Belle II Software  release-05-02-19
eclBhabhaTimeCalibrationValidationCollectorModule Class Reference

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events. More...

#include <eclBhabhaTimeCalibrationValidationCollectorModule.h>

Inheritance diagram for eclBhabhaTimeCalibrationValidationCollectorModule:
Collaboration diagram for eclBhabhaTimeCalibrationValidationCollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1,
  c_Output = 2,
  c_ParallelProcessingCertified = 4,
  c_HistogramManager = 8,
  c_InternalSerializer = 16,
  c_TerminateInAllProcesses = 32,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclBhabhaTimeCalibrationValidationCollectorModule ()
 Module constructor.
 
virtual ~eclBhabhaTimeCalibrationValidationCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (__attribute__((unused)) bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 Required input array of tracks.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0. More...
 
TTree * m_dbg_tree_electronClusters
 debug output tree for per electron cluster
 
TTree * m_dbg_tree_event
 debug output tree for per event
 
TTree * m_dbg_tree_run
 debug output tree for per run
 
int m_tree_evt_num = -1
 Event number for debug TTree output.
 
int m_tree_run = -1
 Run number for debug TTree output.
 
int m_tree_cid = -1
 ECL Cell ID (1..8736) for debug TTree output.
 
double m_tree_dt99 = -1
 dt99 for cluster
 
double m_tree_time = -1
 Calibrated time.
 
double m_tree_time_fromE0 = -1
 Calibrated time - highest E cluster.
 
double m_tree_time_fromE1 = -1
 Calibrated time - second highest E cluster.
 
double m_tree_E0 = -1
 Highest E cluster energy.
 
double m_tree_E1 = -1
 second highest E cluster energy
 
double m_tree_t0 = -1
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = -1
 EventT0 uncertainty for debug TTree output.
 
int m_NtightTracks = -1
 Number of tight tracks.
 
DBObjPtr< ECLCrystalCalibm_CrateTimeDB
 database object
 
std::vector< float > m_CrateTime
 vector obtained from DB object
 
std::vector< float > m_CrateTimeUnc
 uncertainty vector obtained from DB object
 
int m_tree_crateid = -1
 Crate ID for debug TTree output.
 
double m_tree_tcrate = -1
 Crate time for debug TTree output.
 
double m_tree_tcrate_unc = -1
 Crate time uncertainty for debug TTree output.
 
int m_tree_PreviousRun = -1
 Run number for the previous run for debug TTree output.
 
std::vector< float > m_EperCrys
 ECL Cal digit energy for each crystal.
 
double m_E_electron_clust = -1
 Electron cluster energy.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
double m_looseTrkZ0
 Loose track z0 minimum cut.
 
double m_tightTrkZ0
 Tight track z0 minimum cut.
 
double m_looseTrkD0
 Loose track d0 minimum cut.
 
double m_tightTrkD0
 Tight track d0 minimum cut.
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events.

Definition at line 38 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 79 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 70 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 181 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< vector derived from DB object

< vector derived from DB object

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 205 of file eclBhabhaTimeCalibrationValidationCollectorModule.cc.

206 {
207  int cutIndexPassed = 0;
208  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
209  B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
210 
211 
212  /* Use ECLChannelMapper to get other detector indices for the crystals */
213  /* For conversion from CellID to crate, shaper, and channel ids. */
214 
215  // Use smart pointer to avoid memory leak when the ECLChannelMapper object needs destroying at the end of the event.
216  shared_ptr< ECL::ECLChannelMapper > crystalMapper(new ECL::ECLChannelMapper());
217  crystalMapper->initFromDB();
218 
219  B2DEBUG(29, "Finished checking if previous crystal time payload has changed");
220 
221  if (m_CrateTimeDB.hasChanged()) {
222  m_CrateTime = m_CrateTimeDB->getCalibVector();
223  m_CrateTimeUnc = m_CrateTimeDB->getCalibUncVector();
224  }
225 
226  B2DEBUG(25, "eclBhabhaTimeCalibrationValidationCollector:: loaded ECLCrateTimeOffset from the database"
227  << LogVar("IoV", m_CrateTimeDB.getIoV())
228  << LogVar("Checksum", m_CrateTimeDB.getChecksum()));
229 
230  // Conversion coefficient from ADC ticks to nanoseconds
231  // TICKS_TO_NS ~ 0.4931 ns/clock tick
232  // 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency, fRF=508.889 MHz.
233  const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::m_rf) * 1e3;
234 
235 
236  vector<float> Crate_time_ns(52, 0.0);
237  vector<float> Crate_time_unc_ns(52, 0.0);
239  // Make a crate time offset vector with an entry per crate (instead of per crystal) and convert from ADC counts to ns.
240  for (int crysID = 1; crysID <= 8736; crysID++) {
241  int crateID_temp = crystalMapper->getCrateID(crysID);
242  Crate_time_ns[crateID_temp - 1] = m_CrateTime[crysID] * TICKS_TO_NS;
243  Crate_time_unc_ns[crateID_temp - 1] = m_CrateTimeUnc[crysID] * TICKS_TO_NS;
244  }
245 
246 
247 
248  // Storage crystal energies
249  m_EperCrys.resize(8736);
250  for (auto& eclCalDigit : m_eclCalDigitArray) {
251  int tempCrysID = eclCalDigit.getCellId() - 1;
252  m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
253  }
254 
255 
256  // Getting the event t0 using the full event t0 rather than from the CDC specifically
257 
258  double evt_t0 = -1000 ;
259  double evt_t0_unc = -1000 ;
260 
261  // Determine if there is an event t0 to use and then extract the information about it
262  if (m_eventT0.isOptional()) {
263  if (!m_eventT0.isValid()) {
264  return;
265  }
266  if (!m_eventT0->hasEventT0()) {
267  return;
268  } else {
269  // Overall event t0 (combination of multiple event t0s from different detectors)
270  evt_t0 = m_eventT0->getEventT0() ;
271  evt_t0_unc = m_eventT0->getEventT0Uncertainty() ;
272  }
273  B2DEBUG(26, "Found event t0") ;
274  }
275 
276 
277  //---------------------------------------------------------------------
278  //..Some utilities
279  ClusterUtils cUtil;
280  const TVector3 clustervertex = cUtil.GetIPPosition();
281  PCmsLabTransform boostrotate;
282 
283  //---------------------------------------------------------------------
284  //..Track properties. Use pion (211) mass hypothesis,
285  // which is the only particle hypothesis currently available???
286  double maxp[2] = {0., 0.};
287  int maxiTrk[2] = { -1, -1};
288  int nTrkAll = tracks.getEntries() ;
289 
290  int nTrkLoose = 0 ;
291  int nTrkTight = 0 ;
294  /* Loop over all the tracks to define the tight and loose selection tracks
295  We will select events with only 2 tight tracks and no additional loose tracks.
296  Tight tracks are a subset of looses tracks. */
297  for (int iTrk = 0 ; iTrk < nTrkAll ; iTrk++) {
298  // Get track biasing towards the particle being a pion based on what particle types
299  // are used for reconstruction at this stage.
300  const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion);
301  if (not tempTrackFit) {continue ;}
302 
303  // Collect track info to be used for categorizing
304  short charge = tempTrackFit->getChargeSign() ;
305  double z0 = tempTrackFit->getZ0() ;
306  double d0 = tempTrackFit->getD0() ;
307  int nCDChits = tempTrackFit->getHitPatternCDC().getNHits() ;
308  double p = tempTrackFit->getMomentum().Mag() ;
309 
310  /* Test if loose track */
311 
312  // d0 and z0 cuts
313  if (fabs(d0) > m_looseTrkD0) {
314  continue;
315  }
316  if (fabs(z0) > m_looseTrkZ0) {
317  continue;
318  }
319  // Number of hits in the CDC
320  if (nCDChits < 1) {
321  continue;
322  }
323  nTrkLoose++;
324 
325 
326 
327  /* Test if the loose track is also a tight track */
328 
329  // Number of hits in the CDC
330  if (nCDChits < 20) {
331  continue;
332  }
333  // d0 and z0 cuts
334  if (fabs(d0) > m_tightTrkD0) {
335  continue;
336  }
337  if (fabs(z0) > m_tightTrkZ0) {
338  continue;
339  }
340  nTrkTight++;
341 
342  // Sorting of tight tracks. Not really required as we only want two tight tracks (at the moment) but okay.
343  //..Find the maximum p negative [0] and positive [1] tracks
344  int icharge = 0;
345  if (charge > 0) {icharge = 1;}
346  if (p > maxp[icharge]) {
347  maxp[icharge] = p;
348  maxiTrk[icharge] = iTrk;
349  }
350 
351  }
352  /* After that last section the numbers of loose and tight tracks are known as well as the
353  index of the loose tracks that have the highest p negatively charged and highest p positively
354  charged tracks as measured in the centre of mass frame */
355 
356 
357  if (nTrkTight != 2) {
358  return;
359  }
360  // There are exactly two tight tracks
361  cutIndexPassed++;
362  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
363  B2DEBUG(22, "Cutflow: Two tight tracks: index = " << cutIndexPassed);
364 
365 
366  if (nTrkLoose != 2) {
367  return;
368  }
369  // There are exactly two loose tracks as well, i.e. no additional loose tracks
370  cutIndexPassed++ ;
371  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
372  B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed) ;
373  /* Determine if the two tracks have the opposite electric charge.
374  We know this because the track indices stores the max pt track in [0] for negatively charged track
375  and [1] fo the positively charged track. If both are filled then both a negatively charged
376  and positively charged track were found. */
377  bool oppositelyChargedTracksPassed = maxiTrk[0] != -1 && maxiTrk[1] != -1;
378  if (!oppositelyChargedTracksPassed) {
379  return;
380  }
381  // The two tracks have the opposite electric charges.
382  cutIndexPassed++;
383  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
384  B2DEBUG(22, "Cutflow: Oppositely charged tracks: index = " << cutIndexPassed);
385 
386 
387 
388  //---------------------------------------------------------------------
389  /* Determine associated energy clusters to each of the two tracks. Sum the energies of the
390  multiple clusters to each track and find the crystal with the maximum energy within all
391  the sets of clusters associated to the tracks. Extract the good cluster times.*/
392  double trkEClustLab[2] = {0., 0.};
393  double trkEClustCOM[2] = {0., 0.};
394  double trkpLab[2];
395  double trkpCOM[2];
396  TLorentzVector trkp4Lab[2];
397  TLorentzVector trkp4COM[2];
398 
399  // Index of the cluster and the crystal that has the highest energy crystal for the two tracks
400  int numClustersPerTrack[2] = { 0, 0 };
401  double E_DIV_p[2];
402 
403  vector<double> goodClustTimes ;
404  vector<double> goodClust_dt99 ;
405  vector<double> goodClustE ;
406  vector<int> goodClustMaxEcrys_cid ;
407 
408  for (int icharge = 0; icharge < 2; icharge++) {
409  if (maxiTrk[icharge] > -1) {
410  B2DEBUG(22, "looping over the 2 max pt tracks");
411 
412  const TrackFitResult* tempTrackFit = tracks[maxiTrk[icharge]]->getTrackFitResultWithClosestMass(Const::pion);
413  if (not tempTrackFit) {continue ;}
414 
415  trkp4Lab[icharge] = tempTrackFit->get4Momentum();
416  trkp4COM[icharge] = boostrotate.rotateLabToCms() * trkp4Lab[icharge];
417  trkpLab[icharge] = trkp4Lab[icharge].Rho();
418  trkpCOM[icharge] = trkp4COM[icharge].Rho();
419 
420 
421  /* For each cluster associated to the current track, sum up the energies to get the total
422  energy of all clusters associated to the track and find which crystal has the highest
423  energy from all those clusters*/
424  auto eclClusterRelationsFromTracks = tracks[maxiTrk[icharge]]->getRelationsTo<ECLCluster>();
425  for (unsigned int clusterIdx = 0; clusterIdx < eclClusterRelationsFromTracks.size(); clusterIdx++) {
426 
427  B2DEBUG(22, "Looking at clusters. index = " << clusterIdx);
428  auto cluster = eclClusterRelationsFromTracks[clusterIdx];
429 
430  if (cluster->hasHypothesis(Belle2::ECLCluster::EHypothesisBit::c_nPhotons)) {
431  numClustersPerTrack[icharge]++;
432  double eClust = cluster->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons);
433  double electronTime = cluster->getTime();
434  bool badElectronTime = cluster->hasFailedFitTime();
435  bool badElectronTimeResolution = cluster->hasFailedTimeResolution();
436  if ((fabs(electronTime) < m_timeAbsMax) &&
437  (!badElectronTime) &&
438  (!badElectronTimeResolution)) {
439  trkEClustLab[icharge] += eClust ;
440  short cid = cluster->getMaxECellId() ;
441  goodClustMaxEcrys_cid.push_back(cid) ;
442  goodClustTimes.push_back(electronTime) ;
443  goodClust_dt99.push_back(cluster->getDeltaTime99()) ;
444  goodClustE.push_back(eClust);
445  }
446  }
447  }
448  trkEClustCOM[icharge] = trkEClustLab[icharge] * trkpCOM[icharge] / trkpLab[icharge];
449 
450  // Check both electrons to see if their cluster energy / track momentum is good.
451  // The Belle II physics book shows that this is the main way of separating electrons from other particles
452  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
453  E_DIV_p[icharge] = trkEClustCOM[icharge] / trkpCOM[icharge];
454 
455  }
456  }
457  /* At the end of this section the 3-momenta magnitudes and the cluster energies are known
458  for the two saved track indices for both the lab and COM frames.
459  The crystal with the maximum energy, one associated to each track, is recorded*/
460  B2DEBUG(26, "Extracted time information and E/p for the tracks") ;
461 
462 
463 
464  /* Cut on the number of ECL cluster connected to tracks
465 
466  THIS IS DIFFERENT FROM THE CODE THAT PERFORMS THE CALIBRATIONS. THIS VALIDATIONS REQUIRES
467  THAT THERE ARE EXACTLY TWO CLUSTERS ASSOCIATED TO THE TRACKS WHILE THE CALIBRATION
468  CODE ALLOWS FOR MORE THAN ONE CLUSTER PER TRACK. THIS VALIDATION ALSO DOES NOT CUT ON THE
469  NUMBER OF EXTRA CLUSTERS NOT ASSOCIATED TO THE 2 TRACKS, WHICH IS A LOOSER CUT THAN USED
470  TO PERFORM THE CALIBRATION. */
471  long unsigned int numGoodElectronClusters_cut = 2 ;
472  if (goodClustTimes.size() != numGoodElectronClusters_cut) {
473  return ;
474  }
475  // There is exactly two ECL clusters connected to tracks in the event
476  cutIndexPassed++ ;
477  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
478  B2DEBUG(22, "Cutflow: Exactly " << numGoodElectronClusters_cut
479  << " good clusters connected to tracks: index = " << cutIndexPassed);
480 
481 
482  // Check both electrons to see if their cluster energy / track momentum is good.
483  // The Belle II physics book shows that this is the main way of separating electrons from other particles
484  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
485  bool E_DIV_p_instance_passed[2] = {false, false};
486  double E_DIV_p_CUT = 0.7;
487  for (int icharge = 0; icharge < 2; icharge++) {
488  E_DIV_p_instance_passed[icharge] = E_DIV_p[icharge] > E_DIV_p_CUT;
489  }
490  if (!E_DIV_p_instance_passed[0] || !E_DIV_p_instance_passed[1]) {
491  return;
492  }
493  // E/p sufficiently large
494  cutIndexPassed++;
495  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
496  B2DEBUG(22, "Cutflow: E_i/p_i > " << E_DIV_p_CUT << ": index = " << cutIndexPassed);
497 
498 
499 
500  // Cut on the invariant mass of the tracks in the event
501  double invMassTrk = (trkp4Lab[0] + trkp4Lab[1]).M();
502  double invMass_CUT = 0.9;
503 
504  bool invMassCutsPassed = invMassTrk > (invMass_CUT * boostrotate.getCMSEnergy());
505  if (!invMassCutsPassed) {
506  return;
507  }
508  // Invariable mass of the two tracks are above the minimum
509  cutIndexPassed++;
510  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
511  B2DEBUG(22, "Cutflow: m(track 1+2) > " << invMass_CUT << "*E_COM = " << invMass_CUT << " * " << boostrotate.getCMSEnergy() <<
512  " : index = " << cutIndexPassed);
513 
514 
515  B2DEBUG(22, "Event passed all cuts");
516 
517 
518  // Fill the histogram for the event level variables
519  getObjectPtr<TH1F>("eventT0")->Fill(evt_t0) ;
520 
521  bool isCDCt0 = (static_cast<EventT0::EventT0Component>(*m_eventT0->getEventT0Component())).detectorSet.contains(Const::CDC);
522  bool isECLt0 = (static_cast<EventT0::EventT0Component>(*m_eventT0->getEventT0Component())).detectorSet.contains(Const::ECL);
523  string t0Detector = "UNKNOWN... WHY?";
524  if (isCDCt0) {
525  t0Detector = "CDC" ;
526  } else if (isECLt0) {
527  t0Detector = "ECL" ;
528  }
529 
530  B2DEBUG(26, "t0 = " << evt_t0 << " ns. t0 is from CDC?=" << isCDCt0 << ", t0 is from ECL?=" << isECLt0 << " t0 from " <<
531  t0Detector);
532 
533 
534  //=== For each good electron cluster in the processed event and fill histogram.
535 
536  StoreObjPtr<EventMetaData> evtMetaData ;
537  for (long unsigned int i = 0 ; i < goodClustTimes.size() ; i++) {
538  getObjectPtr<TH1F>("clusterTime")->Fill(goodClustTimes[i]) ;
539  getObjectPtr<TH2F>("clusterTime_cid")->Fill(goodClustMaxEcrys_cid[i] + 0.001, goodClustTimes[i] , 1) ;
540  getObjectPtr<TH2F>("clusterTime_run")->Fill(evtMetaData->getRun() + 0.001, goodClustTimes[i] , 1) ;
541  getObjectPtr<TH2F>("clusterTimeClusterE")->Fill(goodClustE[i], goodClustTimes[i], 1) ;
542  getObjectPtr<TH2F>("dt99_clusterE")->Fill(goodClustE[i], goodClust_dt99[i], 1) ;
543 
544 
545  //== Save debug TTree with detailed information if necessary.
546  if (m_saveTree) {
547 
548  m_tree_time = goodClustTimes[i] ;
549  m_tree_t0 = evt_t0 ;
550  m_tree_t0_unc = evt_t0_unc ;
551  m_E_electron_clust = goodClustE[i] ;
552  m_NtightTracks = nTrkTight ;
553  m_tree_evt_num = evtMetaData->getEvent() ;
554  m_tree_run = evtMetaData->getRun() ;
555  m_tree_cid = goodClustMaxEcrys_cid[i] ;
556  m_tree_dt99 = goodClust_dt99[i] ;
557 
559 
560  }
561  }
562  B2DEBUG(26, "Filled cluster tree") ;
563 
564  //=== Fill histogram for cluster time difference of the two electrons
565  double tDiff;
566  if (goodClustE[0] > goodClustE[1]) {
567  tDiff = goodClustTimes[0] - goodClustTimes[1];
568  } else {
569  tDiff = goodClustTimes[1] - goodClustTimes[0];
570  }
571 
572  getObjectPtr<TH1F>("clusterTimeE0E1diff")->Fill(tDiff) ;
573 
574 
575 
576  if (m_saveTree) {
577  m_tree_t0 = evt_t0 ;
578  m_tree_t0_unc = evt_t0_unc ;
579  m_tree_evt_num = evtMetaData->getEvent() ;
580  m_tree_run = evtMetaData->getRun() ;
581  m_NtightTracks = nTrkTight ;
582  m_tree_E0 = goodClustE[0] ;
583  m_tree_E1 = goodClustE[1] ;
584  m_tree_time_fromE0 = goodClustTimes[0] ;
585  m_tree_time_fromE1 = goodClustTimes[1] ;
586 
587  m_dbg_tree_event->Fill() ;
588 
589 
590  int runNum = evtMetaData->getRun();
591  if (m_tree_PreviousRun != runNum) {
592  for (int icrate = 1; icrate <= 52; icrate++) {
593  m_tree_run = runNum ;
594  m_tree_crateid = icrate ;
595  m_tree_tcrate = Crate_time_ns[icrate] ;
596  m_tree_tcrate_unc = Crate_time_unc_ns[icrate] ;
597 
598  m_dbg_tree_run->Fill() ;
599  }
601  }
602  }
603 
604  B2DEBUG(26, "Filled event tree") ;
605 
606 }

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 441 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 422 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 98 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 135 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 115 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( __attribute__((unused)) bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Definition at line 136 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 189 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 281 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 134 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 383 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 43 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 162 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 87 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 92 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 81 of file Module.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 216 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 75 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 216 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 236 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 251 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 210 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 229 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 222 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 50 of file Module.cc.

Member Data Documentation

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0 so use that as presumably some code has been run to determine what the best t0 is to use.

Definition at line 77 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.


The documentation for this class was generated from the following files:
Belle2::EvtPDLUtil::charge
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:46
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_run
int m_tree_run
Run number for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:86
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_tcrate_unc
double m_tree_tcrate_unc
Crate time uncertainty for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:109
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_E1
double m_tree_E1
second highest E cluster energy
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:94
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_CrateTime
std::vector< float > m_CrateTime
vector obtained from DB object
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:104
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tightTrkZ0
double m_tightTrkZ0
Tight track z0 minimum cut.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:123
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_CrateTimeDB
DBObjPtr< ECLCrystalCalib > m_CrateTimeDB
database object
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:103
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_time
double m_tree_time
Calibrated time.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:89
Belle2::ECLCluster
ECL cluster data.
Definition: ECLCluster.h:39
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_saveTree
bool m_saveTree
If true, save TTree with more detailed event info.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:62
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_evt_num
int m_tree_evt_num
Event number for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:85
Belle2::PCmsLabTransform::getCMSEnergy
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
Definition: PCmsLabTransform.h:57
Belle2::ECLCluster::EHypothesisBit::c_nPhotons
@ c_nPhotons
CR is split into n photons (N1)
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_EperCrys
std::vector< float > m_EperCrys
ECL Cal digit energy for each crystal.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:114
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_NtightTracks
int m_NtightTracks
Number of tight tracks.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:99
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_t0
double m_tree_t0
EventT0 (not from ECL) for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:96
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_dbg_tree_electronClusters
TTree * m_dbg_tree_electronClusters
debug output tree for per electron cluster
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:79
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_time_fromE1
double m_tree_time_fromE1
Calibrated time - second highest E cluster.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:92
Belle2::TrackFitResult
Values of the result of a track fit with a given particle hypothesis.
Definition: TrackFitResult.h:59
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_time_fromE0
double m_tree_time_fromE0
Calibrated time - highest E cluster.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:91
Belle2::EventT0::EventT0Component
Structure for storing the extracted event t0s together with its detector and its uncertainty.
Definition: EventT0.h:44
Belle2::ClusterUtils::GetIPPosition
const TVector3 GetIPPosition()
Returns default IP position from beam parameters.
Definition: ClusterUtils.cc:182
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_CrateTimeUnc
std::vector< float > m_CrateTimeUnc
uncertainty vector obtained from DB object
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:105
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_E_electron_clust
double m_E_electron_clust
Electron cluster energy.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:116
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_PreviousRun
int m_tree_PreviousRun
Run number for the previous run for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:110
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_eclCalDigitArray
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:70
Belle2::Const::pion
static const ChargedStable pion
charged pion particle
Definition: Const.h:535
Belle2::ECL::ECLChannelMapper
This class provides access to ECL channel map that is either a) Loaded from the database (see ecl/dbo...
Definition: ECLChannelMapper.h:36
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_looseTrkZ0
double m_looseTrkZ0
Loose track z0 minimum cut.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:122
Belle2::ClusterUtils
Class to provide momentum-related information from ECLClusters.
Definition: ClusterUtils.h:44
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_dbg_tree_event
TTree * m_dbg_tree_event
debug output tree for per event
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:80
Belle2::StoreObjPtr
Type-safe access to single objects in the data store.
Definition: ParticleList.h:33
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_E0
double m_tree_E0
Highest E cluster energy.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:93
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tightTrkD0
double m_tightTrkD0
Tight track d0 minimum cut.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:125
LogVar
Class to store variables with their name which were sent to the logging service.
Definition: LogVariableStream.h:24
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::tracks
StoreArray< Track > tracks
Required input array of tracks.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:67
Belle2::ECL::EclConfiguration::m_rf
static constexpr double m_rf
accelerating RF, http://ptep.oxfordjournals.org/content/2013/3/03A006.full.pdf
Definition: EclConfiguration.h:45
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_looseTrkD0
double m_looseTrkD0
Loose track d0 minimum cut.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:124
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_eventT0
StoreObjPtr< EventT0 > m_eventT0
StoreObjPtr for T0.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:77
Belle2::PCmsLabTransform
Class to hold Lorentz transformations from/to CMS and boost vector.
Definition: PCmsLabTransform.h:37
Belle2::PCmsLabTransform::rotateLabToCms
const TLorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Definition: PCmsLabTransform.h:74
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_dt99
double m_tree_dt99
dt99 for cluster
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:88
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_cid
int m_tree_cid
ECL Cell ID (1..8736) for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:87
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_timeAbsMax
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:120
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_t0_unc
double m_tree_t0_unc
EventT0 uncertainty for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:97
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_tcrate
double m_tree_tcrate
Crate time for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:108
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_tree_crateid
int m_tree_crateid
Crate ID for debug TTree output.
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:107
Belle2::eclBhabhaTimeCalibrationValidationCollectorModule::m_dbg_tree_run
TTree * m_dbg_tree_run
debug output tree for per run
Definition: eclBhabhaTimeCalibrationValidationCollectorModule.h:81