmentPairCreationValidation.root" # Specification for BrowseTFileOnTerminateRunMixin
54
55 def create_argument_parser(self, **kwds):
56 """Convert command-line arguments to basf2 argument list"""
57 argument_parser = super().create_argument_parser(**kwds)
58 return argument_parser
59
60 def create_path(self):
61 """
62 Sets up a path that plays back pregenerated events or generates events
63 based on the properties in the base class.
64 """
65 main_path = super().create_path()
66
67 segment_finder_module = self.get_basf2_module(self.segment_finder_module)
68 main_path.add_module(segment_finder_module)
69
70 main_path.add_module("TFCDC_SegmentFitter")
71
72 segment_pair_finder_module = self.get_basf2_module(self.segment_pair_finder_module)
73 main_path.add_module(segment_pair_finder_module)
74
75 # main_path.add_module(AxialStereoPairFitterModule())
76 validation_module = SegmentPairCreationValidationModule(output_file_name=self.output_file_nameoutput_file_name)
77 if self.py_profile:
78 main_path.add_module(metamodules.PyProfilingModule(validation_module))
79 else:
80 main_path.add_module(validation_module)
81
82 return main_path
83
84
85class SegmentPairCreationValidationModule(harvesting.HarvestingModule):
86
87 """Module to collect information about the generated segments and compose validation plots on terminate."""
88
89 def __init__(self, output_file_name):
90 """Constructor"""
91 super().__init__(foreach="CDCSegmentPairVector",
92 output_file_name=output_file_name)
93
95
97
99
100 def initialize(self):
101 """Receive signal at the start of event processing"""
102 super().initialize()
106
107 def prepare(self):
108 """Initialize the MC-hit lookup method"""
110
111 def pick(self, segment_pair_relation):
112 """Select segment pairs with 4 or more hit in each segments and a matching primary MC particle"""
113 mc_segment_lookup = self.mc_segment_lookup
114 start_segment = segment_pair_relation.getStartSegment()
115 end_segment = segment_pair_relation.getEndSegment()
116 mc_particle = mc_segment_lookup.getMCParticle(start_segment)
117 return (mc_particle and
118 is_primary(mc_particle) and
119 start_segment.size() > 3 and
120 end_segment.size() > 3)
121
122 def peel(self, segment_pair_relation):
123 """Aggregate the track and MC information for track segment-pair analysis"""
124 crops = self.peel_target(segment_pair_relation)
125 crops.update(self.peel_mc(segment_pair_relation))
126 crops.update(self.peel_fit(segment_pair_relation))
127 return crops
128
129 def peel_target(self, segment_pair_relation):
130 """Create a dictionary of MC-truth (weight,decision) pairs"""
131 mc_weight = self.mc_segment_pair_filter(segment_pair_relation)
132 mc_decision = np.isfinite(mc_weight) # Filters for nan
133
134 return dict(
135 mc_weight=mc_weight,
136 mc_decision=mc_decision,
137 )
138
139 def peel_mc(self, segment_pair_relation):
140 """Create a dictionary of MC-truth (curvature,tanlambda) pairs"""
141 mc_segment_lookup = self.mc_segment_lookup
142
143 end_segment = segment_pair_relation.getEndSegment()
144
145 # Take the fit best at the middle of the segment pair
146 # mc_particle = mc_segment_lookup.getMCParticle(end_segment)
147 fit3d_truth = mc_segment_lookup.getTrajectory3D(end_segment)
148
149 return dict(
150 curvature_truth=fit3d_truth.getCurvatureXY(),
151 tan_lambda_truth=fit3d_truth.getTanLambda(),
152 )
153
154 def peel_fit(self, segment_pair_relation):
155 """Create a dictionary of track-segment-fit information"""
156 fitless_crops = self.peel_fitless(segment_pair_relation)
157
158 select_fitless = fitless_crops["select_fitless"]
159 if select_fitless:
160 # Now fit
161 self.fit(segment_pair_relation)
162 fit3d = segment_pair_relation.getTrajectory3D()
163
164 i_curv = 0
165 i_tan_lambda = 3
166
167 chi2 = fit3d.getChi2()
168 ndf = fit3d.getNDF()
169
170 curvature_estimate = fit3d.getCurvatureXY()
171 curvature_variance = fit3d.getLocalVariance(i_curv)
172
173 tan_lambda_estimate = fit3d.getTanLambda()
174 tan_lambda_variance = fit3d.getLocalVariance(i_tan_lambda)
175
176 chi2 = chi2
177 ndf = ndf
178 p_value = prob(chi2, ndf)
179 # select = True
180
181 else:
182 nan = float('nan')
183 curvature_estimate = nan
184 curvature_variance = nan
185
186 tan_lambda_estimate = nan
187 tan_lambda_variance = nan
188
189 chi2 = nan
190 ndf = nan
191 p_value = nan
192
193 crops = dict(
194 curvature_estimate=curvature_estimate,
195 curvature_variance=curvature_variance,
196
197 tan_lambda_estimate=tan_lambda_estimate,
198 tan_lambda_variance=tan_lambda_variance,
199
200 chi2=chi2,
201 ndf=ndf,
202 p_value=p_value,
203 )
204
205 if select_fitless:
206 crops["select"] = self.select(crops)
207 else:
208 crops["select"] = False
209
210 crops.update(fitless_crops)
211
212 return crops
213
214 def peel_fitless(self, segment_pair_relation):
215 """Create a dictionary of track-segments-without-fit information"""
216 # Try to make some judgements without executing the common fit.
217
218 start_segment = segment_pair_relation.getStartSegment()
219 end_segment = segment_pair_relation.getEndSegment()
220
221 start_fit2d = start_segment.getTrajectory2D()
222 end_fit2d = end_segment.getTrajectory2D()
223
224 start_superlayer_id = start_segment.getISuperLayer()
225 end_superlayer_id = end_segment.getISuperLayer()
226
227 sorted_superlayer_ids = sorted([start_superlayer_id, end_superlayer_id])
228
229 superlayer_id_pair = 10.0 * sorted_superlayer_ids[1] + sorted_superlayer_ids[0]
230
231 fitless_crops = dict(
232 start_superlayer_id=start_superlayer_id,
233 end_superlayer_id=end_superlayer_id,
234 superlayer_id_pair=superlayer_id_pair,
235
236 start_size=start_segment.size(),
237 end_size=end_segment.size(),
238
239 start_curvature_estimate=start_fit2d.getCurvature(),
240 end_curvature_estimate=end_fit2d.getCurvature(),
241
242 delta_phi=segment_pair_relation.computeDeltaPhiAtSuperLayerBound(),
243 is_coaligned=segment_pair_relation.computeIsCoaligned(),
244
245 start_is_before_end=segment_pair_relation.computeStartIsBeforeEnd(),
246 end_is_after_start=segment_pair_relation.computeEndIsAfterStart(),
247 )
248
249 fitless_crops["select_fitless"] = self.select_fitless(fitless_crops)
250 return fitless_crops
251
252 def fit(self, segment_pair_relation):
253 """Fit the segment pair"""
254 self.segment_pair_fusion.reconstructFuseTrajectories(segment_pair_relation, True)
255
256
257 delta_phi_cut_value = 1.0
258
259 is_after_cut_value = 1.0
260
261 def select_fitless(self, fitless_crops):
262 """Selection of track-segments-without-fit"""
263 delta_phi = fitless_crops["delta_phi"]
264 start_is_before_end = fitless_crops["start_is_before_end"]
265 end_is_after_start = fitless_crops["end_is_after_start"]
266 is_after_select = (abs(start_is_before_end) < self.is_after_cut_value) & (abs(end_is_after_start) < self.is_after_cut_value)
267 return (abs(delta_phi) < self.delta_phi_cut_value) & is_after_select
268
269 def select(self, crops):
270 """Select every track-segment-pair"""
271 return True
272
273 # Refiners to be executed at the end of the harvesting / termination of the module
274
275 save_histograms = refiners.save_histograms(outlier_z_score=5.0, allow_discrete=True)
276
277 save_tree = refiners.save_tree()
278
279 # Investigate the preselection
280
281 save_fitless_selection_variables_histograms = refiners.save_histograms(
282 select=["mc_decision", "delta_phi", "start_is_before_end", "end_is_after_start", "is_coaligned"],
283 outlier_z_score=5.0,
284 allow_discrete=True,
285 stackby="mc_decision",
286 folder_name="fitless_selection_variables",
287 )
288
289
290 save_view_is_after_cut_histograms = refiners.save_histograms(
291 select=["mc_decision", "start_is_before_end", "end_is_after_start"],
292 lower_bound=-is_after_cut_value,
293 upper_bound=is_after_cut_value,
294 stackby="mc_decision",
295 folder_name="view_fitless_cuts",
296 )
297
298
299 save_view_delta_phi_cut_histograms = refiners.save_histograms(
300 select=["mc_decision", "delta_phi"],
301 lower_bound=-delta_phi_cut_value,
302 upper_bound=delta_phi_cut_value,
303 stackby="mc_decision",
304 folder_name="view_fitless_cuts",
305 )
306
307 # Investigate the main selection
308
309 save_selection_variables_after_fitless_selection_histograms = refiners.save_histograms(
310 select=["mc_decision", "chi2", "ndf", "p_value"],
311 outlier_z_score=5.0,
312 allow_discrete=True,
313 stackby="mc_decision",
314 folder_name="selection_variables_after_fitless_selection",
315 filter_on="select_fitless",
316 )
317
318 # TODO: Is this interesting enough to keep it.
319
320 save_p_value_over_curvature_profile = refiners.save_profiles(
321 select={"p_value": "p-value", "curvature_truth": "true curvature"},
322 y="p-value",
323 folder_name="selection_variables_after_fitless_selection",
324 title=r"$p$-value versus true curvature after fitless selection",
325 filter_on="select_fitless",
326 )
327
328 # ! @cond Doxygen_Suppress
329 @refiners.context(groupby=[None, "superlayer_id_pair"], exclude_groupby=False)
330 # ! @endcond
331 def print_signal_number(self, crops, tdirectory, **kwds):
332 """Print diagnostic information about the track-segment-pair selection"""
333 info = get_logger().info
334
335 # start_superlayer_ids = crops["start_superlayer_id"]
336 # end_superlayer_ids = crops["end_superlayer_id"]
337
338 superlayer_id_pair = crops["superlayer_id_pair"]
339 info("Number of pairs in superlayers %s : %s", np.unique(superlayer_id_pair), len(superlayer_id_pair))
340
341 mc_decisions = crops["mc_decision"]
342 n = len(mc_decisions)
343 n_signal = np.sum(mc_decisions)
344 n_background = n - n_signal
345 info("#Signal : %s", n_signal)
346 info("#Background : %s", n_background)
347
348 fitless_selections = np.nonzero(crops["select_fitless"])
349 info("#Signal after precut : %s", np.sum(mc_decisions[fitless_selections]))
350 info("#Background after precut : %s", np.sum(1 - mc_decisions[fitless_selections]))
351
352
353def main():
355 run.configure_and_execute_from_commandline()
356
357
358if __name__ == "__main__":
359 logging.basicConfig(stream=sys.stdout, level=logging.INFO, format='%(levelname)s:%(message)s')
360 main()
Utility class implementing the Kalmanesk combination of to two dimensional trajectories to one three ...
static const CDCMCHitLookUp & getInstance()
Getter for the singletone instance.
static const CDCMCSegment2DLookUp & getInstance()
Getter for the singletone instance.
Filter for the construction of axial to stereo segment pairs based on MC information.
float delta_phi_cut_value
default selection for the delta-phi of the segment pair
mc_segment_pair_filter
defer reference to MCSegmentPairFilter until after it is constructed
segment_pair_fusion
defer reference to CDCAxialStereoFusion until after it is constructed
mc_segment_lookup
defer reference to CDCMCSegment2dLookUp singleton until after it is constructed
float is_after_cut_value
default selection for the ordering of the segment pair
basf2 segment_finder_module
Use the SegmentFinderFacetAutomaton for track-segment creation with MC truth-matching.
basf2 segment_pair_finder_module
use the TrackFinderSegmentPairAutomaton for track-segment finding
None output_file_name
There is no default for the name of the output TFile.
Definition: mixins.py:60
Definition: main.py:1