Belle II Software light-2406-ragdoll
KFitBase.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * External Contributor: J. Tanaka *
5 * *
6 * See git log for contributors and copyright holders. *
7 * This file is licensed under LGPL-3.0, see LICENSE.md. *
8 **************************************************************************/
9
10#include <TMatrixFSym.h>
11
12#include <analysis/utility/ROOTToCLHEP.h>
13#include <analysis/VertexFitting/KFit/KFitBase.h>
14
15using namespace std;
16using namespace Belle2;
17using namespace Belle2::analysis;
18using namespace CLHEP;
19
21{
23 m_FlagFitted = false;
24 m_FlagCorrelation = false;
25 m_FlagOverIteration = false;
27 m_NDF = 0;
28 m_CHIsq = -1;
30 m_TrackCount = 0;
31}
32
33
34KFitBase::~KFitBase() = default;
35
36
39 m_Tracks.push_back(p);
40 m_TrackCount = m_Tracks.size();
41
43}
44
45
47KFitBase::addTrack(const CLHEP::HepLorentzVector& p, const HepPoint3D& x, const CLHEP::HepSymMatrix& e, const double q) {
48 if (e.num_row() != KFitConst::kNumber7)
49 {
51 KFitError::displayError(__FILE__, __LINE__, __func__, m_ErrorCode);
52 return m_ErrorCode;
53 }
54
55 return this->addTrack(KFitTrack(p, x, e, q));
56}
57
58
60{
61 return addTrack(
62 ROOTToCLHEP::getHepLorentzVector(particle->get4Vector()),
63 ROOTToCLHEP::getPoint3D(particle->getVertex()),
64 ROOTToCLHEP::getHepSymMatrix(particle->getMomentumVertexErrorMatrix()),
65 particle->getCharge());
66}
67
68
70KFitBase::setCorrelation(const HepMatrix& e) {
71 if (e.num_row() != KFitConst::kNumber7)
72 {
74 KFitError::displayError(__FILE__, __LINE__, __func__, m_ErrorCode);
75 return m_ErrorCode;
76 }
77 m_BeforeCorrelation.push_back(e);
78 m_FlagCorrelation = true;
79
81}
82
83
86 HepMatrix zero(KFitConst::kNumber7, KFitConst::kNumber7, 0);
87
88 return this->setCorrelation(zero);
89}
90
91
94 m_MagneticField = mf;
95
97}
98
99
102 return m_ErrorCode;
103}
104
105
106int
108{
109 return m_TrackCount;
110}
111
112
113int
115{
116 return m_NDF;
117}
118
119
120double
122{
123 return m_CHIsq;
124}
125
126
127double
129{
130 return m_MagneticField;
131}
132
133
134double
135KFitBase::getTrackCHIsq(const int id) const
136{
137 if (!isFitted()) return -1.;
138 if (!isTrackIDInRange(id)) return -1.;
139
140 HepMatrix da(m_Tracks[id].getFitParameter(KFitConst::kBeforeFit) - m_Tracks[id].getFitParameter(KFitConst::kAfterFit));
141 int err_inverse = 0;
142 const double chisq = (da.T() * (m_Tracks[id].getFitError(KFitConst::kBeforeFit).inverse(err_inverse)) * da)[0][0];
143
144 if (err_inverse) {
145 KFitError::displayError(__FILE__, __LINE__, __func__, KFitError::kCannotGetMatrixInverse);
146 return -1.;
147 }
148
149 return chisq;
150}
151
152
153const HepLorentzVector
154KFitBase::getTrackMomentum(const int id) const
155{
156 if (!isTrackIDInRange(id)) return HepLorentzVector();
157 return m_Tracks[id].getMomentum();
158}
159
160const HepPoint3D
161KFitBase::getTrackPosition(const int id) const
162{
163 if (!isTrackIDInRange(id)) return HepPoint3D();
164 return m_Tracks[id].getPosition();
165}
166
167const HepSymMatrix
168KFitBase::getTrackError(const int id) const
169{
170 if (!isTrackIDInRange(id)) return HepSymMatrix(KFitConst::kNumber7, 0);
171 return m_Tracks[id].getError();
172}
173
174const KFitTrack
175KFitBase::getTrack(const int id) const
176{
177 if (!isTrackIDInRange(id)) return KFitTrack();
178 return m_Tracks[id];
179}
180
181
182const HepMatrix
183KFitBase::getCorrelation(const int id1, const int id2, const int flag) const
184{
185 if (flag == KFitConst::kAfterFit && !isFitted()) return HepMatrix(KFitConst::kNumber7, KFitConst::kNumber7, 0);
186 if (!isTrackIDInRange(id1)) return HepMatrix(KFitConst::kNumber7, KFitConst::kNumber7, 0);
187 if (!isTrackIDInRange(id2)) return HepMatrix(KFitConst::kNumber7, KFitConst::kNumber7, 0);
188
189 switch (flag) {
191 return makeError1(
192 getTrackMomentum(id1),
193 getTrackMomentum(id2),
194 m_V_al_1.sub(KFitConst::kNumber6 * id1 + 1, KFitConst::kNumber6 * (id1 + 1), KFitConst::kNumber6 * id2 + 1,
195 KFitConst::kNumber6 * (id2 + 1))
196 );
197
198 default:
199 if (id1 == id2) {
200
201 return static_cast<HepMatrix>(m_Tracks[id1].getError(KFitConst::kBeforeFit));
202
203 } else {
204 const int idx1 = id1 < id2 ? id1 : id2, idx2 = id1 < id2 ? id2 : id1;
205
206 int index = 0;
207
208 for (int i = 0; i < idx1; i++) index += m_TrackCount - 1 - i;
209 index -= idx1 + 1;
210 index += idx2;
211 if (id1 == idx1)
212 return m_BeforeCorrelation[index + idx2];
213 else
214 return m_BeforeCorrelation[index + idx2].T();
215 }
216 }
217}
218
219
220const HepSymMatrix
221KFitBase::makeError1(const CLHEP::HepLorentzVector& p, const CLHEP::HepMatrix& e) const
222{
223 // self track
224 // Error(6x6,e) ==> Error(7x7,output(hsm)) using Momentum(p).
225
226 if (!isNonZeroEnergy(p)) return HepSymMatrix(KFitConst::kNumber7, 0);
227
228 HepSymMatrix hsm(KFitConst::kNumber7, 0);
229
230 for (int i = 0; i < 3; i++) for (int j = i; j < 3; j++) {
231 hsm[i][j] = e[i][j];
232 hsm[4 + i][4 + j] = e[3 + i][3 + j];
233 }
234 for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) {
235 hsm[i][4 + j] = e[i][3 + j];
236 }
237
238 const double invE = 1 / p.t();
239 hsm[0][3] = (p.x() * hsm[0][0] + p.y() * hsm[0][1] + p.z() * hsm[0][2]) * invE;
240 hsm[1][3] = (p.x() * hsm[0][1] + p.y() * hsm[1][1] + p.z() * hsm[1][2]) * invE;
241 hsm[2][3] = (p.x() * hsm[0][2] + p.y() * hsm[1][2] + p.z() * hsm[2][2]) * invE;
242 hsm[3][3] = (p.x() * p.x() * hsm[0][0] + p.y() * p.y() * hsm[1][1] + p.z() * p.z() * hsm[2][2]
243 + 2.0 * p.x() * p.y() * hsm[0][1]
244 + 2.0 * p.x() * p.z() * hsm[0][2]
245 + 2.0 * p.y() * p.z() * hsm[1][2]) * invE * invE;
246 hsm[3][4] = (p.x() * hsm[0][4] + p.y() * hsm[1][4] + p.z() * hsm[2][4]) * invE;
247 hsm[3][5] = (p.x() * hsm[0][5] + p.y() * hsm[1][5] + p.z() * hsm[2][5]) * invE;
248 hsm[3][6] = (p.x() * hsm[0][6] + p.y() * hsm[1][6] + p.z() * hsm[2][6]) * invE;
249
250 return hsm;
251}
252
253
254const HepMatrix
255KFitBase::makeError1(const CLHEP::HepLorentzVector& p1, const CLHEP::HepLorentzVector& p2, const CLHEP::HepMatrix& e) const
256{
257 // track and track
258 // Error(6x6,e) ==> Error(7x7,output(hm)) using Momentum(p1&p2).
259
260 if (!isNonZeroEnergy(p1)) return HepSymMatrix(KFitConst::kNumber7, 0);
261 if (!isNonZeroEnergy(p2)) return HepSymMatrix(KFitConst::kNumber7, 0);
262
264
265 for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) {
266 hm[i][j] = e[i][j];
267 hm[4 + i][4 + j] = e[3 + i][3 + j];
268 hm[4 + i][j] = e[3 + i][j];
269 hm[i][4 + j] = e[i][3 + j];
270 }
271
272 const double invE1 = 1 / p1.t();
273 const double invE2 = 1 / p2.t();
274 hm[0][3] = (p2.x() * hm[0][0] + p2.y() * hm[0][1] + p2.z() * hm[0][2]) * invE2;
275 hm[1][3] = (p2.x() * hm[1][0] + p2.y() * hm[1][1] + p2.z() * hm[1][2]) * invE2;
276 hm[2][3] = (p2.x() * hm[2][0] + p2.y() * hm[2][1] + p2.z() * hm[2][2]) * invE2;
277 hm[4][3] = (p2.x() * hm[4][0] + p2.y() * hm[4][1] + p2.z() * hm[4][2]) * invE2;
278 hm[5][3] = (p2.x() * hm[5][0] + p2.y() * hm[5][1] + p2.z() * hm[5][2]) * invE2;
279 hm[6][3] = (p2.x() * hm[6][0] + p2.y() * hm[6][1] + p2.z() * hm[6][2]) * invE2;
280 hm[3][3] = (p1.x() * p2.x() * hm[0][0] + p1.y() * p2.y() * hm[1][1] + p1.z() * p2.z() * hm[2][2] +
281 p1.x() * p2.y() * hm[0][1] + p2.x() * p1.y() * hm[1][0] +
282 p1.x() * p2.z() * hm[0][2] + p2.x() * p1.z() * hm[2][0] +
283 p1.y() * p2.z() * hm[1][2] + p2.y() * p1.z() * hm[2][1]) * invE1 * invE2;
284 hm[3][0] = (p1.x() * hm[0][0] + p1.y() * hm[1][0] + p1.z() * hm[2][0]) * invE1;
285 hm[3][1] = (p1.x() * hm[0][1] + p1.y() * hm[1][1] + p1.z() * hm[2][1]) * invE1;
286 hm[3][2] = (p1.x() * hm[0][2] + p1.y() * hm[1][2] + p1.z() * hm[2][2]) * invE1;
287 hm[3][4] = (p1.x() * hm[0][4] + p1.y() * hm[1][4] + p1.z() * hm[2][4]) * invE1;
288 hm[3][5] = (p1.x() * hm[0][5] + p1.y() * hm[1][5] + p1.z() * hm[2][5]) * invE1;
289 hm[3][6] = (p1.x() * hm[0][6] + p1.y() * hm[1][6] + p1.z() * hm[2][6]) * invE1;
290
291 return hm;
292}
293
294
295const HepMatrix
296KFitBase::makeError2(const HepLorentzVector& p, const HepMatrix& e) const
297{
298 // vertex and track
299 // Error(3x6,e) ==> Error(3x7,output(hm)) using Momentum(p).
300
301 if (!isNonZeroEnergy(p)) return HepSymMatrix(KFitConst::kNumber7, 0);
302
303 HepMatrix hm(3, KFitConst::kNumber7, 0);
304
305 for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) {
306 hm[i][j] = e[i][j];
307 hm[i][4 + j] = e[i][3 + j];
308 }
309
310 const double invE = 1 / p.t();
311 hm[0][3] = (p.x() * hm[0][0] + p.y() * hm[0][1] + p.z() * hm[0][2]) * invE;
312 hm[1][3] = (p.x() * hm[1][0] + p.y() * hm[1][1] + p.z() * hm[1][2]) * invE;
313 hm[2][3] = (p.x() * hm[2][0] + p.y() * hm[2][1] + p.z() * hm[2][2]) * invE;
314
315 return hm;
316}
317
318
319const HepSymMatrix
320KFitBase::makeError3(const CLHEP::HepLorentzVector& p, const CLHEP::HepMatrix& e, const bool is_fix_mass) const
321{
322 // self track
323 // Error(7x7,e) ==> Error(7x7,output(hsm)) using Momentum(p).
324 // is_fix_mass = 1 : Energy term is recalculated from the other parameters.
325 // is_fix_mass = 0 : hsm = e.
326
327 if (!isNonZeroEnergy(p)) return HepSymMatrix(KFitConst::kNumber7, 0);
328
329 if (!is_fix_mass) {
330 HepSymMatrix hsm(KFitConst::kNumber7, 0);
331 for (int i = 0; i < 7; i++) for (int j = i; j < 7; j++) {
332 hsm[i][j] = e[i][j];
333 }
334 return hsm;
335 }
336
337 HepSymMatrix hsm(KFitConst::kNumber7, 0);
338
339 for (int i = 0; i < 7; i++) {
340 if (i != 3)
341 for (int j = i; j < 7; j++) hsm[i][j] = e[i][j];
342 }
343
344 double invE = 1 / p.t();
345 hsm[0][3] = (p.x() * hsm[0][0] + p.y() * hsm[0][1] + p.z() * hsm[0][2]) * invE;
346 hsm[1][3] = (p.x() * hsm[0][1] + p.y() * hsm[1][1] + p.z() * hsm[1][2]) * invE;
347 hsm[2][3] = (p.x() * hsm[0][2] + p.y() * hsm[1][2] + p.z() * hsm[2][2]) * invE;
348 hsm[3][3] = (p.x() * p.x() * hsm[0][0] + p.y() * p.y() * hsm[1][1] + p.z() * p.z() * hsm[2][2]
349 + 2.0 * p.x() * p.y() * hsm[0][1]
350 + 2.0 * p.x() * p.z() * hsm[0][2]
351 + 2.0 * p.y() * p.z() * hsm[1][2]) * invE * invE;
352 hsm[3][4] = (p.x() * hsm[0][4] + p.y() * hsm[1][4] + p.z() * hsm[2][4]) * invE;
353 hsm[3][5] = (p.x() * hsm[0][5] + p.y() * hsm[1][5] + p.z() * hsm[2][5]) * invE;
354 hsm[3][6] = (p.x() * hsm[0][6] + p.y() * hsm[1][6] + p.z() * hsm[2][6]) * invE;
355
356 return hsm;
357}
358
359
360const HepMatrix
361KFitBase::makeError3(const CLHEP::HepLorentzVector& p1, const CLHEP::HepLorentzVector& p2, const CLHEP::HepMatrix& e,
362 const bool is_fix_mass1,
363 const bool is_fix_mass2) const
364{
365 // track and track
366 // Error(7x7,e) ==> Error(7x7,output(hm)) using Momentum(p1&p2).
367 // is_fix_mass = 1 : Energy term is recalculated from the other parameters.
368 // is_fix_mass = 0 : not.
369
370 if (is_fix_mass1 && is_fix_mass2) {
371 if (!isNonZeroEnergy(p1)) return HepSymMatrix(KFitConst::kNumber7, 0);
372 if (!isNonZeroEnergy(p2)) return HepSymMatrix(KFitConst::kNumber7, 0);
373
374 HepMatrix hm(e);
375
376 const double invE1 = 1 / p1.t();
377 const double invE2 = 1 / p2.t();
378 hm[0][3] = (p2.x() * hm[0][0] + p2.y() * hm[0][1] + p2.z() * hm[0][2]) * invE2;
379 hm[1][3] = (p2.x() * hm[1][0] + p2.y() * hm[1][1] + p2.z() * hm[1][2]) * invE2;
380 hm[2][3] = (p2.x() * hm[2][0] + p2.y() * hm[2][1] + p2.z() * hm[2][2]) * invE2;
381 hm[4][3] = (p2.x() * hm[4][0] + p2.y() * hm[4][1] + p2.z() * hm[4][2]) * invE2;
382 hm[5][3] = (p2.x() * hm[5][0] + p2.y() * hm[5][1] + p2.z() * hm[5][2]) * invE2;
383 hm[6][3] = (p2.x() * hm[6][0] + p2.y() * hm[6][1] + p2.z() * hm[6][2]) * invE2;
384 hm[3][0] = (p1.x() * hm[0][0] + p1.y() * hm[1][0] + p1.z() * hm[2][0]) * invE1;
385 hm[3][1] = (p1.x() * hm[0][1] + p1.y() * hm[1][1] + p1.z() * hm[2][1]) * invE1;
386 hm[3][2] = (p1.x() * hm[0][2] + p1.y() * hm[1][2] + p1.z() * hm[2][2]) * invE1;
387 hm[3][3] = (p1.x() * p2.x() * hm[0][0] + p1.y() * p2.y() * hm[1][1] + p1.z() * p2.z() * hm[2][2] +
388 p1.x() * p2.y() * hm[0][1] + p2.x() * p1.y() * hm[1][0] +
389 p1.x() * p2.z() * hm[0][2] + p2.x() * p1.z() * hm[2][0] +
390 p1.y() * p2.z() * hm[1][2] + p2.y() * p1.z() * hm[2][1]) * invE1 * invE2;
391 hm[3][4] = (p1.x() * hm[0][4] + p1.y() * hm[1][4] + p1.z() * hm[2][4]) * invE1;
392 hm[3][5] = (p1.x() * hm[0][5] + p1.y() * hm[1][5] + p1.z() * hm[2][5]) * invE1;
393 hm[3][6] = (p1.x() * hm[0][6] + p1.y() * hm[1][6] + p1.z() * hm[2][6]) * invE1;
394
395 return hm;
396 }
397
398
399 if (is_fix_mass1 && !is_fix_mass2) {
400 if (!isNonZeroEnergy(p1)) return HepSymMatrix(KFitConst::kNumber7, 0);
401
402 HepMatrix hm(e);
403
404 const double invE1 = 1 / p1.t();
405 hm[3][0] = (p1.x() * hm[0][0] + p1.y() * hm[1][0] + p1.z() * hm[2][0]) * invE1;
406 hm[3][1] = (p1.x() * hm[0][1] + p1.y() * hm[1][1] + p1.z() * hm[2][1]) * invE1;
407 hm[3][2] = (p1.x() * hm[0][2] + p1.y() * hm[1][2] + p1.z() * hm[2][2]) * invE1;
408 hm[3][3] = (p1.x() * hm[0][3] + p1.y() * hm[1][3] + p1.z() * hm[2][3]) * invE1;
409 hm[3][4] = (p1.x() * hm[0][4] + p1.y() * hm[1][4] + p1.z() * hm[2][4]) * invE1;
410 hm[3][5] = (p1.x() * hm[0][5] + p1.y() * hm[1][5] + p1.z() * hm[2][5]) * invE1;
411 hm[3][6] = (p1.x() * hm[0][6] + p1.y() * hm[1][6] + p1.z() * hm[2][6]) * invE1;
412
413 return hm;
414 }
415
416
417 if (!is_fix_mass1 && is_fix_mass2) {
418 if (!isNonZeroEnergy(p2)) return HepSymMatrix(KFitConst::kNumber7, 0);
419
420 HepMatrix hm(e);
421
422 const double invE2 = 1 / p2.t();
423 hm[0][3] = (p2.x() * hm[0][0] + p2.y() * hm[0][1] + p2.z() * hm[0][2]) * invE2;
424 hm[1][3] = (p2.x() * hm[1][0] + p2.y() * hm[1][1] + p2.z() * hm[1][2]) * invE2;
425 hm[2][3] = (p2.x() * hm[2][0] + p2.y() * hm[2][1] + p2.z() * hm[2][2]) * invE2;
426 hm[3][3] = (p2.x() * hm[3][0] + p2.y() * hm[3][1] + p2.z() * hm[3][2]) * invE2;
427 hm[4][3] = (p2.x() * hm[4][0] + p2.y() * hm[4][1] + p2.z() * hm[4][2]) * invE2;
428 hm[5][3] = (p2.x() * hm[5][0] + p2.y() * hm[5][1] + p2.z() * hm[5][2]) * invE2;
429 hm[6][3] = (p2.x() * hm[6][0] + p2.y() * hm[6][1] + p2.z() * hm[6][2]) * invE2;
430
431 return hm;
432 }
433
434 return e;
435}
436
437
438const HepMatrix
439KFitBase::makeError4(const HepLorentzVector& p, const HepMatrix& e) const
440{
441 // vertex and track
442 // Error(3x7,e) ==> Error(3x7,output(hm)) using Momentum(p).
443 // Energy term is recalculated from the other parameters.
444
445 if (!isNonZeroEnergy(p)) return HepSymMatrix(KFitConst::kNumber7, 0);
446
447 HepMatrix hm(e);
448
449 const double invE = 1 / p.t();
450 hm[0][3] = (p.x() * hm[0][0] + p.y() * hm[0][1] + p.z() * hm[0][2]) * invE;
451 hm[1][3] = (p.x() * hm[1][0] + p.y() * hm[1][1] + p.z() * hm[1][2]) * invE;
452 hm[2][3] = (p.x() * hm[2][0] + p.y() * hm[2][1] + p.z() * hm[2][2]) * invE;
453
454 return hm;
455}
456
457
460 if (m_BeforeCorrelation.size() != (double)m_TrackCount * ((double)m_TrackCount - 1)*.5)
461 {
463 KFitError::displayError(__FILE__, __LINE__, __func__, m_ErrorCode);
464 return m_ErrorCode;
465 }
466
467 HepMatrix tmp_hm(KFitConst::kNumber6, KFitConst::kNumber6, 0);
468 int row = 0, col = 0;
469
470 for (auto& hm : m_BeforeCorrelation)
471 {
472 row++;
473 if (row == m_TrackCount) {
474 col++;
475 row = col + 1;
476 }
477
478 // 7x7 --> 6x6
479 for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) {
480 tmp_hm[i][j] = hm[i][j];
481 tmp_hm[3 + i][3 + j] = hm[4 + i][4 + j];
482 tmp_hm[3 + i][j] = hm[4 + i][j];
483 tmp_hm[i][3 + j] = hm[i][4 + j];
484 }
485
486 int ii = 0, jj = 0;
487 for (int i = KFitConst::kNumber6 * row; i < KFitConst::kNumber6 * (row + 1); i++) {
488 for (int j = KFitConst::kNumber6 * col; j < KFitConst::kNumber6 * (col + 1); j++) {
489 m_V_al_0[i][j] = tmp_hm[ii][jj];
490 jj++;
491 }
492 jj = 0;
493 ii++;
494 }
495 }
496
498}
499
500
504
506 {
508 KFitError::displayError(__FILE__, __LINE__, __func__, m_ErrorCode);
509 return m_ErrorCode;
510 }
511
514
515
516 double chisq = 0;
517 double tmp_chisq = KFitConst::kInitialCHIsq;
518 int err_inverse = 0;
519
520 HepMatrix tmp_al_1(m_al_1);
521 HepMatrix tmp_V_al_1(m_V_al_1);
522
523 m_al_a = m_al_0;
524 HepMatrix tmp_al_a(m_al_a);
525
526
527 for (int i = 0; i < KFitConst::kMaxIterationCount; i++)
528 {
530
531 m_V_D = (m_V_al_0.similarity(m_D)).inverse(err_inverse);
532 if (err_inverse != 0) {
534 return m_ErrorCode;
535 }
536
537 m_lam = m_V_D * (m_D * (m_al_0 - m_al_1) + m_d);
538 chisq = ((m_lam.T()) * (m_D * (m_al_0 - m_al_1) + m_d))(1, 1);
539 m_al_1 = m_al_0 - m_V_al_0 * (m_D.T()) * m_lam;
540 m_V_al_1 = m_V_al_0 - m_V_al_0 * (m_D.T()) * m_V_D * m_D * m_V_al_0;
541
542 if (tmp_chisq <= chisq) {
543 if (i == 0) {
545 return m_ErrorCode;
546 } else {
547 chisq = tmp_chisq;
548 m_al_1 = tmp_al_1;
549 m_al_a = tmp_al_a;
550 m_V_al_1 = tmp_V_al_1;
551 break;
552 }
553 } else {
554 tmp_chisq = chisq;
555 tmp_al_a = tmp_al_1;
556 tmp_al_1 = m_al_1;
557 tmp_V_al_1 = m_V_al_1;
558 if (i == KFitConst::kMaxIterationCount - 1) {
559 m_al_a = tmp_al_1;
560 m_FlagOverIteration = true;
561 }
562 }
563 }
564
566
568
569 m_CHIsq = chisq;
570
571 m_FlagFitted = true;
572
574}
575
576
580
582 {
584 KFitError::displayError(__FILE__, __LINE__, __func__, m_ErrorCode);
585 return m_ErrorCode;
586 }
587
590
591
592 double chisq = 0;
593 double tmp2_chisq = KFitConst::kInitialCHIsq;
594 int err_inverse = 0;
595
596 m_al_a = m_al_0;
597 HepMatrix tmp_al_a(m_al_a);
598
599 HepMatrix tmp_D(m_D), tmp_E(m_E);
600 HepMatrix tmp_V_D(m_V_D), tmp_V_E(m_V_E);
601 HepMatrix tmp_lam0(m_lam0), tmp_v_a(m_v_a);
602
603 HepMatrix tmp2_D(m_D), tmp2_E(m_E);
604 HepMatrix tmp2_V_D(m_V_D), tmp2_V_E(m_V_E);
605 HepMatrix tmp2_lam0(m_lam0), tmp2_v_a(m_v_a), tmp2_v(m_v_a);
606
607
608 for (int j = 0; j < KFitConst::kMaxIterationCount; j++) // j'th loop start
609 {
610
611 double tmp_chisq = KFitConst::kInitialCHIsq;
612
613 for (int i = 0; i < KFitConst::kMaxIterationCount; i++) { // i'th loop start
614
617
618 m_V_D = (m_V_al_0.similarity(m_D)).inverse(err_inverse);
619 if (err_inverse) {
621 return m_ErrorCode;
622 }
623
624 m_V_E = ((m_E.T()) * m_V_D * m_E).inverse(err_inverse);
625 if (err_inverse) {
627 return m_ErrorCode;
628 }
629 m_lam0 = m_V_D * (m_D * (m_al_0 - m_al_1) + m_d);
630 chisq = ((m_lam0.T()) * (m_D * (m_al_0 - m_al_1) + m_E * (m_v - m_v_a) + m_d))(1, 1);
631 m_v_a = m_v_a - m_V_E * (m_E.T()) * m_lam0;
632
633 if (tmp_chisq <= chisq) {
634 if (i == 0) {
636 return m_ErrorCode;
637 } else {
638 chisq = tmp_chisq;
639 m_v_a = tmp_v_a;
640 m_V_E = tmp_V_E;
641 m_V_D = tmp_V_D;
642 m_lam0 = tmp_lam0;
643 m_E = tmp_E;
644 m_D = tmp_D;
645 break;
646 }
647 } else {
648 tmp_chisq = chisq;
649 tmp_v_a = m_v_a;
650 tmp_V_E = m_V_E;
651 tmp_V_D = m_V_D;
652 tmp_lam0 = m_lam0;
653 tmp_E = m_E;
654 tmp_D = m_D;
655 if (i == KFitConst::kMaxIterationCount - 1) {
656 m_FlagOverIteration = true;
657 }
658 }
659 } // i'th loop over
660
661
662 m_al_a = m_al_1;
663 m_lam = m_lam0 - m_V_D * m_E * m_V_E * (m_E.T()) * m_lam0;
664 m_al_1 = m_al_0 - m_V_al_0 * (m_D.T()) * m_lam;
665
666 if (j == 0) {
667
668 tmp2_chisq = chisq;
669 tmp2_v_a = m_v_a;
670 tmp2_v = m_v;
671 tmp2_V_E = m_V_E;
672 tmp2_V_D = m_V_D;
673 tmp2_lam0 = m_lam0;
674 tmp2_E = m_E;
675 tmp2_D = m_D;
676 tmp_al_a = m_al_a;
677
678 } else {
679
680 if (tmp2_chisq <= chisq) {
681 chisq = tmp2_chisq;
682 m_v_a = tmp2_v_a;
683 m_v = tmp2_v;
684 m_V_E = tmp2_V_E;
685 m_V_D = tmp2_V_D;
686 m_lam0 = tmp2_lam0;
687 m_E = tmp2_E;
688 m_D = tmp2_D;
689 m_al_a = tmp_al_a;
690 break;
691 } else {
692 tmp2_chisq = chisq;
693 tmp2_v_a = m_v_a;
694 tmp2_v = m_v;
695 tmp2_V_E = m_V_E;
696 tmp2_V_D = m_V_D;
697 tmp2_lam0 = m_lam0;
698 tmp2_E = m_E;
699 tmp2_D = m_D;
700 tmp_al_a = m_al_a;
701 if (j == KFitConst::kMaxIterationCount - 1) {
702 m_FlagOverIteration = true;
703 }
704 }
705 }
706 } // j'th loop over
707
708
710
711 m_lam = m_lam0 - m_V_D * m_E * m_V_E * (m_E.T()) * m_lam0;
712 m_al_1 = m_al_0 - m_V_al_0 * (m_D.T()) * m_lam;
713 m_V_Dt = m_V_D - m_V_D * m_E * m_V_E * (m_E.T()) * m_V_D;
714 m_V_al_1 = m_V_al_0 - m_V_al_0 * (m_D.T()) * m_V_Dt * m_D * m_V_al_0;
715 m_Cov_v_al_1 = -m_V_E * (m_E.T()) * m_V_D * m_D * m_V_al_0;
716
718
719 m_CHIsq = chisq;
720
721 m_FlagFitted = true;
722
724}
725
726
727bool
729{
730 if (m_FlagFitted) return true;
731
732 KFitError::displayError(__FILE__, __LINE__, __func__, KFitError::kNotFittedYet);
733
734 return false;
735}
736
737
738bool
739KFitBase::isTrackIDInRange(const int id) const
740{
741 if (0 <= id && id < m_TrackCount) return true;
742
743 KFitError::displayError(__FILE__, __LINE__, __func__, KFitError::kOutOfRange);
744
745 return false;
746}
747
748
749bool
750KFitBase::isNonZeroEnergy(const HepLorentzVector& p) const
751{
752 if (p.t() != 0) return true;
753
754 KFitError::displayError(__FILE__, __LINE__, __func__, KFitError::kDivisionByZero);
755
756 return false;
757}
Class to store reconstructed particles.
Definition: Particle.h:75
ROOT::Math::XYZVector getVertex() const
Returns vertex position (POCA for charged, IP for neutral FS particles)
Definition: Particle.h:631
double getCharge(void) const
Returns particle charge.
Definition: Particle.cc:622
ROOT::Math::PxPyPzEVector get4Vector() const
Returns Lorentz vector.
Definition: Particle.h:547
TMatrixFSym getMomentumVertexErrorMatrix() const
Returns 7x7 error matrix.
Definition: Particle.cc:420
KFitBase(void)
Construct an object with no argument.
Definition: KFitBase.cc:20
int m_NecessaryTrackCount
Number needed tracks to perform fit.
Definition: KFitBase.h:303
virtual enum KFitError::ECode prepareInputMatrix(void)=0
Build grand matrices for minimum search from input-track properties.
enum KFitError::ECode addTrack(const KFitTrack &kp)
Add a track to the fitter object.
Definition: KFitBase.cc:38
virtual enum KFitError::ECode prepareOutputMatrix(void)=0
Build an output error matrix.
double m_MagneticField
Magnetic field.
Definition: KFitBase.h:311
const CLHEP::HepSymMatrix makeError1(const CLHEP::HepLorentzVector &p, const CLHEP::HepMatrix &e) const
Rebuild an error matrix from a Lorentz vector and an error matrix.
Definition: KFitBase.cc:221
bool isNonZeroEnergy(const CLHEP::HepLorentzVector &p) const
Check if the energy is non-zero.
Definition: KFitBase.cc:750
CLHEP::HepMatrix m_al_1
See J.Tanaka Ph.D (2001) p136 for definition.
Definition: KFitBase.h:259
CLHEP::HepMatrix m_V_Dt
See J.Tanaka Ph.D (2001) p138 for definition.
Definition: KFitBase.h:289
virtual enum KFitError::ECode setCorrelation(const CLHEP::HepMatrix &c)
Set a correlation matrix.
Definition: KFitBase.cc:70
const CLHEP::HepSymMatrix makeError3(const CLHEP::HepLorentzVector &p, const CLHEP::HepMatrix &e, const bool is_fix_mass) const
Rebuild an error matrix from a Lorentz vector and an error matrix.
Definition: KFitBase.cc:320
const CLHEP::HepSymMatrix getTrackError(const int id) const
Get an error matrix of the track.
Definition: KFitBase.cc:168
virtual double getCHIsq(void) const
Get a chi-square of the fit.
Definition: KFitBase.cc:121
const CLHEP::HepLorentzVector getTrackMomentum(const int id) const
Get a Lorentz vector of the track.
Definition: KFitBase.cc:154
CLHEP::HepMatrix m_lam
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:276
double getMagneticField(void) const
Get a magnetic field.
Definition: KFitBase.cc:128
enum KFitError::ECode doFit2(void)
Perform a fit (used in VertexFitKFit::doFit() and MassVertexFitKFit::doFit()).
Definition: KFitBase.cc:578
CLHEP::HepMatrix m_E
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:279
const HepPoint3D getTrackPosition(const int id) const
Get a position of the track.
Definition: KFitBase.cc:161
bool m_FlagOverIteration
Flag whether the iteration count exceeds the limit.
Definition: KFitBase.h:308
virtual double getTrackCHIsq(const int id) const
Get a chi-square of the track.
Definition: KFitBase.cc:135
enum KFitError::ECode m_ErrorCode
Error code.
Definition: KFitBase.h:243
virtual enum KFitError::ECode prepareInputSubMatrix(void)=0
Build sub-matrices for minimum search from input-track properties.
virtual enum KFitError::ECode setZeroCorrelation(void)
Indicate no correlation between tracks.
Definition: KFitBase.cc:85
CLHEP::HepMatrix m_V_al_1
See J.Tanaka Ph.D (2001) p138 for definition.
Definition: KFitBase.h:274
virtual int getNDF(void) const
Get an NDF of the fit.
Definition: KFitBase.cc:114
CLHEP::HepMatrix m_d
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:268
CLHEP::HepMatrix m_lam0
See J.Tanaka Ph.D (2001) p138 for definition.
Definition: KFitBase.h:283
virtual ~KFitBase(void)
Destruct the object.
bool isFitted(void) const
Return false if fit is not performed yet or performed fit is failed; otherwise true.
Definition: KFitBase.cc:728
CLHEP::HepMatrix m_al_a
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:261
enum KFitError::ECode setMagneticField(const double mf)
Change a magnetic field from the default value KFitConst::kDefaultMagneticField.
Definition: KFitBase.cc:93
CLHEP::HepMatrix m_D
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:266
CLHEP::HepMatrix m_V_D
See J.Tanaka Ph.D (2001) p138 for definition.
Definition: KFitBase.h:271
bool isTrackIDInRange(const int id) const
Check if the id is in the range.
Definition: KFitBase.cc:739
CLHEP::HepMatrix m_v_a
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:287
virtual const CLHEP::HepMatrix getCorrelation(const int id1, const int id2, const int flag=KFitConst::kAfterFit) const
Get a correlation matrix between two tracks.
Definition: KFitBase.cc:183
bool m_FlagCorrelation
Flag whether a correlation among tracks exists.
Definition: KFitBase.h:306
CLHEP::HepSymMatrix m_V_al_0
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:255
CLHEP::HepMatrix m_V_E
See J.Tanaka Ph.D (2001) p138 for definition.
Definition: KFitBase.h:281
CLHEP::HepMatrix m_Cov_v_al_1
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:291
const KFitTrack getTrack(const int id) const
Get a specified track object.
Definition: KFitBase.cc:175
virtual enum KFitError::ECode prepareCorrelation(void)
Build a grand correlation matrix from input-track properties.
Definition: KFitBase.cc:459
virtual enum KFitError::ECode makeCoreMatrix(void)=0
Build matrices using the kinematical constraint.
const CLHEP::HepMatrix makeError2(const CLHEP::HepLorentzVector &p, const CLHEP::HepMatrix &e) const
Rebuild an error matrix from a Lorentz vector and an error matrix.
Definition: KFitBase.cc:296
enum KFitError::ECode addParticle(const Particle *particle)
Add a particle to the fitter.
Definition: KFitBase.cc:59
std::vector< CLHEP::HepMatrix > m_BeforeCorrelation
Container of input correlation matrices.
Definition: KFitBase.h:251
bool m_FlagFitted
Flag to indicate if the fit is performed and succeeded.
Definition: KFitBase.h:245
double m_CHIsq
chi-square of the fit.
Definition: KFitBase.h:297
int getTrackCount(void) const
Get the number of added tracks.
Definition: KFitBase.cc:107
int m_NDF
NDF of the fit.
Definition: KFitBase.h:295
std::vector< KFitTrack > m_Tracks
Container of input tracks.
Definition: KFitBase.h:249
CLHEP::HepMatrix m_v
See J.Tanaka Ph.D (2001) p137 for definition.
Definition: KFitBase.h:285
virtual enum KFitError::ECode calculateNDF(void)=0
Calculate an NDF of the fit.
const CLHEP::HepMatrix makeError4(const CLHEP::HepLorentzVector &p, const CLHEP::HepMatrix &e) const
Rebuild an error matrix from a Lorentz vector and an error matrix.
Definition: KFitBase.cc:439
int m_TrackCount
Number of tracks.
Definition: KFitBase.h:301
CLHEP::HepMatrix m_al_0
See J.Tanaka Ph.D (2001) p136 for definition.
Definition: KFitBase.h:257
enum KFitError::ECode doFit1(void)
Perform a fit (used in MassFitKFit::doFit()).
Definition: KFitBase.cc:502
enum KFitError::ECode getErrorCode(void) const
Get a code of the last error.
Definition: KFitBase.cc:101
static void displayError(const char *file, const int line, const char *func, const enum ECode code)
Display a description of error and its location.
Definition: KFitError.h:72
ECode
ECode is a error code enumerate.
Definition: KFitError.h:34
@ kCannotGetMatrixInverse
Cannot calculate matrix inverse (bad track property or internal error)
Definition: KFitError.h:58
@ kOutOfRange
Specified track-id out of range.
Definition: KFitError.h:42
@ kNotFittedYet
Not fitted yet.
Definition: KFitError.h:39
@ kDivisionByZero
Division by zero (bad track property or internal error)
Definition: KFitError.h:56
@ kBadInitialCHIsq
Bad initial chi-square (internal error)
Definition: KFitError.h:53
@ kBadTrackSize
Track count too small to perform fit.
Definition: KFitError.h:47
@ kBadMatrixSize
Wrong correlation matrix size.
Definition: KFitError.h:49
@ kBadCorrelationSize
Wrong correlation matrix size (internal error)
Definition: KFitError.h:51
KFitTrack is a container of the track information (Lorentz vector, position, and error matrix),...
Definition: KFitTrack.h:38
Abstract base class for different kinds of events.
Definition: ClusterUtils.h:24
STL namespace.
static constexpr double kInitialCHIsq
Initial chi-square value (internal use)
Definition: KFitConst.h:48
static constexpr double kDefaultMagneticField
Default magnetic field when not set externally.
Definition: KFitConst.h:51
static const int kNumber6
Constant 6 to check matrix size (internal use)
Definition: KFitConst.h:30
static const int kMaxIterationCount
Maximum iteration step (internal use)
Definition: KFitConst.h:45
static const int kAfterFit
Input parameter to specify after-fit when setting/getting a track attribute.
Definition: KFitConst.h:37
static const int kBeforeFit
Input parameter to specify before-fit when setting/getting a track attribute.
Definition: KFitConst.h:35
static const int kNumber7
Constant 7 to check matrix size (internal use)
Definition: KFitConst.h:32