9 #include <dqm/analysis/modules/DQMHistAnalysisSVDOnMiraBelle.h>
23 DQMHistAnalysisSVDOnMiraBelleModule::DQMHistAnalysisSVDOnMiraBelleModule()
26 setDescription(
"DQM Analysis Module that extracts monitoring variables from SVD DQM histograms and provides input to MiraBelle.");
28 B2DEBUG(20,
"DQMHistAnalysisSVDOnMiraBelle: Constructor done.");
41 m_c_avgEfficiency =
new TCanvas(
"svd_avgEfficiency",
"matched clusters and found tracks", 0, 0, 800, 600);
44 m_c_MPVSNRClusterOnTrack =
new TCanvas(
"svd_MPVSNRClusterOnTrack",
"SNR from Clusters on Track Charge", 0, 0, 400, 400);
45 m_c_MPVTimeClusterOnTrack =
new TCanvas(
"svd_MPVTimeClusterOnTrack",
"time from Clusters on Track Charge", 0, 0, 400, 400);
47 m_c_MeanSVDEventT0 =
new TCanvas(
"svd_MeanSVDEventT0",
"Mean Event T0 from SVD for all samples", 0, 0, 400, 400);
58 B2DEBUG(20,
"DQMHistAnalysisSVDOnMiraBelle: initialized.");
63 B2DEBUG(20,
"DQMHistAnalysisSVDOnMiraBelle: beginRun called.");
68 B2DEBUG(20,
"DQMHistAnalysisSVDOnMiraBelle: event called.");
74 TH1F* h_zs5countsU = (TH1F*)
findHist(
"SVDExpReco/SVDDQM_StripCountsU");
75 TH1F* h_zs5countsV = (TH1F*)
findHist(
"SVDExpReco/SVDDQM_StripCountsV");
76 TH1F* h_events = (TH1F*)
findHist(
"SVDExpReco/SVDDQM_nEvents");
82 if (h_zs5countsU) h_zs5countsU->Draw(
"colz");
84 if (h_zs5countsV) h_zs5countsV->Draw(
"colz");
86 if (h_events) h_events->Draw(
"colz");
89 if (h_events) nE = h_events->GetEntries();
92 if (h_zs5countsU == NULL || h_zs5countsV == NULL || h_events == NULL) {
93 if (h_zs5countsU == NULL) {
94 B2INFO(
"Histograms needed for Average Offline Occupancy on U side are not found");
124 if (h_zs5countsV == NULL) {
125 B2INFO(
"Histograms needed for Average Offline Occupancy on V side are not found");
157 std::vector<float> avgOffOccL3UV =
avgOccupancyUV(3, h_zs5countsU, h_zs5countsV, 0, 14, 1, 1, nE);
159 std::vector<float> avgOffOccL4UV =
avgOccupancyUV(4, h_zs5countsU, h_zs5countsV, 0, 30, 15, 1, nE);
161 std::vector<float> avgOffOccL5UV =
avgOccupancyUV(5, h_zs5countsU, h_zs5countsV, 0, 48, 45, 1, nE);
163 std::vector<float> avgOffOccL6UV =
avgOccupancyUV(6, h_zs5countsU, h_zs5countsV, 0, 80, 93, 1, nE);
166 std::vector<float> avgOffOccL3X1UV =
avgOccupancyUV(3, h_zs5countsU, h_zs5countsV, 0, 7, 0, 2, nE);
168 std::vector<float> avgOffOccL3X2UV =
avgOccupancyUV(3, h_zs5countsU, h_zs5countsV, 0, 7, 1, 2, nE);
170 std::vector<float> avgOffOccL4X1UV =
avgOccupancyUV(4, h_zs5countsU, h_zs5countsV, 0, 10, 15, 3, nE);
172 std::vector<float> avgOffOccL4X2UV =
avgOccupancyUV(4, h_zs5countsU, h_zs5countsV, 0, 10, 16, 3, nE);
174 std::vector<float> avgOffOccL4X3UV =
avgOccupancyUV(4, h_zs5countsU, h_zs5countsV, 0, 10, 17, 3, nE);
176 std::vector<float> avgOffOccL5X1UV =
avgOccupancyUV(5, h_zs5countsU, h_zs5countsV, 0, 12, 35, 4, nE);
178 std::vector<float> avgOffOccL5X2UV =
avgOccupancyUV(5, h_zs5countsU, h_zs5countsV, 0, 12, 36, 4, nE);
180 std::vector<float> avgOffOccL5X3UV =
avgOccupancyUV(5, h_zs5countsU, h_zs5countsV, 0, 12, 37, 4, nE);
182 std::vector<float> avgOffOccL5X4UV =
avgOccupancyUV(5, h_zs5countsU, h_zs5countsV, 0, 12, 38, 4, nE);
184 std::vector<float> avgOffOccL6X1UV =
avgOccupancyUV(6, h_zs5countsU, h_zs5countsV, 0, 16, 93, 5, nE);
186 std::vector<float> avgOffOccL6X2UV =
avgOccupancyUV(6, h_zs5countsU, h_zs5countsV, 0, 16, 94, 5, nE);
188 std::vector<float> avgOffOccL6X3UV =
avgOccupancyUV(6, h_zs5countsU, h_zs5countsV, 0, 16, 95, 5, nE);
190 std::vector<float> avgOffOccL6X4UV =
avgOccupancyUV(6, h_zs5countsU, h_zs5countsV, 0, 16, 96, 5, nE);
192 std::vector<float> avgOffOccL6X5UV =
avgOccupancyUV(6, h_zs5countsU, h_zs5countsV, 0, 16, 97, 5, nE);
195 std::vector<float> avgOffOccL311UV =
highOccupancySensor(3, h_zs5countsU, h_zs5countsV, 1, nE);
197 std::vector<float> avgOffOccL312UV =
highOccupancySensor(3, h_zs5countsU, h_zs5countsV, 2, nE);
199 std::vector<float> avgOffOccL321UV =
highOccupancySensor(3, h_zs5countsU, h_zs5countsV, 3, nE);
201 std::vector<float> avgOffOccL322UV =
highOccupancySensor(3, h_zs5countsU, h_zs5countsV, 4, nE);
203 std::vector<float> avgOffOccL461UV =
highOccupancySensor(4, h_zs5countsU, h_zs5countsV, 30, nE);
205 std::vector<float> avgOffOccL462UV =
highOccupancySensor(4, h_zs5countsU, h_zs5countsV, 31, nE);
207 std::vector<float> avgOffOccL581UV =
highOccupancySensor(5, h_zs5countsU, h_zs5countsV, 73, nE);
209 std::vector<float> avgOffOccL582UV =
highOccupancySensor(5, h_zs5countsU, h_zs5countsV, 74, nE);
211 std::vector<float> avgOffOccL6101UV =
highOccupancySensor(6, h_zs5countsU, h_zs5countsV, 138, nE);
213 std::vector<float> avgOffOccL6102UV =
highOccupancySensor(6, h_zs5countsU, h_zs5countsV, 139, nE);
276 TH2F* h_found_tracksU = (TH2F*)
findHist(
"SVDEfficiency/TrackHitsU");
277 TH2F* h_matched_clusU = (TH2F*)
findHist(
"SVDEfficiency/MatchedHitsU");
278 TH2F* h_found_tracksV = (TH2F*)
findHist(
"SVDEfficiency/TrackHitsV");
279 TH2F* h_matched_clusV = (TH2F*)
findHist(
"SVDEfficiency/MatchedHitsV");
284 if (h_found_tracksU) h_found_tracksU->Draw(
"colz");
286 if (h_found_tracksV) h_found_tracksV->Draw(
"colz");
288 if (h_matched_clusU) h_matched_clusU->Draw(
"colz");
290 if (h_matched_clusV) h_matched_clusV->Draw(
"colz");
293 if (h_matched_clusU == NULL || h_matched_clusV == NULL || h_found_tracksU == NULL) {
294 if (h_matched_clusU == NULL) {
295 B2INFO(
"Histograms needed for Average Efficiency on U side are not found");
326 if (h_matched_clusV == NULL) {
327 B2INFO(
"Histograms needed for Average Efficiency on V side are not found");
360 std::vector<float> avgEffL3 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 7, 2, 3);
362 std::vector<float> avgEffL4 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 10, 5, 7);
364 std::vector<float> avgEffL5 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 12, 9, 12);
366 std::vector<float> avgEffL6 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 16, 14, 18);
369 std::vector<float> avgEffL3456 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 16, 2, 18);
372 std::vector<float> avgEffL3X1 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 7, 2, 2);
375 std::vector<float> avgEffL3X2 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 7, 3, 3);
378 std::vector<float> avgEffL4X1 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 10, 5, 5);
381 std::vector<float> avgEffL4X2 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 10, 6, 6);
384 std::vector<float> avgEffL4X3 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 10, 7, 7);
387 std::vector<float> avgEffL5X1 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 12, 9, 9);
390 std::vector<float> avgEffL5X2 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 12, 10, 10);
393 std::vector<float> avgEffL5X3 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 12, 11, 11);
396 std::vector<float> avgEffL5X4 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 12, 12, 12);
399 std::vector<float> avgEffL6X1 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 16, 14, 14);
402 std::vector<float> avgEffL6X2 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 16, 15, 15);
405 std::vector<float> avgEffL6X3 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 16, 16, 16);
408 std::vector<float> avgEffL6X4 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 16, 17, 17);
411 std::vector<float> avgEffL6X5 =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 16, 18, 18);
415 std::vector<float> avgEffL311UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 1, 2,
418 std::vector<float> avgEffL312UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 1, 1, 3,
421 std::vector<float> avgEffL321UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 2, 2, 2,
424 std::vector<float> avgEffL322UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 2, 2, 3,
427 std::vector<float> avgEffL461UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 6, 6, 5,
430 std::vector<float> avgEffL462UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 6, 6, 6,
433 std::vector<float> avgEffL581UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 8, 8, 9,
436 std::vector<float> avgEffL582UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 8, 8, 10,
439 std::vector<float> avgEffL6101UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 10, 10, 14,
442 std::vector<float> avgEffL6102UV =
avgEfficiencyUV(h_matched_clusU, h_matched_clusV, h_found_tracksU, h_found_tracksV, 10, 10, 15,
507 TH1F* h_clusterCharge_L3U = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterChargeU3");
508 TH1F* h_clusterCharge_L3V = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterChargeV3");
509 TH1F* h_clusterCharge_L456U = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterChargeU456");
510 TH1F* h_clusterCharge_L456V = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterChargeV456");
515 if (h_clusterCharge_L3U) h_clusterCharge_L3U->Draw();
517 if (h_clusterCharge_L3V) h_clusterCharge_L3V->Draw();
519 if (h_clusterCharge_L456U) h_clusterCharge_L456U->Draw();
521 if (h_clusterCharge_L456U) h_clusterCharge_L456U->Draw();
524 float MPVClusterChargeL3U = -1;
525 if (h_clusterCharge_L3U) MPVClusterChargeL3U =
xForMaxY(h_clusterCharge_L3U);
526 float MPVClusterChargeL3V = -1;
527 if (h_clusterCharge_L3V) MPVClusterChargeL3V =
xForMaxY(h_clusterCharge_L3V);
528 float MPVClusterChargeL456U = -1;
529 if (h_clusterCharge_L456U) MPVClusterChargeL456U =
xForMaxY(h_clusterCharge_L456U);
530 float MPVClusterChargeL456V = -1;
531 if (h_clusterCharge_L456V) MPVClusterChargeL456V =
xForMaxY(h_clusterCharge_L456V);
533 if (h_clusterCharge_L3U == NULL || h_clusterCharge_L456U == NULL) {
534 B2INFO(
"Histograms needed for MPV cluster charge on U side are not found");
542 if (h_clusterCharge_L3V == NULL || h_clusterCharge_L456V == NULL) {
543 B2INFO(
"Histograms needed for MPV cluster charge on V side are not found");
553 TH1F* h_clusterSNR_L3U = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterSNRU3");
554 TH1F* h_clusterSNR_L3V = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterSNRV3");
555 TH1F* h_clusterSNR_L456U = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterSNRU456");
556 TH1F* h_clusterSNR_L456V = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterSNRV456");
561 if (h_clusterSNR_L3U) h_clusterSNR_L3U->Draw();
563 if (h_clusterSNR_L3V) h_clusterSNR_L3V->Draw();
565 if (h_clusterSNR_L456U) h_clusterSNR_L456U->Draw();
567 if (h_clusterSNR_L456V) h_clusterSNR_L456V->Draw();
569 float MPVClusterSNRL3U = -1;
570 if (h_clusterSNR_L3U) MPVClusterSNRL3U =
xForMaxY(h_clusterSNR_L3U);
571 float MPVClusterSNRL3V = -1;
572 if (h_clusterSNR_L3V) MPVClusterSNRL3V =
xForMaxY(h_clusterSNR_L3V);
573 float MPVClusterSNRL456U = -1;
574 if (h_clusterSNR_L456U) MPVClusterSNRL456U =
xForMaxY(h_clusterSNR_L456U);
575 float MPVClusterSNRL456V = -1;
576 if (h_clusterSNR_L456V) MPVClusterSNRL456V =
xForMaxY(h_clusterSNR_L456V);
578 if (h_clusterSNR_L3U == NULL || h_clusterSNR_L456U == NULL) {
579 B2INFO(
"Histograms needed for MPV cluster SNR on U side are not found");
587 if (h_clusterSNR_L3V == NULL || h_clusterSNR_L456V == NULL) {
588 B2INFO(
"Histograms needed for MPV cluster SNR on V side are not found");
598 TH1F* h_clusterTime_L3U = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterTimeU3");
599 TH1F* h_clusterTime_L3V = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterTimeV3");
600 TH1F* h_clusterTime_L456U = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterTimeU456");
601 TH1F* h_clusterTime_L456V = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_ClusterTimeV456");
602 TH1F* h_MeanSVD3EventT0 = (TH1F*)
findHist(
"SVDHitTime/SVD3EventT0");
603 TH1F* h_MeanSVD6EventT0 = (TH1F*)
findHist(
"SVDHitTime/SVD6EventT0");
604 TH1F* h_MeanSVDEventT0 = 0x0;
606 if (h_MeanSVD3EventT0)
607 h_MeanSVDEventT0 = (TH1F*)h_MeanSVD3EventT0->Clone();
612 if (h_clusterTime_L3U) h_clusterTime_L3U->Draw();
614 if (h_clusterTime_L3V) h_clusterTime_L3V->Draw();
616 if (h_clusterTime_L456U) h_clusterTime_L456U->Draw();
618 if (h_clusterTime_L456V) h_clusterTime_L456V->Draw();
623 if (h_MeanSVD3EventT0) h_MeanSVD3EventT0->Draw();
625 if (h_MeanSVD6EventT0) h_MeanSVD6EventT0->Draw();
627 if (h_MeanSVDEventT0) {
628 if (h_MeanSVD6EventT0)
629 h_MeanSVDEventT0->Add(h_MeanSVD6EventT0);
630 h_MeanSVDEventT0->Draw();
633 float MPVClusterTimeL3U = -1;
634 if (h_clusterTime_L3U) MPVClusterTimeL3U =
xForMaxY(h_clusterTime_L3U);
635 float MPVClusterTimeL3V = -1;
636 if (h_clusterTime_L3V) MPVClusterTimeL3V =
xForMaxY(h_clusterTime_L3V);
637 float MPVClusterTimeL456U = -1;
638 if (h_clusterTime_L456U) MPVClusterTimeL456U =
xForMaxY(h_clusterTime_L456U);
639 float MPVClusterTimeL456V = -1;
640 if (h_clusterTime_L456V) MPVClusterTimeL456V =
xForMaxY(h_clusterTime_L456V);
641 float FWHMClusterTimeL3U = -1;
642 if (h_clusterTime_L3U) FWHMClusterTimeL3U =
histFWHM(h_clusterTime_L3U);
643 float FWHMClusterTimeL3V = -1;
644 if (h_clusterTime_L3V) FWHMClusterTimeL3V =
histFWHM(h_clusterTime_L3V);
645 float FWHMClusterTimeL456U = -1;
646 if (h_clusterTime_L456U) FWHMClusterTimeL456U =
histFWHM(h_clusterTime_L456U);
647 float FWHMClusterTimeL456V = -1;
648 if (h_clusterTime_L456V) FWHMClusterTimeL456V =
histFWHM(h_clusterTime_L456V);
650 float MeanSVD3EventT0 = -1;
651 if (h_MeanSVD3EventT0) MeanSVD3EventT0 =
xForMaxY(h_MeanSVD3EventT0);
653 float MeanSVD6EventT0 = -1;
654 if (h_MeanSVD6EventT0) MeanSVD6EventT0 =
xForMaxY(h_MeanSVD6EventT0);
656 float MeanSVDEventT0 = -1;
657 if (h_MeanSVDEventT0) MeanSVDEventT0 =
xForMaxY(h_MeanSVDEventT0);
659 if (h_clusterTime_L3U == NULL || h_clusterTime_L456U == NULL) {
660 B2INFO(
"Histograms needed for MPV cluster time on U side are not found");
672 if (h_clusterTime_L3V == NULL || h_clusterTime_L456V == NULL) {
673 B2INFO(
"Histograms needed for MPV cluster time on V side are not found");
685 if (h_MeanSVD3EventT0 == NULL) {
686 B2INFO(
"Histograms needed for SVD Event T0 (3 samples) not found");
692 if (h_MeanSVD6EventT0 == NULL) {
693 B2INFO(
"Histograms needed for SVD Event T0 (6 samples) not found");
699 if (h_MeanSVDEventT0 == NULL) {
700 B2INFO(
"Histograms needed for SVD Event T0 (all samples) not found");
707 TH1F* h_maxBinU = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_StripMaxBinUAll");
708 TH1F* h_maxBinV = (TH1F*)
findHist(
"SVDClsTrk/SVDTRK_StripMaxBinVAll");
713 if (h_maxBinU) h_maxBinU->Draw();
715 if (h_maxBinV) h_maxBinV->Draw();
717 if (h_maxBinU == NULL) {
718 B2INFO(
"Histogram needed for Average MaxBin on U side is not found");
721 float avgMaxBinU = h_maxBinU->GetMean();
725 if (h_maxBinV == NULL) {
726 B2INFO(
"Histogram needed for Average MaxBin on V side is not found");
729 float avgMaxBinV = h_maxBinV->GetMean();
733 std::map<std::pair<int, int>,
int> ladderMap = {
734 {{3, 1}, 0}, {{3, 2}, 1},
735 {{4, 1}, 2}, {{4, 2}, 3}, {{4, 3}, 4},
736 {{5, 1}, 5}, {{5, 2}, 6}, {{5, 3}, 7}, {{5, 4}, 8},
737 {{6, 1}, 9}, {{6, 2}, 10}, {{6, 3}, 11}, {{6, 4}, 12}, {{6, 5}, 13}
741 for (
const auto& it : ladderMap) {
742 std::pair<int, int> p = it.first;
744 int sensor = p.second;
746 TString name = Form(
"SVDClsTrk/SVDTRK_ClusterCharge_L%d.x.%d", layer, sensor);
747 TString title = Form(
"MPVClusterCharge_L%d.x.%d", layer, sensor);
748 TH1F* h_clusterCharge = (TH1F*)
findHist(name.Data());
749 float MPVClusterCharge = -1;
750 if (h_clusterCharge) MPVClusterCharge =
xForMaxY(h_clusterCharge);
752 if (h_clusterCharge == NULL) {
753 B2INFO(
"Histograms needed for cluster charge not found");
759 name = Form(
"SVDClsTrk/SVDTRK_ClusterSNR_L%d.x.%d", layer, sensor);
760 title = Form(
"MPVClusterSNR_L%d.x.%d", layer, sensor);
761 TH1F* h_clusterSNR = (TH1F*)
findHist(name.Data());
762 float MPVClusterSNR = -1;
763 if (h_clusterSNR) MPVClusterSNR =
xForMaxY(h_clusterSNR);
765 if (h_clusterSNR == NULL) {
766 B2INFO(
"Histograms needed for cluster SNR not found");
773 for (
int ladder = 1; ladder <= 2; ++ladder) {
774 for (
int sensor = 1; sensor <= 2; ++sensor) {
776 TString name = Form(
"SVDClsTrk/SVDTRK_ClusterCharge_L3.%d.%d", ladder, sensor);
777 TString title = Form(
"MPVClusterCharge_L3.%d.%d", ladder, sensor);
778 float MPVClusterCharge = -1;
779 TH1F* h_clusterCharge = (TH1F*)
findHist(name.Data());
780 if (h_clusterCharge) MPVClusterCharge =
xForMaxY(h_clusterCharge);
782 if (h_clusterCharge == NULL) {
783 B2INFO(
"Histograms needed for cluster charge not found");
789 name = Form(
"SVDClsTrk/SVDTRK_ClusterSNR_L3.%d.%d", ladder, sensor);
790 title = Form(
"MPVClusterSNR_L3.%d.%d", ladder, sensor);
791 TH1F* h_clusterSNR = (TH1F*)
findHist(name.Data());
792 float MPVClusterSNR = -1;
793 if (h_clusterSNR) MPVClusterSNR =
xForMaxY(h_clusterSNR);
795 if (h_clusterSNR == NULL) {
796 B2INFO(
"Histograms needed for cluster SNR not found");
804 B2INFO(
"DQMHistAnalysisSVDGeneral: endRun called");
810 B2INFO(
"DQMHistAnalysisSVDOnMiraBelle: terminate called");
820 }
else if (iLayer >= 4 && iLayer <= 6) {
823 B2DEBUG(20,
"Layer out of range [3,6].");
825 std::vector<float> avgOffOccUV(2, 0.0);
827 if (hU) avgOffOccUV[0] = hU->GetBinContent(iBin) * 1.0 / 768 / nEvents * 100;
829 if (hV) avgOffOccUV[1] = hV->GetBinContent(iBin) * 1.0 / nStripsV / nEvents * 100;
835 int step,
int nEvents)
const
840 }
else if (iLayer >= 4 && iLayer <= 6) {
843 B2DEBUG(20,
"Layer out of range [3,6].");
845 std::vector<float> avgOffOccUV(2, 0.0);
846 for (
int bin = min; bin < max; bin++) {
847 avgOffOccUV[0] += hU->GetBinContent(offset + step * bin) / 768 * 100;
848 avgOffOccUV[1] += hV->GetBinContent(offset + step * bin) / nStripsV * 100;
850 avgOffOccUV[0] /= ((max - min) * nEvents);
851 avgOffOccUV[1] /= ((max - min) * nEvents);
857 int maxX,
int minY,
int maxY)
const
859 std::vector<float> avgEffUV(2, 0.0);
860 std::vector<float> sumMatchedClustersUV(2, 0.0);
861 std::vector<float> sumFoundTracksUV(2, 0.0);
862 for (
int binX = minX; binX < maxX + 1; binX++) {
863 for (
int binY = minY; binY < maxY + 1; binY++) {
864 int binXY = hMCV->GetBin(binX, binY);
865 sumMatchedClustersUV[0] += hMCU->GetBinContent(binXY);
866 sumMatchedClustersUV[1] += hMCV->GetBinContent(binXY);
867 sumFoundTracksUV[0] += hFTU->GetBinContent(binXY);
868 sumFoundTracksUV[1] += hFTV->GetBinContent(binXY);
871 if (sumFoundTracksUV[0] > 0) {
872 avgEffUV[0] = sumMatchedClustersUV[0] / sumFoundTracksUV[0] * 100;
876 if (sumFoundTracksUV[1] > 0) {
877 avgEffUV[1] = sumMatchedClustersUV[1] / sumFoundTracksUV[1] * 100;
886 int maxY = h->GetMaximumBin();
887 float xMaxY = h->GetXaxis()->GetBinCenter(maxY);
893 int bin1 = h->FindFirstBinAbove(h->GetMaximum() / 2);
894 int bin2 = h->FindLastBinAbove(h->GetMaximum() / 2);
895 float fwhm = h->GetBinCenter(bin2) - h->GetBinCenter(bin1);
The base class for the histogram analysis module.
static TH1 * findHist(const std::string &histname, bool onlyIfUpdated=false)
Get histogram from list (no other search).
static MonitoringObject * getMonitoringObject(const std::string &histname)
Get MonitoringObject with given name (new object is created if non-existing)
void initialize() override final
Module function initialize.
float histFWHM(TH1F *h) const
Calculate full width at half maximum of histogram.
TCanvas * m_c_MPVTimeClusterOnTrack
time for clusters on track
TCanvas * m_c_MeanSVDEventT0
Mean Event T0 from SVD.
std::vector< float > avgEfficiencyUV(TH2F *hMCU, TH2F *hMCV, TH2F *hFTU, TH2F *hFTV, int minX, int maxX, int minY, int maxY) const
Calculate avg efficiency for specified sensors.
std::vector< float > avgOccupancyUV(int iLayer, TH1F *hU, TH1F *hV, int min, int max, int offset, int step, int nEvents) const
Calculate avg offline occupancy for specified sensors.
TCanvas * m_c_MPVChargeClusterOnTrack
charge for clusters on track
MonitoringObject * m_monObj
Monitoring Object to be produced by this module, which contain defined canvases and monitoring variab...
TCanvas * m_c_avgEfficiency
List of canvases to be added to MonitoringObject.
void terminate() override final
Module function terminate.
~DQMHistAnalysisSVDOnMiraBelleModule()
Destructor.
void event() override final
Module function event.
TCanvas * m_c_MPVSNRClusterOnTrack
SNR for clusters on track.
void endRun() override final
Module function endRun.
float xForMaxY(TH1F *h) const
Calculate abscissa of max Y bin.
TCanvas * m_c_avgOffOccupancy
number of ZS5 fired strips
void beginRun() override final
Module function beginRun.
TCanvas * m_c_avgMaxBinClusterOnTrack
average number of the APV sample which corresponds to the maximum amplitude for clusters on track
std::vector< float > highOccupancySensor(int iLayer, TH1F *hU, TH1F *hV, int iBin, int nEvents) const
Calculate avg offline occupancy for one specific sensor, especially with high occupancy.
void setDescription(const std::string &description)
Sets the description of the module.
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
void setVariable(const std::string &var, float val, float upErr=-1., float dwErr=-1)
set value to float variable (new variable is made if not yet existing)
void addCanvas(TCanvas *canv)
Add Canvas to monitoring object.
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Abstract base class for different kinds of events.