Belle II Software  release-05-02-19
eclHadronTimeCalibrationValidationCollectorModule Class Reference

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events. More...

#include <eclHadronTimeCalibrationValidationCollectorModule.h>

Inheritance diagram for eclHadronTimeCalibrationValidationCollectorModule:
Collaboration diagram for eclHadronTimeCalibrationValidationCollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1,
  c_Output = 2,
  c_ParallelProcessingCertified = 4,
  c_HistogramManager = 8,
  c_InternalSerializer = 16,
  c_TerminateInAllProcesses = 32,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclHadronTimeCalibrationValidationCollectorModule ()
 Module constructor.
 
virtual ~eclHadronTimeCalibrationValidationCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (__attribute__((unused)) bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 Required input array of tracks.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0. More...
 
TTree * m_dbg_tree_photonClusters
 Output tree with detailed event data. More...
 
TTree * m_dbg_tree_event
 debug output tree for per event
 
int m_tree_evt_num = -1
 Event number for debug TTree output.
 
int m_tree_run = -1
 Run number for debug TTree output.
 
int m_tree_cid = -1
 ECL Cell ID (1..8736) for debug TTree output.
 
double m_tree_dt99 = -1
 dt99 for cluster
 
double m_tree_time = -1
 Calibrated time.
 
double m_tree_time_fromE0 = -1
 Calibrated time - highest E cluster.
 
double m_tree_E0 = -1
 Highest E cluster energy.
 
double m_tree_t0 = -1
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = -1
 EventT0 uncertainty for debug TTree output.
 
int m_NtightTracks = -1
 Number of tight tracks.
 
int m_NphotonClusters = -1
 Number of photon clusters.
 
int m_NGoodClusters = -1
 Number of good clusters.
 
std::vector< float > m_EperCrys
 ECL Cal digit energy for each crystal.
 
double m_E_photon_clust = -1
 Photon cluster energy.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
double m_looseTrkZ0
 Loose track z0 minimum cut.
 
double m_tightTrkZ0
 Tight track z0 minimum cut.
 
double m_looseTrkD0
 Loose track d0 minimum cut.
 
double m_tightTrkD0
 Tight track d0 minimum cut.
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events.

Definition at line 44 of file eclHadronTimeCalibrationValidationCollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 79 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 70 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 181 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 182 of file eclHadronTimeCalibrationValidationCollectorModule.cc.

183 {
184  int cutIndexPassed = 0;
185  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
186  B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
187 
188 
189  /* Use ECLChannelMapper to get other detector indices for the crystals */
190  /* For conversion from CellID to crate, shaper, and channel ids. */
191 
192  // Use smart pointer to avoid memory leak when the ECLChannelMapper object needs destroying at the end of the event.
193  shared_ptr< ECL::ECLChannelMapper > crystalMapper(new ECL::ECLChannelMapper());
194  crystalMapper->initFromDB();
195 
196 
197  // Storage crystal energies
198  m_EperCrys.resize(8736);
199  for (auto& eclCalDigit : m_eclCalDigitArray) {
200  int tempCrysID = eclCalDigit.getCellId() - 1;
201  m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
202  }
203 
204  // Getting the event t0 using the full event t0 rather than from the CDC specifically
205 
206  double evt_t0 = -1000 ;
207  double evt_t0_unc = -1000 ;
208 
209  // Determine if there is an event t0 to use and then extract the information about it
210  if (m_eventT0.isOptional()) {
211  if (!m_eventT0.isValid()) {
212  return;
213  }
214  if (!m_eventT0->hasEventT0()) {
215  return;
216  } else {
217  // Overall event t0 (combination of multiple event t0s from different detectors)
218  evt_t0 = m_eventT0->getEventT0() ;
219  evt_t0_unc = m_eventT0->getEventT0Uncertainty() ;
220  }
221  B2DEBUG(26, "Found event t0") ;
222  }
223 
224  //---------------------------------------------------------------------
225  //..Track properties. Use pion (211) mass hypothesis,
226  // which is the only particle hypothesis currently available???
227  int nTrkAll = tracks.getEntries() ;
228 
229  int nTrkLoose = 0 ;
230  int nTrkTight = 0 ;
233  /* Loop over all the tracks to define the tight and loose selection tracks.
234  We will select events with only a few tight tracks and no additional loose tracks.
235  Tight tracks are a subset of looses tracks. */
236  for (int iTrk = 0 ; iTrk < nTrkAll ; iTrk++) {
237 
238  // Get track biasing towards the particle being a pion
239  const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion) ;
240  if (not tempTrackFit) {continue ;}
241 
242  // Collect track info to be used for categorizing
243  //short charge = tempTrackFit->getChargeSign() ;
244  double z0 = tempTrackFit->getZ0() ;
245  double d0 = tempTrackFit->getD0() ;
246  int nCDChits = tempTrackFit->getHitPatternCDC().getNHits() ;
247  //double pt = tempTrackFit->getTransverseMomentum() ;
248  //double p = tempTrackFit->getMomentum().Mag() ;
249 
250  /* Test if loose track */
251 
252  // d0 and z0 cuts
253  if (fabs(d0) > m_looseTrkD0) {
254  continue;
255  }
256  if (fabs(z0) > m_looseTrkZ0) {
257  continue;
258  }
259  // Number of hits in the CDC
260  if (nCDChits < 1) {
261  continue;
262  }
263  nTrkLoose++;
264 
265 
266 
267  /* Test if the loose track is also a tight track */
268 
269  // Number of hits in the CDC
270  if (nCDChits < 20) {
271  continue;
272  }
273  // d0 and z0 cuts
274  if (fabs(d0) > m_tightTrkD0) {
275  continue;
276  }
277  if (fabs(z0) > m_tightTrkZ0) {
278  continue;
279  }
280  nTrkTight++;
281 
282  }
283  // After that last section the numbers of loose and tight tracks are known
284  B2DEBUG(26, "Found loose and tight tracks") ;
285 
286 
287  int numGoodTightTracks_minCut = 4 ;
288  if (nTrkTight < numGoodTightTracks_minCut) {
289  return ;
290  }
291  // There are at least X tight tracks
292  cutIndexPassed++ ;
293  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
294  B2DEBUG(22, "Cutflow: At least " << numGoodTightTracks_minCut << " tight tracks: index = " << cutIndexPassed) ;
295 
296 
297  int numGoodLooseTracks_minCut = numGoodTightTracks_minCut ;
298  if (nTrkLoose < numGoodLooseTracks_minCut) {
299  return ;
300  }
301  // There are more loose tracks than tight tracks then veto the event. If there are fewer loose tracks than tight tracks then veto the event, although this should be impossible
302  cutIndexPassed++ ;
303  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
304  B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed) ;
305 
306 
307  //------------------------------------------------------------------------
308  // Find the good ECL clusters
309  double clusterE_minCut = 0.1 ; // GeV
310  int nclust = m_eclClusterArray.getEntries();
311  int nGoodClusts = 0 ;
312  vector<int> goodClusterIdxs ;
313  for (int ic = 0; ic < nclust; ic++) {
314  double eClust = m_eclClusterArray[ic]->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons) ;
315  if (eClust > clusterE_minCut) {
316  goodClusterIdxs.push_back(ic) ;
317  nGoodClusts++ ;
318  }
319  }
320 
321 
322  // Cut on the minimum number of good clusters
323  int numGoodEMclusters_minCut = 5 ;
324  if (nGoodClusts < numGoodEMclusters_minCut) {
325  return ;
326  }
327  // There are at least 5 good EM clusters (photon = basically all clusters)
328  cutIndexPassed++ ;
329  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
330  B2DEBUG(22, "Cutflow: At least " << numGoodEMclusters_minCut << " ECL clusters: index = " << cutIndexPassed) ;
331 
332 
333  //------------------------------------------------------------------------
334  // Find the good photons first before doing anything with them
335 
336  double photonE_minCut = 0.05 ; // GeV
337  double zernikeMVA_minCut = 0.2 ;
338  int nPhotons = 0 ;
339 
340  vector<int> goodPhotonClusterIdxs ;
341  for (int ic = 0; ic < nclust; ic++) {
344  double photonTime = m_eclClusterArray[ic]->getTime();
345  double zernikeMVA = m_eclClusterArray[ic]->getZernikeMVA();
346  bool badPhotonTime = m_eclClusterArray[ic]->hasFailedFitTime();
347  bool badPhotonTimeResolution = m_eclClusterArray[ic]->hasFailedTimeResolution();
348  bool hasTrack = m_eclClusterArray[ic]->isTrack();
349  if ((eClust > photonE_minCut) &&
350  (fabs(photonTime) < m_timeAbsMax) &&
351  (!badPhotonTime) &&
352  (!badPhotonTimeResolution) &&
353  (zernikeMVA > zernikeMVA_minCut) &&
354  (!hasTrack)) {
355  goodPhotonClusterIdxs.push_back(ic) ;
356  nPhotons++;
357  }
358  }
359  }
360 
361 
362  // Cut on the minimum number of good photon clusters
363  int numGoodPhotonclusters_minCut = 1 ;
364  if (nPhotons < numGoodPhotonclusters_minCut) {
365  return ;
366  }
367  // There is at least one good photon in the event
368  cutIndexPassed++ ;
369  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
370  B2DEBUG(22, "Cutflow: At least " << numGoodPhotonclusters_minCut << " good photon: index = " << cutIndexPassed) ;
371 
372 
373 
374  //------------------------------------------------------------------------
375  /* Extract the times of the good clusters and
376  save the maximum energy crystal information (cid) */
377  vector<double> goodClustTimes ;
378  vector<double> goodClust_dt99 ;
379  vector<double> goodClusters_crysE ;
380  vector<double> goodClustE ;
381  vector<int> goodClustMaxEcrys_cid ;
382  for (long unsigned int i = 0; i < goodPhotonClusterIdxs.size(); i++) {
383  int ic = goodPhotonClusterIdxs[i] ;
384 
387  short cid = m_eclClusterArray[ic]->getMaxECellId() ;
388 
389  goodClustMaxEcrys_cid.push_back(cid) ;
390  goodClustTimes.push_back(m_eclClusterArray[ic]->getTime()) ;
391  goodClust_dt99.push_back(m_eclClusterArray[ic]->getDeltaTime99()) ;
392  goodClusters_crysE.push_back(m_EperCrys[cid - 1]) ;
393  goodClustE.push_back(eClust);
394  }
395  }
396 
397 
398  // Define a pair (energy,time) so that we can quickly and easily sort the cluster information
399  // based on the energy of the clusters
400  vector< pair<double, double> > pair_energy_time ;
401  for (long unsigned int ic = 0; ic < goodClusters_crysE.size(); ic++) {
402  pair_energy_time.push_back(make_pair(goodClusters_crysE[ic], goodClustTimes[ic])) ;
403  }
404 
405  // sorts pairs in decreasing order of their first value (energy)
406  // i.e. highest energy first
407  sort(pair_energy_time.begin(), pair_energy_time.end(), greater<>()) ;
408 
409 
410 
411  B2DEBUG(22, "Event passed all cuts");
412 
413 
414  // Fill the histogram for the event level variables
415  getObjectPtr<TH1F>("eventT0")->Fill(evt_t0) ;
416 
417  bool isCDCt0 = (static_cast<EventT0::EventT0Component>(*m_eventT0->getEventT0Component())).detectorSet.contains(Const::CDC);
418  bool isECLt0 = (static_cast<EventT0::EventT0Component>(*m_eventT0->getEventT0Component())).detectorSet.contains(Const::ECL);
419  string t0Detector = "UNKNOWN... WHY?";
420  if (isCDCt0) {
421  t0Detector = "CDC" ;
422  } else if (isECLt0) {
423  t0Detector = "ECL" ;
424  }
425 
426  B2DEBUG(26, "t0 = " << evt_t0 << " ns. t0 is from CDC?=" << isCDCt0 << ", t0 is from ECL?=" << isECLt0 << " t0 from " <<
427  t0Detector);
428 
429 
430 
431  //=== For each good photon cluster in the processed event and fill histogram.
432 
433  StoreObjPtr<EventMetaData> evtMetaData ;
434  for (long unsigned int i = 0 ; i < goodPhotonClusterIdxs.size() ; i++) {
435  getObjectPtr<TH1F>("clusterTime")->Fill(goodClustTimes[i]) ;
436  getObjectPtr<TH2F>("clusterTime_cid")->Fill(goodClustMaxEcrys_cid[i] + 0.001, goodClustTimes[i] , 1) ;
437  getObjectPtr<TH2F>("clusterTime_run")->Fill(evtMetaData->getRun() + 0.001, goodClustTimes[i] , 1) ;
438  getObjectPtr<TH2F>("clusterTimeClusterE")->Fill(goodClustE[i], goodClustTimes[i], 1) ;
439  getObjectPtr<TH2F>("dt99_clusterE")->Fill(goodClustE[i], goodClust_dt99[i], 1) ;
440 
441  //== Save debug TTree with detailed information if necessary.
442  if (m_saveTree) {
443 
444  m_tree_time = goodClustTimes[i] ;
445  m_E_photon_clust = goodClusters_crysE[i] ;
446  m_tree_t0 = evt_t0 ;
447  m_tree_t0_unc = evt_t0_unc ;
448  m_NtightTracks = nTrkTight ;
449  m_NphotonClusters = nPhotons ;
450  m_NGoodClusters = nGoodClusts ;
451  m_tree_evt_num = evtMetaData->getEvent() ;
452  m_tree_run = evtMetaData->getRun() ;
453  m_tree_cid = goodClustMaxEcrys_cid[i] ;
454  m_tree_dt99 = goodClust_dt99[i] ;
455 
456  m_dbg_tree_photonClusters->Fill() ;
457 
458  }
459  }
460  B2DEBUG(26, "Filled cluster tree") ;
461 
462  //=== Fill histogram for cluster time difference of the two max E photons
463  if (pair_energy_time.size() >= 2) {
464  getObjectPtr<TH1F>("clusterTimeE0E1diff")->Fill(pair_energy_time[0].second - pair_energy_time[1].second) ;
465  }
466 
467 
468 
469  if (m_saveTree) {
470  m_tree_t0 = evt_t0 ;
471  m_tree_t0_unc = evt_t0_unc ;
472  m_tree_evt_num = evtMetaData->getEvent() ;
473  m_tree_run = evtMetaData->getRun() ;
474  m_NtightTracks = nTrkTight ;
475  m_NphotonClusters = nPhotons ;
476  m_NGoodClusters = nGoodClusts ;
477 
478  m_tree_E0 = pair_energy_time[0].first ;
479  m_tree_time_fromE0 = pair_energy_time[0].second ;
480  m_dbg_tree_event->Fill() ;
481  }
482 
483  B2DEBUG(26, "Filled event tree") ;
484 
485 }

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 441 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 422 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 98 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 135 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 115 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( __attribute__((unused)) bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Definition at line 136 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 189 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 281 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 134 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 383 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 43 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 162 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 87 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 92 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 81 of file Module.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 216 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 75 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 216 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 236 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 251 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 210 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 229 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 222 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 50 of file Module.cc.

Member Data Documentation

◆ m_dbg_tree_photonClusters

TTree* m_dbg_tree_photonClusters
private

Output tree with detailed event data.

debug output tree for per electron cluster

Definition at line 88 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0 so use that as presumably some code has been run to determine what the best t0 is to use.

Definition at line 83 of file eclHadronTimeCalibrationValidationCollectorModule.h.


The documentation for this class was generated from the following files:
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_saveTree
bool m_saveTree
If true, save TTree with more detailed event info.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:68
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_looseTrkD0
double m_looseTrkD0
Loose track d0 minimum cut.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:121
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tightTrkZ0
double m_tightTrkZ0
Tight track z0 minimum cut.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:120
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_dbg_tree_photonClusters
TTree * m_dbg_tree_photonClusters
Output tree with detailed event data.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:88
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_t0
double m_tree_t0
EventT0 (not from ECL) for debug TTree output.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:102
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_t0_unc
double m_tree_t0_unc
EventT0 uncertainty for debug TTree output.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:103
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_dt99
double m_tree_dt99
dt99 for cluster
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:96
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_eclCalDigitArray
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:76
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_EperCrys
std::vector< float > m_EperCrys
ECL Cal digit energy for each crystal.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:111
Belle2::ECLCluster::EHypothesisBit::c_nPhotons
@ c_nPhotons
CR is split into n photons (N1)
Belle2::TrackFitResult
Values of the result of a track fit with a given particle hypothesis.
Definition: TrackFitResult.h:59
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_evt_num
int m_tree_evt_num
Event number for debug TTree output.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:93
Belle2::EventT0::EventT0Component
Structure for storing the extracted event t0s together with its detector and its uncertainty.
Definition: EventT0.h:44
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_E0
double m_tree_E0
Highest E cluster energy.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:100
Belle2::Const::pion
static const ChargedStable pion
charged pion particle
Definition: Const.h:535
Belle2::ECL::ECLChannelMapper
This class provides access to ECL channel map that is either a) Loaded from the database (see ecl/dbo...
Definition: ECLChannelMapper.h:36
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_eventT0
StoreObjPtr< EventT0 > m_eventT0
StoreObjPtr for T0.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:83
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_cid
int m_tree_cid
ECL Cell ID (1..8736) for debug TTree output.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:95
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_E_photon_clust
double m_E_photon_clust
Photon cluster energy.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:114
Belle2::StoreObjPtr
Type-safe access to single objects in the data store.
Definition: ParticleList.h:33
Belle2::eclHadronTimeCalibrationValidationCollectorModule::tracks
StoreArray< Track > tracks
Required input array of tracks.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:73
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_time
double m_tree_time
Calibrated time.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:97
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_NtightTracks
int m_NtightTracks
Number of tight tracks.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:105
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_timeAbsMax
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:117
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_NphotonClusters
int m_NphotonClusters
Number of photon clusters.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:106
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_looseTrkZ0
double m_looseTrkZ0
Loose track z0 minimum cut.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:119
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_run
int m_tree_run
Run number for debug TTree output.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:94
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_dbg_tree_event
TTree * m_dbg_tree_event
debug output tree for per event
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:89
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tree_time_fromE0
double m_tree_time_fromE0
Calibrated time - highest E cluster.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:99
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_eclClusterArray
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:74
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_NGoodClusters
int m_NGoodClusters
Number of good clusters.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:107
Belle2::eclHadronTimeCalibrationValidationCollectorModule::m_tightTrkD0
double m_tightTrkD0
Tight track d0 minimum cut.
Definition: eclHadronTimeCalibrationValidationCollectorModule.h:122