10 #include <ecl/modules/eclDigitizer/ECLDigitizerModule.h>
13 #include <ecl/dataobjects/ECLDigit.h>
14 #include <ecl/dataobjects/ECLDsp.h>
15 #include <ecl/dataobjects/ECLDspWithExtraMCInfo.h>
16 #include <ecl/dataobjects/ECLHit.h>
17 #include <ecl/dataobjects/ECLSimHit.h>
18 #include <ecl/dataobjects/ECLTrig.h>
19 #include <ecl/dataobjects/ECLWaveforms.h>
20 #include <ecl/dbobjects/ECLWaveformData.h>
21 #include <ecl/digitization/algorithms.h>
22 #include <ecl/digitization/BitStream.h>
23 #include <ecl/digitization/ECLCompress.h>
24 #include <ecl/digitization/shaperdsp.h>
25 #include <ecl/geometry/ECLGeometryPar.h>
26 #include <ecl/utility/ECLDspUtilities.h>
29 #include <framework/gearbox/Unit.h>
30 #include <framework/logging/Logger.h>
31 #include <framework/utilities/FileSystem.h>
51 ECLDigitizerModule::ECLDigitizerModule() :
Module(), m_waveformParametersMC(
"ECLDigitWaveformParametersForMC"),
52 m_waveformParameters(
"ECLWFParameters"),
53 m_algoParameters(
"ECLWFAlgoParams"),
54 m_noiseParameters(
"ECLWFNoiseParams")
60 "Flag to use crate trigger times from beam background overlay if there are any (default: false)",
false);
61 addParam(
"Background",
m_background,
"Flag to use the Digitizer configuration with backgrounds (default: false)",
false);
62 addParam(
"Calibration",
m_calibration,
"Flag to use the Digitizer for Waveform fit Covariance Matrix calibration (default: false)",
65 "Flag to take into account energy deposition in photodiodes; Default diode is sensitive detector (default: true)",
true);
66 addParam(
"WaveformMaker",
m_waveformMaker,
"Flag to produce background waveform digits (default: false)",
false);
67 addParam(
"CompressionAlgorithm",
m_compAlgo,
"Waveform compression algorithm (default: 0u)", 0u);
69 addParam(
"HadronPulseShapes",
m_HadronPulseShape,
"Flag to include hadron component in pulse shape construction (default: true)",
73 "If gt 0 value is applied to all crystals for waveform saving threshold. If lt 0 dbobject is used. (GeV)", -1.0);
75 "Flag to store Dsp with extra MC information in addition to normal Dsp (default: false)",
false);
77 "Threshold above with to store Dsp with extra MC information [GeV]",
80 "Use DSP coefficients from the database for the processing. This "
81 "will significantly reduce performance so this option is to be "
82 "used for testing only.",
false);
84 "Use ECLWF{Parameters,AlgoParams,NoiseParams} payloads",
true);
86 "Normalization coefficient for ECL signal shape. "
87 "If positive, use same static value for all ECL channels. "
88 "If negative, calculate dynamically at beginRun().", -1.0);
105 "Hadron pulse shapes for ECL simulations are enabled. Pulse shape simulations use techniques validated with test beam data documented in: S. Longo and J. M. Roney 2018 JINST 13 P03018");
107 B2DEBUG(20,
"Hadron pulse shapes for ECL simulations are disabled.");
111 B2DEBUG(20,
"Diode-crossing pulse shapes for ECL simulations are enabled.");
113 B2DEBUG(20,
"Diode-crossing pulse shapes for ECL simulations are disabled.");
133 double ns_per_tick = 1.0 / (4.0 * ec.
getRF()) * 1e3;
185 B2FATAL(
"ECLDigitizer: Can't initialize eclChannelMapper!");
191 int& m_lar,
int& m_ltr,
int& m_lq,
int& m_chi)
const
199 short int*
id = (
short int*)
m_idn[t.idn].id;
201 int A0 = (
int) * (
id + 0) - 128;
202 int Askip = (int) * (
id + 1) - 128;
204 int Ahard = (int) * (
id + 2);
205 int k_a = (int) * ((
unsigned char*)
id + 26);
206 int k_b = (int) * ((
unsigned char*)
id + 27);
207 int k_c = (int) * ((
unsigned char*)
id + 28);
208 int k_16 = (int) * ((
unsigned char*)
id + 29);
209 int k1_chi = (int) * ((
unsigned char*)
id + 24);
210 int k2_chi = (int) * ((
unsigned char*)
id + 25);
212 int chi_thres = (int) * (
id + 15);
214 int trg_time = ttrig;
216 result = lftda_((
int*)r.f, (
int*)r.f1, (
int*)r.fg41, (
int*)r.fg43,
217 (
int*)r.fg31, (
int*)r.fg32, (
int*)r.fg33, (
int*)FitA,
218 trg_time, A0, Ahard, Askip, k_a, k_b, k_c, k_16, k1_chi,
221 std::vector<int> adc(31);
222 for (
int i = 0; i < 31; i++) adc[i] = FitA[i];
227 int ttrig_packed = ttrig / 6 * 8 + ttrig % 6;
233 m_lq = result.quality;
237 int discarded_bits = 0;
238 if ((m_chi & 0x7800000) != 0) {
240 }
else if ((m_chi & 0x0600000) != 0) {
242 }
else if ((m_chi & 0x0180000) != 0) {
244 }
else if ((m_chi & 0x0060000) != 0) {
246 }
else if ((m_chi & 0x0018000) != 0) {
248 }
else if ((m_chi & 0x0006000) != 0) {
250 }
else if ((m_chi & 0x0001800) != 0) {
252 }
else if ((m_chi & 0x0000600) != 0) {
255 if (discarded_bits > 0) {
256 m_chi >>= discarded_bits;
257 m_chi <<= discarded_bits;
267 const double tscale = 2 * trgtick, toff = ec.
s_clock / (2 * ec.
getRF());
277 int cellId = hit.getCellId();
280 double timeOffset = tscale *
m_ttime[id] - toff;
281 double hitE = hit.getEnergyDep() *
m_calib[j].ascale * E2GeV;
282 double hitTimeAve = (hit.getFlightTime() +
m_calib[j].tshift + eclp->
time2sensor(j, hit.getPosition())) * T2us;
284 m_adc[j].energyConversion =
m_calib[j].ascale * E2GeV * 20000;
285 m_adc[j].flighttime += hit.getFlightTime() * hit.getEnergyDep();
286 m_adc[j].timeshift +=
m_calib[j].tshift * hit.getEnergyDep();
287 m_adc[j].timetosensor += eclp->
time2sensor(j, hit.getPosition()) * hit.getEnergyDep();
288 m_adc[j].totalHadronDep += hit.getHadronEnergyDep();
289 m_adc[j].totalDep += hit.getEnergyDep();
292 double hitHadronE = hit.getHadronEnergyDep() *
m_calib[j].ascale * E2GeV;
296 m_adc[j].AddHit(hitE, hitTimeAve + timeOffset,
m_ss[
m_tbl[j].iss]);
303 int cellId = hit.getCellId();
306 double timeOffset = tscale *
m_ttime[id] - toff;
307 double hitE = hit.getEnergyDep() *
m_calib[j].ascale * E2GeV;
308 double hitTimeAve = (hit.getTimeAve() +
m_calib[j].tshift) * T2us;
309 m_adc[j].AddHit(hitE, hitTimeAve + timeOffset,
m_ss[
m_tbl[j].iss]);
317 const double diodeEdep2crystalEdep = E2GeV * (1 / (5000 * 3.6e-6));
319 int cellId = hit.getCellId();
322 double timeOffset = tscale *
m_ttime[id] - toff;
323 double hitE = hit.getEnergyDep() *
m_calib[j].ascale * diodeEdep2crystalEdep;
324 double hitTimeAve = (hit.getTimeAve() +
m_calib[j].tshift) * T2us;
332 a.AddHit(hitE, hitTimeAve + timeOffset,
m_ss[1]);
341 double hitE = 0.1, hitTimeAve = 0.0;
342 for (
int j = 0; j < ec.
m_nch; j++) {
345 double timeOffset = tscale *
m_ttime[id] - toff;
346 m_adc[j].AddHit(hitE, hitTimeAve + timeOffset,
m_ss[
m_tbl[j].iss]);
356 for (
int i = 0; i < ec.
m_nsmp; i++) z[i] = gRandom->Gaus(0, 1);
357 m_noise[
m_tbl[J].inoise].generateCorrelatedNoise(z, AdcNoise);
358 for (
int i = 0; i < ec.
m_nsmp; i++) FitA[i] = 20 * AdcNoise[i] + 3000;
368 B2FATAL(
"Unknown compression algorithm: " <<
m_compAlgo);
372 for (
int j = 0; j < ec.
m_nch; j++) {
375 for (
int i = 0; i < ec.
m_nsmp; i++) {
376 int A = 20000 * a.c[i] + FitA[i];
377 FitA[i] = max(0, min(A, (1 << 18) - 1));
386 std::swap(out.getStore(), wf->
getStore());
387 if (comp)
delete comp;
395 struct ch_t {
int cell, id;};
398 int j = hit.getCellId() - 1;
411 unsigned int compAlgo = out.getNBits(8);
412 comp = selectAlgo(compAlgo & 0x7f);
414 B2FATAL(
"Unknown compression algorithm: " << compAlgo);
415 isTrigTime = compAlgo >> 7;
417 for (
int i = 0; i < ECL::ECL_CRATES; i++) {
418 unsigned char t = out.getNBits(7);
425 int DeltaT = gRandom->Uniform(0,
double(ec.
m_ntrg) * 0.5);
426 for (
int id = 0;
id < ECL::ECL_CRATES;
id++)
m_ttime[
id] = DeltaT;
430 for (
int id = 0;
id < ECL::ECL_CRATES;
id++) {
433 eclTrig->setTrigId(
id);
434 eclTrig->setTimeTrig(triggerPhase0);
435 eclTrig->setTrigTag(triggerTag0);
447 for (
int j = 0; j < ec.
m_nch; j++) {
451 if (
m_adc[j].totalDep > 0) {
463 if (a.total < 0.0001)
continue;
467 for (
int i = 0; i < ec.
m_nsmp; i++) {
468 int A = 20000 * a.c[i] + FitA[i];
469 FitA[i] = max(0, min(A, (1 << 18) - 1));
486 if (energyFit >
m_Awave[CellId - 1]) {
488 const auto eclDsp =
m_eclDsps.appendNew();
489 eclDsp->setCellId(CellId);
490 eclDsp->setDspA(FitA);
496 eclDspWithExtraMCInfo->setCellId(CellId);
497 eclDspWithExtraMCInfo->setDspA(FitA);
498 eclDspWithExtraMCInfo->setEnergyDep(a.totalDep);
499 eclDspWithExtraMCInfo->setHadronEnergyDep(a.totalHadronDep);
500 eclDspWithExtraMCInfo->setFlightTime(a.flighttime);
501 eclDspWithExtraMCInfo->setTimeShift(a.timeshift);
502 eclDspWithExtraMCInfo->setTimeToSensor(a.timetosensor);
503 eclDspWithExtraMCInfo->setEnergyConversion(a.energyConversion * 20000);
507 eclDigit->setCellId(CellId);
508 eclDigit->setAmp(energyFit);
509 eclDigit->setTimeFit(tFit);
510 eclDigit->setQuality(qualityFit);
512 eclDigit->setChi(chi);
513 else eclDigit->setChi(0);
514 for (
const auto& hit : hitmap)
515 if (hit.cell == j) eclDigit->addRelationTo(
m_eclHits[hit.id]);
519 if (eclDigit->getCellId() == DspWithExtraMCInfo.getCellId()) DspWithExtraMCInfo.addRelationTo(eclDigit);
523 if (comp)
delete comp;
542 float photonParsPSD[10];
543 float hadronParsPSD[10];
544 float diodeParsPSD[10];
545 for (
int i = 0; i < 10; i++) {
564 TFile* rootfile =
nullptr;
565 TTree* tree =
nullptr;
566 TTree* tree2 =
nullptr;
567 TTree* tree3 =
nullptr;
570 bool hasChanged =
false;
575 if (!hasChanged)
return;
584 B2DEBUG(150,
"ECLDigitizer: Reading configuration data with background from: " << dataFileName);
587 B2DEBUG(150,
"ECLDigitizer: Reading configuration data without background from: " << dataFileName);
589 assert(! dataFileName.empty());
591 rootfile =
new TFile(dataFileName.c_str(),
"read");
592 tree = (TTree*) rootfile->Get(
"EclWF");
593 tree2 = (TTree*) rootfile->Get(
"EclAlgo");
594 tree3 = (TTree*) rootfile->Get(
"EclNoise");
597 if (tree == 0 || tree2 == 0 || tree3 == 0) B2FATAL(
"Data not found");
601 const int maxncellid = 512;
603 vector<int> cellId(maxncellid);
605 tree->SetBranchAddress(
"ncellId", &ncellId);
606 tree->SetBranchAddress(
"cellId", cellId.data());
608 vector<int> eclWaveformDataTable(ec.
m_nch);
609 for (Long64_t j = 0, jmax = tree->GetEntries(); j < jmax; j++) {
611 assert(ncellId <= maxncellid);
612 for (
int i = 0; i < ncellId; ++i)
613 eclWaveformDataTable[cellId[i] - 1] = j;
615 B2DEBUG(150,
"ECLDigitizer: " << tree->GetEntries() <<
" sets of wave form covariance matricies will be used.");
618 tree2->SetBranchAddress(
"Algopars", &algo);
619 tree2->SetBranchAddress(
"ncellId", &ncellId);
620 tree2->SetBranchAddress(
"cellId", cellId.data());
621 Long64_t jmax2 = tree2->GetEntries();
622 vector<ECLWFAlgoParams> eclWFAlgoParams;
623 eclWFAlgoParams.reserve(jmax2);
624 for (Long64_t j = 0; j < jmax2; j++) {
626 assert(ncellId <= maxncellid);
627 eclWFAlgoParams.push_back(*algo);
628 for (
int i = 0; i < ncellId; ++i)
629 m_tbl[cellId[i] - 1].idn = j;
631 if (algo)
delete algo;
632 B2DEBUG(150,
"ECLDigitizer: " << eclWFAlgoParams.size() <<
" parameter sets of fitting algorithm were read.");
635 tree3->SetBranchAddress(
"NoiseM", &noise);
636 tree3->SetBranchAddress(
"ncellId", &ncellId);
637 tree3->SetBranchAddress(
"cellId", cellId.data());
639 Long64_t jmax3 = tree3->GetEntries();
641 for (Long64_t j = 0; j < jmax3; j++) {
643 assert(ncellId <= maxncellid);
646 for (
int i = 0; i < ec.
m_nch; i++)
650 for (
int i = 0; i < ncellId; ++i)
651 m_tbl[cellId[i] - 1].inoise = j;
654 if (noise)
delete noise;
655 B2DEBUG(150,
"ECLDigitizer: " << eclWFAlgoParams.size() <<
" noise matricies were loaded.");
658 m_idn.resize(eclWFAlgoParams.size());
659 for (
int i = 0, imax = eclWFAlgoParams.size(); i < imax; i++)
662 vector<uint_pair_t> pairIdx;
663 for (
int i = 0; i < ec.
m_nch; i++) {
664 unsigned int wfIdx = eclWaveformDataTable[i];
665 unsigned int algoIdx =
m_tbl[i].idn;
667 vector<uint_pair_t>::iterator ip = find(pairIdx.begin(), pairIdx.end(), p);
668 if (ip != pairIdx.end()) {
669 m_tbl[i].ifunc = ip - pairIdx.begin();
671 m_tbl[i].ifunc = pairIdx.size();
672 pairIdx.push_back(p);
680 tree->SetBranchAddress(
"CovarianceM", &eclWFData);
681 tree->SetBranchStatus(
"ncellId", 0);
682 tree->SetBranchStatus(
"cellId", 0);
685 for (
unsigned int ip = 0; ip < pairIdx.size(); ip++) {
687 tree->GetEntry(p.first);
690 B2DEBUG(150,
"ECLDigitizer: " <<
m_fitparams.size() <<
" fitting crystals groups were created.");
696 m_ss[0].InitSample(MP, 27.7221);
702 for (
int i = 0; i < ec.
m_nch; i++)
m_tbl[i].iss = 0;
706 double diode_params[] = {0 + 0.5, 0.100002, 0.756483, 0.456153, 0.0729031, 0.3906 / 9.98822, 2.85128, 0.842469, 0.854184, 0.110284};
707 m_ss[1].InitSample(diode_params, 0.9569100 * 9.98822);
709 B2DEBUG(150,
"ECLDigitizer: " <<
m_ss.size() <<
" sampled signal templates were created.");
711 if (eclWFData)
delete eclWFData;
719 t.id[ 0] = eclWFAlgo.
getlAT() + 128;
720 t.id[ 1] = eclWFAlgo.
getsT() + 128;
721 t.id[ 2] = eclWFAlgo.
gethT();
733 t.ic[12 * 2 + 0] = eclWFAlgo.
getk1();
734 t.ic[12 * 2 + 1] = eclWFAlgo.
getk2();
735 t.ic[13 * 2 + 0] = eclWFAlgo.
getka();
736 t.ic[13 * 2 + 1] = eclWFAlgo.
getkb();
737 t.ic[14 * 2 + 0] = eclWFAlgo.
getkc();
738 t.ic[14 * 2 + 1] = eclWFAlgo.
gety0s() - 16;
741 t.id[15] = eclWFAlgo.
getcT();
750 vector<double> MP(10);
756 int ia = 1 << eclWFAlgo.
getka();
757 int ib = 1 << eclWFAlgo.
getkb();
758 int ic = 1 << eclWFAlgo.
getkc();
760 double dbl_f [192][16];
761 double dbl_f1 [192][16];
762 double dbl_fg31[192][16];
763 double dbl_fg32[192][16];
764 double dbl_fg33[192][16];
765 double dbl_fg41[24][16];
766 double dbl_fg43[24][16];
779 double unitscale = 1.0;
790 double g0g0 = 0, g0g1 = 0, g1g1 = 0, g0g2 = 0, g1g2 = 0, g2g2 = 0;
791 double sg0[16], sg1[16], sg2[16];
792 for (
int j = 0; j < 16; j++) {
793 double g0 = 0, g1 = 0, g2 = 0;
794 for (
int i = 0; i < 16; i++) {
795 if (fm < f[i].first) fm = f[i].first;
796 g0 += ssd[j][i] * f[i].first;
797 g1 += ssd[j][i] * f[i].second;
800 g0g0 += g0 * f[j].first;
801 g0g1 += g1 * f[j].first;
802 g1g1 += g1 * f[j].second;
811 double a00 = g1g1 * g2g2 - g1g2 * g1g2;
812 double a11 = g0g0 * g2g2 - g0g2 * g0g2;
813 double a22 = g0g0 * g1g1 - g0g1 * g0g1;
814 double a01 = g1g2 * g0g2 - g0g1 * g2g2;
815 double a02 = g0g1 * g1g2 - g1g1 * g0g2;
816 double a12 = g0g1 * g0g2 - g0g0 * g1g2;
818 double igg2 = 1 / (a11 * g1g1 + g0g1 * a01 + g1g2 * a12);
821 const double isd = 3. / 4., sd = 1 / isd ;
822 for (
int i = 0; i < 16; i++) {
823 double w = i ? 1.0 : 1. / 16.;
825 dbl_f [k][i] = (f[i].first * iff * w);
826 dbl_f1 [k][i] = (f[i].second * iff * w * sd);
828 double fg31 = (a00 * sg0[i] + a01 * sg1[i] + a02 * sg2[i]) * igg2;
829 double fg32 = (a01 * sg0[i] + a11 * sg1[i] + a12 * sg2[i]) * igg2;
830 double fg33 = (a02 * sg0[i] + a12 * sg1[i] + a22 * sg2[i]) * igg2;
832 dbl_fg31[k][i] = (fg31 * ia * w);
833 dbl_fg32[k][i] = (fg32 * ib * w * isd);
834 dbl_fg33[k][i] = (fg33 * ic * w);
838 int jk = 23 + ((48 - k) >> 2);
839 if (jk >= 0 && jk < 24 && (48 - k) % 4 == 0) {
841 double igg1 = 1 / a11;
843 for (
int i = 0; i < 16; i++) {
844 double w = i ? 1.0 : 1. / 16.;
846 double fg41 = (g2g2 * sg0[i] - g0g2 * sg2[i]) * igg1;
847 double fg43 = (g0g0 * sg2[i] - g0g2 * sg0[i]) * igg1;
848 dbl_fg41[jk][i] = (fg41 * ia * w);
849 dbl_fg43[jk][i] = (fg43 * ic * w);
856 for (
int k = 0; k < 2 * ec.
m_ndt; k++) {
857 for (
int j = 0; j < 16; j++) {
858 ref_f [k][j] = lrint(dbl_f [k][j] / fm);
859 ref_f1 [k][j] = lrint(dbl_f1 [k][j] / fm);
860 ref_fg31[k][j] = lrint(dbl_fg31[k][j] * fm);
861 ref_fg32[k][j] = lrint(dbl_fg32[k][j] * fm);
862 ref_fg33[k][j] = lrint(dbl_fg33[k][j]);
863 if (k >= 24)
continue;
864 ref_fg41[k][j] = lrint(dbl_fg41[k][j] * fm);
865 ref_fg43[k][j] = lrint(dbl_fg43[k][j]);
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
int m_ADCThreshold
ADC threshold for wavefom fits.
std::vector< calibration_t > m_calib
Storage for calibration constants.
double m_unitscale
Normalization coefficient for ECL signal shape.
StoreArray< ECLDsp > m_eclDsps
Generated waveforms.
void callbackHadronSignalShapes()
callback hadron signal shapes from database
void shapeSignals()
Emulate response of energy deposition in a crystal and attached photodiode and make waveforms.
ECL::ECLChannelMapper m_eclMapper
Channel Mapper.
DBObjPtr< TTree > m_algoParameters
Shape fitting algorithm parameters.
StoreObjPtr< ECLWaveforms > m_eclWaveforms
Compressed waveforms.
std::vector< algoparams_t > m_idn
Fit algorihtm parameters shared by group of crystals.
StoreArray< ECLHit > m_eclDiodeHits
Diode hits array.
std::pair< unsigned int, unsigned int > uint_pair_t
a pair of unsigned ints
bool m_dspDataTest
DSP data usage flag.
std::vector< fitparams_t > m_fitparams
Pairs of (waveform parameters, fit parameters)
virtual void initialize() override
Initialize variables
virtual void event() override
Actual digitization of all hits in the ECL.
double m_WaveformThresholdOverride
If gt 0, value will override ECL_FPGA_StoreWaveform and apply value (in GeV) as threshold for all cry...
DBObjPtr< ECLCrystalCalib > m_CrateTimeOffset
Crate time offset.
DBObjPtr< TTree > m_waveformParameters
CellID-specific signal shapes.
double m_DspWithExtraMCInfoThreshold
Energy threshold above which to store DSPs with extra information.
StoreArray< ECLTrig > m_eclTrigs
Trigger information.
virtual void endRun() override
Nothing so far.
DBObjPtr< ECLCrystalCalib > m_MCTimeOffset
MC time offset.
virtual void terminate() override
Free memory.
StoreArray< ECLSimHit > m_eclSimHits
SimHits array.
bool m_background
Module parameters.
StoreArray< ECLDigit > m_eclDigits
Output Arrays.
void getfitparams(const ECLWaveformData &, const ECLWFAlgoParams &, fitparams_t &)
load waveform fit parameters for the shapeFitter function
void shapeFitterWrapper(const int j, const int *FitA, const int m_ttrig, int &m_lar, int &m_ltr, int &m_lq, int &m_chi) const
function wrapper for waveform fit
std::vector< double > m_Awave
Storage for waveform saving thresholds.
DBObjPtr< ECLCrystalCalib > m_CrystalElectronicsTime
Crystal electronics time.
std::vector< signalsample_t > m_ss_HadronShapeSimulations
tabulated shape line for hadron shape simulations
fitparams_t::int_array_192x16_t int_array_192x16_t
weighting coefficients for time and amplitude calculation
DBObjPtr< ECLCrystalCalib > m_CrystalElectronics
Crystal electronics.
fitparams_t::int_array_24x16_t int_array_24x16_t
weighting coefficients amplitude calculation.
virtual void beginRun() override
Nothing so far.
unsigned int m_compAlgo
compression algorithm for background waveforms
bool m_HadronPulseShape
hadron pulse shape flag
DBObjPtr< ECLCrystalCalib > m_CrystalEnergy
Crystal energy.
bool m_trigTime
Use trigger time from beam background overlay.
std::vector< crystallinks_t > m_tbl
Lookup table for ECL channels.
std::vector< adccounts_t > m_adc
Storage for adc hits from entire calorimeter (8736 crystals)
StoreArray< ECLDspWithExtraMCInfo > m_eclDspsWithExtraMCInfo
Generated waveforms with extra MC information.
StoreArray< ECLHit > m_eclHits
Hits array.
bool m_useWaveformParameters
If true, use m_waveformParameters, m_algoParameters, m_noiseParameters.
DBObjPtr< ECLCrystalCalib > m_FPGAWaveform
FPGA waveform.
bool m_calibration
calibration flag
bool m_storeDspWithExtraMCInfo
DSP with extra info flag.
unsigned char m_ttime[ECL::ECL_CRATES]
storage for trigger time in each ECL.
DBObjPtr< TTree > m_noiseParameters
Electronics noise covariance matrix.
bool m_loadOnce
Always load waveform parameters at least once.
std::vector< ECLNoiseData > m_noise
parameters for correlated noise simulation
DBObjPtr< ECLDigitWaveformParametersForMC > m_waveformParametersMC
Hadron signal shapes.
void repack(const ECLWFAlgoParams &, algoparams_t &)
repack waveform fit parameters from ROOT format to plain array of unsigned short for the shapeFitter ...
void makeWaveforms()
Produce and compress waveforms for beam background overlay.
bool m_waveformMaker
produce only waveform digits
~ECLDigitizerModule()
Destructor.
StoreObjPtr< EventMetaData > m_EventMetaData
Event metadata.
void readDSPDB()
read Shaper-DSP data from root file
void makeElectronicNoiseAndPedestal(int j, int *FitA)
fill the waveform array FitA by electronic noise and bias it for channel J [0-8735]
std::string m_eclWaveformsName
name of background waveforms storage
DBObjPtr< ECLCrystalCalib > m_CrystalTimeOffset
Crystal time offset.
bool m_inter
internuclear counter effect
std::vector< signalsample_t > m_ss
tabulated shape line
Container for constant matrix used to generate electronic noise.
Container for constant parameters used in waveform fits.
int getkc() const
getter for multipliers power of 2 for fg33,fg43
int getlAT() const
getter for the threshold to calculate time
int getsT() const
getter for the threshold to send data to collector
int getcT() const
getter for the chi2 threshold for quality bit
int getk1() const
getter for the multipliers power of 2 for f
int getk2() const
getter for multipliers power of 2 for chi2 calculation
int getkb() const
getter for multipliers power of 2 for fg32
int gethT() const
getter for the hardware threshold
int gety0s() const
getter for the start point for pedestal calculation
int getka() const
getter for multipliers power of 2 for fg31 fg41
bool initFromDB()
Initialize channel mapper from the conditions database.
int getCrateID(int iCOPPERNode, int iFINESSE, bool pcie40=false)
Get crate number by given COPPER node number and FINESSE number.
Abstract class (interface) for ECL waveform compression/decompression to/from the BitStream storage.
virtual void uncompress(BitStream &in, int *adc)=0
Decompress the ECL waveform.
virtual void compress(BitStream &out, const int *adc)=0
Compress the ECL waveform.
static ECLShapeFit shapeFitter(int cid, std::vector< int > adc, int ttrig, bool adjusted_timing=true)
Emulate shape fitting algorithm from ShaperDSP using algorithm from ecl/utility/src/ECLDspEmulator....
The Class for ECL Geometry Parameters.
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.
double time2sensor(int cid, const G4ThreeVector &hit_pos)
function to calculate flight time to diode sensor
Singleton class to hold the ECL configuration.
static EclConfiguration & get()
return this instance
static constexpr double m_step
time between points in internal units t_{asrto}*m_rf/2.
static constexpr double s_clock
digitization clock in RF units
static constexpr int m_nch
total number of electronic channels (crystals) in calorimeter
void setBackground(bool val)
set the background flag
static double getRF()
See m_rf.
static constexpr int m_ntrg
number of trigger counts per ADC clock tick
static constexpr int m_ndt
number of points per ADC tick where signal fit procedure parameters are evaluated
static constexpr int m_nsmp
number of ADC measurements for signal fitting
Class include function that calculate electronic response from energy deposit
void fillvector(std::vector< double > &) const
fill vector with response function values and its derivative
void settimeseed(double)
set initial time
void settimestride(double)
set grid step for function calculation
void nextseed()
substruct toffset to tzero
void setseedoffset(double)
set timeoffset
static std::string findFile(const std::string &path, bool silent=false)
Search for given file or directory in local or central release directory, and return absolute path if...
void setDescription(const std::string &description)
Sets the description of the module.
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
static const double us
[microsecond]
static const double GeV
Standard of [energy, momentum, mass].
void addParam(const std::string &name, T ¶mVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
const int c_NCrystals
Number of crystals.
Abstract base class for different kinds of events.
calibration constants per channel
Indices in arrays with info on ECL channels.
ShaperDSP fit results from _lftda function.
a struct for the ADC count
a struct for the parameters of the algorithm
a struct for the fit parameters