Belle II Software  release-05-02-19
eclee5x5CollectorModule Class Reference

Calibration collector module that uses e+e- --> e+e- to do ECL single crystal energy calibration. More...

#include <eclee5x5CollectorModule.h>

Inheritance diagram for eclee5x5CollectorModule:
Collaboration diagram for eclee5x5CollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1,
  c_Output = 2,
  c_ParallelProcessingCertified = 4,
  c_HistogramManager = 8,
  c_InternalSerializer = 16,
  c_TerminateInAllProcesses = 32,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclee5x5CollectorModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
void prepare () override
 Define histograms and read payloads from DB. More...
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (__attribute__((unused)) bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void inDefineHisto ()
 Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

double m_thetaLabMinDeg
 Parameters to control the job. More...
 
double m_thetaLabMaxDeg
 maximum ecl cluster theta in lab (150 degrees)
 
double m_minE0
 minimum energy of cluster 0: E*0/sqrts (0.45)
 
double m_minE1
 minimum energy of cluster 1: E*1/sqrts (0.40)
 
double m_maxdThetaSum
 abs(theta0* + theta1* - 180 deg) must be less than less (2 deg)
 
double m_dPhiScale
 scale dPhi* cut by this factor (1)
 
double m_maxTime
 maximum cluster time diff abs(t1-t0)/dt99 (10)
 
bool m_useCalDigits
 use eclCalDigit to determine MC deposited energy (false)
 
bool m_requireL1
 require events to satisfy a level 1 trigger (false)
 
StoreArray< ECLClusterm_eclClusterArray
 Required arrays. More...
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreArray< ECLDigitm_eclDigitArray
 Required input array of ECLDigits.
 
StoreObjPtr< EventMetaDatam_evtMetaData
 dataStore EventMetaData
 
StoreObjPtr< TRGSummarym_TRGResults
 dataStore TRGSummary
 
double m_thetaLabMin = 0.
 Some other useful quantities. More...
 
double m_thetaLabMax = 0.
 m_thetaLabMaxDeg converted to radians
 
std::vector< float > m_dPhiMin
 minimum dPhi* as a function of thetaID
 
std::vector< float > m_dPhiMax
 maximum dPhi* as a function of thetaID
 
bool storeCalib = true
 force the input calibration constants to be saved first event
 
std::vector< float > EperCrys
 Energy for each crystal from ECLDigit or ECLCalDigit (GeV)
 
ECL::ECLNeighboursm_eclNeighbours5x5 {nullptr}
 Neighbour map of 25 crystals.
 
PCmsLabTransform m_boostrotate
 boost from COM to lab and visa versa
 
double m_sqrts = 10.58
 sqrt s from m_boostrotate
 
std::vector< int > m_thetaID
 thetaID of each crystal
 
DBObjPtr< ECLCrystalCalibm_ECLExpee5x5E
 Expected energies from database.
 
std::vector< float > Expee5x5E
 vector of energies obtained from DB object
 
std::vector< float > Expee5x5Sigma
 vector of sigmaE obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ElectronicsCalib
 Electronics calibration from database.
 
std::vector< float > ElectronicsCalib
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ee5x5Calib
 Existing single crystal calibration from DB; will be updated by CAF.
 
std::vector< float > ee5x5Calib
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_selectdPhiData
 dPhi cut More...
 
DBObjPtr< ECLCrystalCalibm_selectdPhiMC
 DB object for MC.
 
std::vector< float > meandPhi
 mean requirement on dPhi from DB object
 
std::vector< float > widthdPhi
 width of requirement on dPhi from DB object
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Calibration collector module that uses e+e- --> e+e- to do ECL single crystal energy calibration.

Definition at line 46 of file eclee5x5CollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 79 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 70 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 181 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.



Record the input database constants for the first call


Check if DB objects have changed

Verify that we have valid values for the starting calibrations


If requested, require a level 1 trigger

Find the two maximum energy clusters. Use photon hypothesis

Selection criteria using the two clusters

Require that the two are in the specified angular region

And both have reasonably good times

Find COM 4-vectors

Check how back-to-back in theta*

Apply energy cut on both clusters

Find the maximum energy crystal in each of the two clusters for dPhi cut

Record dPhi*, then apply cut

Record ECL energy as a function of CrysID, derived from ECLDigits if data, ECLCalDigit if MC

ee5x5Calib is negative if the previous iteration of the algorithm was unable to calculate a value. In this case, the input value has been stored with a minus sign

Reimplemented from CalibrationCollectorModule.

Definition at line 194 of file eclee5x5CollectorModule.cc.

195 {
196 
198  if (storeCalib) {
199  for (int crysID = 0; crysID < 8736; crysID++) {
200  getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysID + 0.001, Expee5x5E[crysID]);
201  getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysID + 0.001, ElectronicsCalib[crysID]);
202  getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysID + 0.001, ee5x5Calib[crysID]);
203  getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysID + 0.001);
204  }
205  storeCalib = false;
206  }
207 
210  bool newConst = false;
211  if (m_ECLExpee5x5E.hasChanged()) {
212  newConst = true;
213  B2INFO("ECLExpee5x5E has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
214  Expee5x5E = m_ECLExpee5x5E->getCalibVector();
215  Expee5x5Sigma = m_ECLExpee5x5E->getCalibUncVector();
216  }
217  if (m_ElectronicsCalib.hasChanged()) {
218  newConst = true;
219  B2INFO("ECLCrystalElectronics has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
220  ElectronicsCalib = m_ElectronicsCalib->getCalibVector();
221  }
222  if (m_ee5x5Calib.hasChanged()) {
223  newConst = true;
224  B2INFO("ECLCrystalEnergyee5x5 has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
225  ee5x5Calib = m_ee5x5Calib->getCalibVector();
226  }
227 
228  if (newConst) {
229  for (int ic = 1; ic < 9000; ic += 1000) {
230  B2INFO("DB constants for cellID=" << ic << ": ee5x5Calib = " << ee5x5Calib[ic - 1] << " Expee5x5E = " << Expee5x5E[ic - 1] <<
231  " ElectronicsCalib = " <<
232  ElectronicsCalib[ic - 1]);
233  }
234 
236  for (int crysID = 0; crysID < 8736; crysID++) {
237  if (ElectronicsCalib[crysID] <= 0) {B2FATAL("eclee5x5Collector: ElectronicsCalib = " << ElectronicsCalib[crysID] << " for crysID = " << crysID);}
238  if (Expee5x5E[crysID] == 0) {B2FATAL("eclee5x5Collector: Expee5x5E = 0 for crysID = " << crysID);}
239  if (ee5x5Calib[crysID] == 0) {B2FATAL("eclee5x5Collector: ee5x5Calib = 0 for crysID = " << crysID);}
240  }
241  }
242 
245  if (m_requireL1) {
246  unsigned int L1TriggerResults = m_TRGResults->getTRGSummary(0);
247  if (L1TriggerResults == 0) {return;}
248  }
249 
250  //------------------------------------------------------------------------
252  int icMax[2] = { -1, -1};
253  double maxClustE[2] = { -1., -1.};
254  int nclust = m_eclClusterArray.getEntries();
255  for (int ic = 0; ic < nclust; ic++) {
258  if (eClust > maxClustE[0]) {
259  maxClustE[1] = maxClustE[0];
260  icMax[1] = icMax[0];
261  maxClustE[0] = eClust;
262  icMax[0] = ic;
263  } else if (eClust > maxClustE[1]) {
264  maxClustE[1] = eClust;
265  icMax[1] = ic;
266  }
267  }
268  }
269 
270  //------------------------------------------------------------------------
273  if (icMax[1] == -1) {return;}
274  double theta0 = m_eclClusterArray[icMax[0]]->getTheta();
275  double theta1 = m_eclClusterArray[icMax[1]]->getTheta();
276  if (theta0 < m_thetaLabMin || theta0 > m_thetaLabMax || theta1 < m_thetaLabMin || theta1 > m_thetaLabMax) {return;}
277 
279  double t0 = m_eclClusterArray[icMax[0]]->getTime();
280  double dt990 = m_eclClusterArray[icMax[0]]->getDeltaTime99();
281  double t1 = m_eclClusterArray[icMax[1]]->getTime();
282  double dt991 = m_eclClusterArray[icMax[1]]->getDeltaTime99();
283  double dt99min = dt990;
284  if (dt991 < dt990) {dt99min = dt991;}
285  if (dt99min <= 0) {dt99min = 0.0001;}
286  if (abs(t1 - t0) > dt99min * m_maxTime) {return;}
287 
288  //------------------------------------------------------------------------
290  ClusterUtils cUtil;
291  const TVector3 clustervertex = cUtil.GetIPPosition();
292 
293  double phi0 = m_eclClusterArray[icMax[0]]->getPhi();
294  TVector3 p30(0., 0., maxClustE[0]);
295  p30.SetTheta(theta0);
296  p30.SetPhi(phi0);
297  const TLorentzVector p40 = cUtil.Get4MomentumFromCluster(m_eclClusterArray[icMax[0]], clustervertex,
299 
300  double phi1 = m_eclClusterArray[icMax[1]]->getPhi();
301  TVector3 p31(0., 0., maxClustE[1]);
302  p31.SetTheta(theta1);
303  p31.SetPhi(phi1);
304  const TLorentzVector p41 = cUtil.Get4MomentumFromCluster(m_eclClusterArray[icMax[1]], clustervertex,
306 
308  TLorentzVector p40COM = m_boostrotate.rotateLabToCms() * p40;
309  TLorentzVector p41COM = m_boostrotate.rotateLabToCms() * p41;
310  double theta01COM = (p41COM.Theta() + p40COM.Theta()) * TMath::RadToDeg();
311  if (abs(theta01COM - 180.) > m_maxdThetaSum) {return;}
312 
314  if (p40COM.E() < m_minE0 * m_sqrts and p41COM.E() < m_minE0 * m_sqrts) {return;}
315  if (p40COM.E() < m_minE1 * m_sqrts or p41COM.E() < m_minE1 * m_sqrts) {return;}
316 
317 
318  //------------------------------------------------------------------------
320  int crysIDMax[2] = { -1, -1};
321  double crysEMax[2] = { -1., -1.};
322  for (int imax = 0; imax < 2; imax++) {
323  auto eclClusterRelations = m_eclClusterArray[icMax[imax]]->getRelationsTo<ECLCalDigit>("ECLCalDigits");
324  for (unsigned int ir = 0; ir < eclClusterRelations.size(); ir++) {
325  const auto calDigit = eclClusterRelations.object(ir);
326  int tempCrysID = calDigit->getCellId() - 1;
327  float tempE = calDigit->getEnergy();
328  if (tempE > crysEMax[imax]) {
329  crysEMax[imax] = tempE;
330  crysIDMax[imax] = tempCrysID;
331  }
332  }
333  }
334 
336  double dphiCOM = abs(p41COM.Phi() - p40COM.Phi()) * TMath::RadToDeg();
337  if (dphiCOM > 180.) {dphiCOM = 360. - dphiCOM;}
338 
339  int thetaIDmin = m_thetaID[crysIDMax[0]];
340  if (m_thetaID[crysIDMax[1]] < m_thetaID[crysIDMax[0]]) {thetaIDmin = m_thetaID[crysIDMax[1]];}
341  getObjectPtr<TH2F>("dPhivsThetaID")->Fill(thetaIDmin + 0.001, dphiCOM);
342  if (dphiCOM<m_dPhiMin.at(thetaIDmin) or dphiCOM>m_dPhiMax.at(thetaIDmin)) {return;}
343 
344 
345  //------------------------------------------------------------------------
347  memset(&EperCrys[0], 0, EperCrys.size()*sizeof EperCrys[0]);
348 
349  if (m_useCalDigits) {
350  for (auto& eclCalDigit : m_eclCalDigitArray) {
351  int tempCrysID = eclCalDigit.getCellId() - 1;
352  EperCrys[tempCrysID] = eclCalDigit.getEnergy();
353  }
354  } else {
355  for (auto& eclDigit : m_eclDigitArray) {
356  int tempCrysID = eclDigit.getCellId() - 1;
358  EperCrys[tempCrysID] = eclDigit.getAmp() * abs(ee5x5Calib[tempCrysID]) * ElectronicsCalib[tempCrysID];
359  }
360  }
361 
362  //------------------------------------------------------------------------
363  //** Quantities needed for the 5x5 calibration */
364  for (int ic = 0; ic < 2; ic++) {
365  int crysMax = crysIDMax[ic];
366  float expE = abs(Expee5x5E[crysMax]);
367  float sigmaExp = Expee5x5Sigma[crysMax];
368  std::vector<short int> neighbours = m_eclNeighbours5x5->getNeighbours(crysMax + 1);
369 
370  //** Energy in 5x5, and expected energy corrected for crystals that will not be calibrated */
371  double reducedExpE = expE;
372  double E25 = 0.;
373  for (auto& cellID : neighbours) {
374  E25 += EperCrys[cellID - 1];
375  if (ee5x5Calib[cellID - 1] < 0.) {
376  reducedExpE -= EperCrys[cellID - 1];
377  }
378  }
379 
380  //** now the vector and matrix used in the calibration */
381  double rexpE = reducedExpE / sigmaExp;
382  for (auto& celli : neighbours) {
383  if (ee5x5Calib[celli - 1] > 0.) {
384  float rEi = EperCrys[celli - 1] / sigmaExp;
385  getObjectPtr<TH1F>("RvsCrysID")->Fill(celli - 0.999, rexpE * rEi);
386  getObjectPtr<TH1F>("NRvsCrysID")->Fill(celli - 0.999);
387  for (auto& cellj : neighbours) {
388  if (ee5x5Calib[cellj - 1] > 0.) {
389  float rEj = EperCrys[cellj - 1] / sigmaExp;
390  getObjectPtr<TH2F>("Qmatrix")->Fill(celli - 0.999, cellj - 0.999, rEi * rEj);
391  }
392  }
393  }
394  }
395 
396  //** Record normalized energy and corresponding calib values. Expee5x5E is negative if the algorithm was unable to calculate a value. In this case, the nominal input value has been stored with a minus sign */
397  getObjectPtr<TH2F>("EnVsCrysID")->Fill(crysMax + 0.001, E25 / expE);
398  getObjectPtr<TH1F>("EntriesvsCrys")->Fill(crysMax + 0.001);
399  getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysMax + 0.001, Expee5x5E[crysMax]);
400  getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysMax + 0.001, ElectronicsCalib[crysMax]);
401  getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysMax + 0.001, ee5x5Calib[crysMax]);
402  getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysMax + 0.001);
403  }
404 }

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 441 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 422 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 98 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 135 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 115 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( __attribute__((unused)) bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Definition at line 136 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 189 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 281 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 134 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 383 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 43 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 162 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 87 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 92 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 81 of file Module.cc.

◆ prepare()

void prepare ( )
overridevirtual

Define histograms and read payloads from DB.





Create the histograms and register them in the data store

Parameters

Resize vectors

ECL geometry


Get expected energies and calibration constants from DB. Need to call hasChanged() for later comparison

Write out a few for quality control

Verify that we have valid values for the payloads


Required data objects


Reimplemented from CalibrationCollectorModule.

Definition at line 70 of file eclee5x5CollectorModule.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 216 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 75 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 216 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 236 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 251 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 210 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 229 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 222 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 50 of file Module.cc.

Member Data Documentation

◆ m_eclClusterArray

StoreArray<ECLCluster> m_eclClusterArray
private

Required arrays.

Required input array of ECLClusters

Definition at line 72 of file eclee5x5CollectorModule.h.

◆ m_selectdPhiData

DBObjPtr<ECLCrystalCalib> m_selectdPhiData
private

dPhi cut

DB object for data

Definition at line 104 of file eclee5x5CollectorModule.h.

◆ m_thetaLabMin

double m_thetaLabMin = 0.
private

Some other useful quantities.

m_thetaLabMinDeg converted to radians

Definition at line 79 of file eclee5x5CollectorModule.h.

◆ m_thetaLabMinDeg

double m_thetaLabMinDeg
private

Parameters to control the job.

miniumum ecl cluster theta in lab (17 degrees)

Definition at line 61 of file eclee5x5CollectorModule.h.


The documentation for this class was generated from the following files:
Belle2::eclee5x5CollectorModule::m_requireL1
bool m_requireL1
require events to satisfy a level 1 trigger (false)
Definition: eclee5x5CollectorModule.h:69
Belle2::eclee5x5CollectorModule::m_TRGResults
StoreObjPtr< TRGSummary > m_TRGResults
dataStore TRGSummary
Definition: eclee5x5CollectorModule.h:76
Belle2::ECLCalDigit
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:38
Belle2::eclee5x5CollectorModule::m_minE1
double m_minE1
minimum energy of cluster 1: E*1/sqrts (0.40)
Definition: eclee5x5CollectorModule.h:64
Belle2::eclee5x5CollectorModule::m_useCalDigits
bool m_useCalDigits
use eclCalDigit to determine MC deposited energy (false)
Definition: eclee5x5CollectorModule.h:68
Belle2::ECLCalDigit::getCellId
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:129
Belle2::eclee5x5CollectorModule::EperCrys
std::vector< float > EperCrys
Energy for each crystal from ECLDigit or ECLCalDigit (GeV)
Definition: eclee5x5CollectorModule.h:84
Belle2::eclee5x5CollectorModule::m_eclCalDigitArray
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
Definition: eclee5x5CollectorModule.h:73
Belle2::eclee5x5CollectorModule::storeCalib
bool storeCalib
force the input calibration constants to be saved first event
Definition: eclee5x5CollectorModule.h:83
Belle2::ClusterUtils::Get4MomentumFromCluster
const TLorentzVector Get4MomentumFromCluster(const ECLCluster *cluster, ECLCluster::EHypothesisBit hypo)
Returns four momentum vector.
Definition: ClusterUtils.cc:26
Belle2::ECLCluster::EHypothesisBit::c_nPhotons
@ c_nPhotons
CR is split into n photons (N1)
Belle2::eclee5x5CollectorModule::m_eclDigitArray
StoreArray< ECLDigit > m_eclDigitArray
Required input array of ECLDigits.
Definition: eclee5x5CollectorModule.h:74
Belle2::eclee5x5CollectorModule::ElectronicsCalib
std::vector< float > ElectronicsCalib
vector obtained from DB object
Definition: eclee5x5CollectorModule.h:97
Belle2::eclee5x5CollectorModule::Expee5x5E
std::vector< float > Expee5x5E
vector of energies obtained from DB object
Definition: eclee5x5CollectorModule.h:92
Belle2::eclee5x5CollectorModule::ee5x5Calib
std::vector< float > ee5x5Calib
vector obtained from DB object
Definition: eclee5x5CollectorModule.h:101
Belle2::ClusterUtils::GetIPPosition
const TVector3 GetIPPosition()
Returns default IP position from beam parameters.
Definition: ClusterUtils.cc:182
Belle2::eclee5x5CollectorModule::m_ElectronicsCalib
DBObjPtr< ECLCrystalCalib > m_ElectronicsCalib
Electronics calibration from database.
Definition: eclee5x5CollectorModule.h:96
Belle2::eclee5x5CollectorModule::m_dPhiMin
std::vector< float > m_dPhiMin
minimum dPhi* as a function of thetaID
Definition: eclee5x5CollectorModule.h:81
Belle2::eclee5x5CollectorModule::m_eclNeighbours5x5
ECL::ECLNeighbours * m_eclNeighbours5x5
Neighbour map of 25 crystals.
Definition: eclee5x5CollectorModule.h:85
Belle2::ClusterUtils
Class to provide momentum-related information from ECLClusters.
Definition: ClusterUtils.h:44
Belle2::eclee5x5CollectorModule::m_eclClusterArray
StoreArray< ECLCluster > m_eclClusterArray
Required arrays.
Definition: eclee5x5CollectorModule.h:72
Belle2::eclee5x5CollectorModule::m_maxTime
double m_maxTime
maximum cluster time diff abs(t1-t0)/dt99 (10)
Definition: eclee5x5CollectorModule.h:67
Belle2::eclee5x5CollectorModule::Expee5x5Sigma
std::vector< float > Expee5x5Sigma
vector of sigmaE obtained from DB object
Definition: eclee5x5CollectorModule.h:93
Belle2::eclee5x5CollectorModule::m_evtMetaData
StoreObjPtr< EventMetaData > m_evtMetaData
dataStore EventMetaData
Definition: eclee5x5CollectorModule.h:75
Belle2::eclee5x5CollectorModule::m_thetaID
std::vector< int > m_thetaID
thetaID of each crystal
Definition: eclee5x5CollectorModule.h:88
Belle2::eclee5x5CollectorModule::m_minE0
double m_minE0
minimum energy of cluster 0: E*0/sqrts (0.45)
Definition: eclee5x5CollectorModule.h:63
Belle2::eclee5x5CollectorModule::m_thetaLabMax
double m_thetaLabMax
m_thetaLabMaxDeg converted to radians
Definition: eclee5x5CollectorModule.h:80
Belle2::eclee5x5CollectorModule::m_sqrts
double m_sqrts
sqrt s from m_boostrotate
Definition: eclee5x5CollectorModule.h:87
Belle2::PCmsLabTransform::rotateLabToCms
const TLorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Definition: PCmsLabTransform.h:74
Belle2::eclee5x5CollectorModule::m_ECLExpee5x5E
DBObjPtr< ECLCrystalCalib > m_ECLExpee5x5E
Expected energies from database.
Definition: eclee5x5CollectorModule.h:91
Belle2::eclee5x5CollectorModule::m_maxdThetaSum
double m_maxdThetaSum
abs(theta0* + theta1* - 180 deg) must be less than less (2 deg)
Definition: eclee5x5CollectorModule.h:65
Belle2::eclee5x5CollectorModule::m_dPhiMax
std::vector< float > m_dPhiMax
maximum dPhi* as a function of thetaID
Definition: eclee5x5CollectorModule.h:82
Belle2::eclee5x5CollectorModule::m_ee5x5Calib
DBObjPtr< ECLCrystalCalib > m_ee5x5Calib
Existing single crystal calibration from DB; will be updated by CAF.
Definition: eclee5x5CollectorModule.h:100
Belle2::eclee5x5CollectorModule::m_boostrotate
PCmsLabTransform m_boostrotate
boost from COM to lab and visa versa
Definition: eclee5x5CollectorModule.h:86
Belle2::ECL::ECLNeighbours::getNeighbours
const std::vector< short int > & getNeighbours(short int cid) const
Return the neighbours for a given cell ID.
Definition: ECLNeighbours.cc:318