Belle II Software  release-08-00-10
ECLBhabhaTCollectorModule Class Reference

This module generates time vs crystal 2D histograms to later (in eclBhabhaTAlgorithm) find time crystal/crate offsets from bhabha events. More...

#include <ECLBhabhaTCollectorModule.h>

Inheritance diagram for ECLBhabhaTCollectorModule:
Collaboration diagram for ECLBhabhaTCollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLBhabhaTCollectorModule ()
 Module constructor.
 
virtual ~ECLBhabhaTCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 StoreArray for tracks.
 
std::unique_ptr< Belle2::ECL::ECLChannelMapperm_crystalMapper
 ECL object for keeping track of mapping between crystals and crates etc. More...
 
StoreObjPtr< SoftwareTriggerResultm_TrgResult
 Store array for Trigger selection.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0. More...
 
StoreObjPtr< EventMetaDatam_EventMetaData
 Event metadata.
 
DBObjPtr< ECLCrystalCalibm_ElectronicsDB
 electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps More...
 
std::vector< float > m_Electronics
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ElectronicsTimeDB
 Time offset from electronics calibration from database. More...
 
std::vector< float > m_ElectronicsTime
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_FlightTimeDB
 Time offset from flight time b/w IP and crystal from database. More...
 
std::vector< float > m_FlightTime
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_PreviousCrystalTimeDB
 Time offset from previous crystal time calibration (this calibration) from database. More...
 
std::vector< float > m_PreviousCrystalTime
 vector obtained from DB object
 
std::vector< float > m_PreviousCrystalTimeUnc
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_CrateTimeDB
 Time offset from crate time calibration (also this calibration) from database. More...
 
std::vector< float > m_CrateTime
 vector obtained from DB object
 
std::vector< float > m_CrateTimeUnc
 uncertainty vector obtained from DB object
 
DBObjPtr< ECLReferenceCrystalPerCrateCalibm_RefCrystalsCalibDB
 Crystal IDs of the one reference crystal per crate from database. More...
 
std::vector< short > m_RefCrystalsCalib
 vector obtained from DB object
 
DBObjPtr< Belle2::ECLChannelMapm_channelMapDB
 Mapper of ecl channels to various other objects, like crates. More...
 
TTree * m_dbgTree_electrons = nullptr
 Output tree with detailed event data. More...
 
TTree * m_dbgTree_tracks = nullptr
 Debug TTree output per track.
 
TTree * m_dbgTree_crystals = nullptr
 Debug TTree output per crystal.
 
TTree * m_dbgTree_event = nullptr
 Debug TTree output per event.
 
TTree * m_dbgTree_allCuts = nullptr
 Debug TTree output after all cuts.
 
TTree * m_dbgTree_evt_allCuts = nullptr
 Debug TTree output per event after all cuts.
 
TTree * m_dbgTree_crys_allCuts = nullptr
 Debug TTree output per crystal after all cuts.
 
int m_tree_evtNum = intNaN
 Event number for debug TTree output.
 
int m_tree_cid = intNaN
 ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
 
int m_tree_amp = intNaN
 Fitting amplitude from ECL for debug TTree output.
 
double m_tree_en = realNaN
 Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.
 
double m_tree_E1Etot = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by total cluster energy, unitless for debug TTree output.
 
double m_tree_E1E2 = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in the cluster, unitless for debug TTree output.
 
double m_tree_E1p = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by the track momentum, unitless for debug TTree output.
 
int m_tree_quality = intNaN
 ECL fit quality for debug TTree output.
 
double m_tree_timeF = realNaN
 ECL fitting time for debug TTree output.
 
double m_tree_time = realNaN
 Time for Ts distribution for debug TTree output.
 
double m_tree_timetsPreviousTimeCalibs = realNaN
 Time for Ts distribution after application of previous time calibrations for debug TTree output.
 
double m_tree_t0 = realNaN
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = realNaN
 EventT0 uncertainty for debug TTree output.
 
double m_tree_t0_ECLclosestCDC = realNaN
 EventT0 (from ECL) closest to CDC for debug TTree output.
 
double m_tree_t0_ECL_minChi2 = realNaN
 EventT0 (from ECL) min chi2 for debug TTree output.
 
double m_tree_d0 = realNaN
 Track d0 for debug TTree output.
 
double m_tree_z0 = realNaN
 Track z0 for debug TTree output.
 
double m_tree_p = realNaN
 Track momentum for debug TTree output.
 
double m_tree_nCDChits = realNaN
 Number of CDC hits along the track for debug TTree output.
 
double m_tree_clustCrysE_DIV_maxEcrys = realNaN
 ratio of crystal energy to energy of the crystal that has the maximum energy, only for the crystals that meet all the selection criteria for debug TTree output
 
double m_tree_clustCrysE = realNaN
 crystal energy, only for the crystals that meet all the selection criteria for debug TTree output
 
double m_tree_enPlus = realNaN
 Energy of cluster associated to positively charged track, GeV for debug TTree output.
 
double m_tree_enNeg = realNaN
 Energy of cluster associated to negatively charged track, GeV for debug TTree output.
 
double m_tree_tClustPos = realNaN
 Cluster time of cluster associated to positively charged track, ns for debug TTree output.
 
double m_tree_tClustNeg = realNaN
 Cluster time of cluster associated to negatively charged track, ns for debug TTree output.
 
double m_tree_maxEcrystPosClust = realNaN
 Time of the highest energy crystal in the cluster associated to positively charged track, ns for debug TTree output.
 
double m_tree_maxEcrystNegClust = realNaN
 Time of the highest energy crystal in the cluster associated to negatively charged track, ns for debug TTree output.
 
double m_tree_tClust = realNaN
 Cluster time of a cluster, ns for debug TTree output.
 
double m_tree_ECLCalDigitTime = realNaN
 Time of an ECLCalDigit within a cluster, ns for debug TTree output.
 
double m_tree_ECLCalDigitE = realNaN
 Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.
 
double m_tree_ECLDigitAmplitude = realNaN
 Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.
 
int m_charge = intNaN
 particle charge, for debug TTree output
 
double m_E_DIV_p = realNaN
 Energy divided by momentum, for debug TTree output.
 
double m_massInvTracks = realNaN
 invariant mass of the two tracks, for debug TTree output
 
StoreArray< ECLDigitm_eclDigitArray
 Required input array of ECLDigits.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
std::vector< float > m_EperCrys
 ECL cal digit energy for each crystal.
 
std::vector< int > m_eclCalDigitID
 ECL cal digit id sorter.
 
std::vector< int > m_eclDigitID
 ECL digit id sorter.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
int m_minCrystal = intNaN
 First CellId to handle.
 
int m_maxCrystal = intNaN
 Last CellId to handle.
 
double m_looseTrkZ0 = realNaN
 Loose track z0 minimum cut.
 
double m_tightTrkZ0 = realNaN
 Tight track z0 minimum cut.
 
double m_looseTrkD0 = realNaN
 Loose track d0 minimum cut.
 
double m_tightTrkD0 = realNaN
 Tight track d0 minimum cut.
 
int m_crystalCrate = intNaN
 Crate id for the crystal.
 
int m_runNum = intNaN
 run number
 
bool m_storeCalib = true
 Boolean for whether or not to store the previous calibration calibration constants.
 
std::unique_ptr< Belle2::ECL::ECLTimingUtilitiesm_ECLTimeUtil
 ECL timing tools. More...
 
double m_hadronEventT0_TO_bhabhaEventT0_correction
 correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared to CDC event t0 in hadronic events in ns
 
bool skipTrgSel
 flag to skip the trigger skim selection in the module
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates time vs crystal 2D histograms to later (in eclBhabhaTAlgorithm) find time crystal/crate offsets from bhabha events.

Definition at line 48 of file ECLBhabhaTCollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< vector derived from DB object

Store the crystal cell id of those being used as the reference crystals for ts. One crystal per crate is defined as having ts=0. This histogram only keeps track of the crystal id, not the crate id. The talg can figure out to which crate to associate the crystal.

Record the input database constants

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 323 of file ECLBhabhaTCollectorModule.cc.

324 {
325  int cutIndexPassed = 0;
326  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
327  B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
328  B2DEBUG(22, "Event number = " << m_EventMetaData->getEvent());
329 
330 
331  // --- Check the trigger skim is the type that has two tracks
332 
333  /* If we skip the trigger skim selection then still fill the cutflow histogram
334  just so that the positions don't change. */
335  if (!skipTrgSel) {
336  if (!m_TrgResult.isValid()) {
337  B2WARNING("SoftwareTriggerResult required to select bhabha event is not found");
338  return;
339  }
340 
341  /* Release05: bhabha_all is grand skim = bhabha+bhabhaecl+radee. We only want
342  to look at the 2 track bhabha events. */
343  const std::map<std::string, int>& fresults = m_TrgResult->getResults();
344  if (fresults.find("software_trigger_cut&skim&accept_bhabha") == fresults.end()) {
345  B2WARNING("Can't find required bhabha trigger identifier");
346  return;
347  }
348 
349  const bool eBhabha = (m_TrgResult->getResult("software_trigger_cut&skim&accept_bhabha") ==
351  B2DEBUG(22, "eBhabha (trigger passed) = " << eBhabha);
352 
353  if (!eBhabha) {
354  return;
355  }
356  }
357 
358  /* Fill the histgram showing that the trigger skim cut passed OR that we
359  are skipping this selection. */
360  cutIndexPassed++;
361  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
362  B2DEBUG(22, "Cutflow: Trigger cut passed: index = " << cutIndexPassed);
363 
364 
365 
366  /* Use ECLChannelMapper to get other detector indices for the crystals
367  For conversion from CellID to crate, shaper, and channel ids.
368  The initialization function automatically checks to see if the
369  object has been initialized and ifthe payload has changed and
370  thus needs updating. */
371  bool ECLchannelMapHasChanged = m_channelMapDB.hasChanged();
372  if (ECLchannelMapHasChanged) {
373  B2INFO("ECLBhabhaTCollectorModule::collect() " << LogVar("ECLchannelMapHasChanged", ECLchannelMapHasChanged));
374  if (!m_crystalMapper->initFromDB()) {
375  B2FATAL("ECLBhabhaTCollectorModule::collect() : Can't initialize eclChannelMapper!");
376  }
377  }
378 
379 
380  //== Get expected energies and calibration constants from DB. Need to call
381  // hasChanged() for later comparison
382  if (m_ElectronicsDB.hasChanged()) {
383  m_Electronics = m_ElectronicsDB->getCalibVector();
384  }
385  if (m_ElectronicsTimeDB.hasChanged()) {
386  m_ElectronicsTime = m_ElectronicsTimeDB->getCalibVector();
387  }
388  if (m_FlightTimeDB.hasChanged()) {
389  m_FlightTime = m_FlightTimeDB->getCalibVector();
390  }
391 
392  // Get the previous crystal time offset (the same thing that this calibration is meant to calculate).
393  // This can be used for testing purposes, and for the crate time offset.
394  if (m_PreviousCrystalTimeDB.hasChanged()) {
396  m_PreviousCrystalTimeUnc = m_PreviousCrystalTimeDB->getCalibUncVector();
397  }
398 
399  B2DEBUG(29, "Finished checking if previous crystal time payload has changed");
400  if (m_CrateTimeDB.hasChanged()) {
401  m_CrateTime = m_CrateTimeDB->getCalibVector();
402  m_CrateTimeUnc = m_CrateTimeDB->getCalibUncVector();
403  }
404  B2DEBUG(29, "Finished checking if previous crate time payload has changed");
405  B2DEBUG(29, "m_CrateTime size = " << m_CrateTime.size());
406  B2DEBUG(25, "Crate time +- uncertainty [0]= " << m_CrateTime[0] << " +- " << m_CrateTimeUnc[0]);
407  B2DEBUG(25, "Crate time +- uncertainty [8735]= " << m_CrateTime[8735] << " +- " << m_CrateTimeUnc[8735]);
408 
409  B2DEBUG(29, "Finished checking if previous crate time payload has changed");
410  if (m_RefCrystalsCalibDB.hasChanged()) {
411  m_RefCrystalsCalib = m_RefCrystalsCalibDB->getReferenceCrystals();
412  }
413  B2DEBUG(29, "Finished checking if reference crystal cell ids payload has changed");
414 
415 
416  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalTimeOffset from the database"
417  << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
418  << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
419  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrateTimeOffset from the database"
420  << LogVar("IoV", m_CrateTimeDB.getIoV())
421  << LogVar("Checksum", m_CrateTimeDB.getChecksum()));
422  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronics from the database"
423  << LogVar("IoV", m_ElectronicsDB.getIoV())
424  << LogVar("Checksum", m_ElectronicsDB.getChecksum()));
425  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronicsTime from the database"
426  << LogVar("IoV", m_ElectronicsTimeDB.getIoV())
427  << LogVar("Checksum", m_ElectronicsTimeDB.getChecksum()));
428  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalFlightTime from the database"
429  << LogVar("IoV", m_FlightTimeDB.getIoV())
430  << LogVar("Checksum", m_FlightTimeDB.getChecksum()));
431  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLReferenceCrystalPerCrateCalib from the database"
432  << LogVar("IoV", m_RefCrystalsCalibDB.getIoV())
433  << LogVar("Checksum", m_RefCrystalsCalibDB.getChecksum()));
434 
435 
436 
437  // Conversion coefficient from ADC ticks to nanoseconds
438  // TICKS_TO_NS ~ 0.4913 ns/clock tick
439  // 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency
440  const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
441 
442 
443  vector<float> Crate_time_ns(52, 0.0);
445  // Make a crate time offset vector with an entry per crate (instead of per crystal) and convert from ADC counts to ns.
446  for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
447  int crateID_temp = m_crystalMapper->getCrateID(crysID);
448  Crate_time_ns[crateID_temp - 1] = m_CrateTime[crysID] * TICKS_TO_NS;
449  }
450 
451 
452 
458  for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
459  getObjectPtr<TH1F>("refCrysIDzeroingCrate")->Fill(m_RefCrystalsCalib[crateID_temp - 1] + 0.001);
460  }
461 
462 
464  for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
465  getObjectPtr<TH1F>("TsDatabase")->SetBinContent(crysID + 0.001, m_PreviousCrystalTime[crysID - 1]);
466  getObjectPtr<TH1F>("TsDatabaseUnc")->SetBinContent(crysID + 0.001, m_PreviousCrystalTimeUnc[crysID - 1]);
467  getObjectPtr<TH1F>("TcrateDatabase")->SetBinContent(crysID + 0.001, m_CrateTime[crysID - 1]);
468  getObjectPtr<TH1F>("TcrateUncDatabase")->SetBinContent(crysID + 0.001, m_CrateTimeUnc[crysID - 1]);
469  }
470  if (m_storeCalib) {
471  B2INFO("ECLBhabhaTCollector:: ECLCrystalTimeOffset from the database information:"
472  << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
473  << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
474  B2INFO("First event so print out previous ts values");
475  for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
476  B2INFO("cid = " << crysID << ", Ts previous = " << m_PreviousCrystalTime[crysID - 1]);
477  }
478  m_storeCalib = false;
479  }
480 
481 
482 
483 
484  for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
485  getObjectPtr<TH1F>("tcrateDatabase_ns")->SetBinContent(crateID_temp + 0.001, Crate_time_ns[crateID_temp - 1]);
486  }
487 
488  // Use a histogram with only one bin as a counter to know the number of times the database histograms were filled.
489  // This is mostly useful for the talg when running over multiple runs and trying to read ts values.
490  getObjectPtr<TH1I>("databaseCounter")->SetBinContent(1, 1);
491 
492 
493 
494  // Save what CDC event t0 correction was applied
495  getObjectPtr<TH1F>("CDCEventT0Correction")->SetBinContent(1, m_hadronEventT0_TO_bhabhaEventT0_correction);
496 
497 
498 
499 
500  /* Getting the event t0 using the full event t0 rather than from the CDC specifically */
501  double evt_t0 = -1;
502  double evt_t0_unc = -1;
503  double evt_t0_ECL_closestCDC = -1;
504  double evt_t0_ECL_minChi2 = -1;
505 
506  // Determine if there is an event t0 to use and then extract the information about it
507  if (!m_eventT0.isValid()) {
508  //cout << "event t0 not valid\n";
509  return;
510  } else if (!m_eventT0->hasTemporaryEventT0(Const::EDetector::CDC)) {
511  //cout << "no event t0\n";
512  return;
513  } else {
514  // Event has a t0 from CDC
515  cutIndexPassed++;
516  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
517  B2DEBUG(22, "Cutflow: Event t0 exists: index = " << cutIndexPassed);
518 
519 
520  // Get event t0 from CDC. We don't want event t0 from ECL as we are calibrating the ECL wrt the more accurately measured time measurements of the time. Start with the CDC since it has an event t0 but in the future we may switch to the TOP detector.
521  // Based on the information from Thomas Hauth <Thomas.Hauth@kit.edu> (leaving physics) we should take the last event t0 in the list of event t0's from the CDC as the later event t0 measurements are calculated in slower but more accurate ways.
522  vector<EventT0::EventT0Component> evt_t0_list = m_eventT0->getTemporaryEventT0s(Const::EDetector::CDC);
523  evt_t0 = evt_t0_list.back().eventT0; // time value
524  evt_t0_unc = evt_t0_list.back().eventT0Uncertainty; // uncertainty on event t0
525 
526 
527  // Correct the CDC event t0 value for the bhabha bias
528  evt_t0 = evt_t0 + m_hadronEventT0_TO_bhabhaEventT0_correction; // Bias not yet fixed in CDC t0 reco.
529 
530 
531  // Get the ECL event t0 for comparison - validations
532  if (m_eventT0->hasTemporaryEventT0(Const::EDetector::ECL)) {
533  vector<EventT0::EventT0Component> evt_t0_list_ECL = m_eventT0->getTemporaryEventT0s(Const::EDetector::ECL);
534 
535 
536  double smallest_CDC_ECL_t0_diff = fabs(evt_t0_list_ECL[0].eventT0 - evt_t0);
537  int smallest_CDC_ECL_t0_diff_idx = 0;
538  for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
539  double tempt_ECL_t0 = evt_t0_list_ECL[ECLi].eventT0;
540  if (fabs(tempt_ECL_t0 - evt_t0) < smallest_CDC_ECL_t0_diff) {
541  smallest_CDC_ECL_t0_diff = fabs(tempt_ECL_t0 - evt_t0);
542  smallest_CDC_ECL_t0_diff_idx = ECLi;
543  }
544  }
545 
546  evt_t0_ECL_closestCDC = evt_t0_list_ECL[smallest_CDC_ECL_t0_diff_idx].eventT0; // time value
547  B2DEBUG(26, "evt_t0_ECL_closestCDC = " << evt_t0_ECL_closestCDC);
548 
549 
550 
551  double smallest_ECL_t0_minChi2 = evt_t0_list_ECL[0].quality;
552  int smallest_ECL_t0_minChi2_idx = 0;
553 
554  B2DEBUG(26, "evt_t0_list_ECL[0].quality = " << evt_t0_list_ECL[0].quality
555  << ", with ECL event t0 = " << evt_t0_list_ECL[0].eventT0);
556 
557  for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
558  B2DEBUG(26, "evt_t0_list_ECL[" << ECLi << "].quality = " << evt_t0_list_ECL[ECLi].quality
559  << ", with ECL event t0 = " <<
560  evt_t0_list_ECL[ECLi].eventT0);
561  if (evt_t0_list_ECL[ECLi].quality < smallest_ECL_t0_minChi2) {
562  smallest_ECL_t0_minChi2 = evt_t0_list_ECL[ECLi].quality;
563  smallest_ECL_t0_minChi2_idx = ECLi;
564  }
565  }
566 
567  evt_t0_ECL_minChi2 = evt_t0_list_ECL[smallest_ECL_t0_minChi2_idx].eventT0; // time value
568 
569  B2DEBUG(26, "evt_t0_ECL_minChi2 = " << evt_t0_ECL_minChi2);
570  B2DEBUG(26, "smallest_ECL_t0_minChi2_idx = " << smallest_ECL_t0_minChi2_idx);
571  }
572  }
573 
574 
575 
576  /* Determine the energies for each of the crystals since this isn't naturally connected to the cluster.
577  Also determine the indexing of the ecl cal digits and the ecl digits
578  Taken from Chris's ec/modules/eclGammaGammaECollector */
579 
580  // Resize vectors
584 
585 
586  int idx = 0;
587  for (auto& eclCalDigit : m_eclCalDigitArray) {
588  int tempCrysID = eclCalDigit.getCellId() - 1;
589  m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
590  m_eclCalDigitID[tempCrysID] = idx;
591  idx++;
592  }
593 
594  idx = 0;
595  for (auto& eclDigit : m_eclDigitArray) {
596  int tempCrysID = eclDigit.getCellId() - 1;
597  m_eclDigitID[tempCrysID] = idx;
598  idx++;
599  }
600 
601 
602 
603 
604  //---------------------------------------------------------------------
605  //..Some utilities
606  PCmsLabTransform boostrotate;
607 
608  //---------------------------------------------------------------------
609  //..Track properties, including 2 maxp tracks. Use pion (211) mass hypothesis,
610  // which is the only particle hypothesis currently available???
611  double maxp[2] = {0., 0.};
612  int maxiTrk[2] = { -1, -1};
613  int nTrkAll = tracks.getEntries();
614 
615  int nTrkLoose = 0;
616  int nTrkTight = 0;
618  /* Loop over all the tracks to define the tight and loose selection tracks.
619  We will select events with only 2 tight tracks and no additional loose tracks.
620  Tight tracks are a subset of looses tracks. */
621  for (int iTrk = 0; iTrk < nTrkAll; iTrk++) {
622  // Get track biasing towards the particle being a pion based on what particle types
623  // are used for reconstruction at this stage.
624  const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion);
625  if (not tempTrackFit) {continue;}
626 
627  // Collect track info to be used for categorizing
628  short charge = tempTrackFit->getChargeSign();
629  double z0 = tempTrackFit->getZ0();
630  double d0 = tempTrackFit->getD0();
631  int nCDChits = tempTrackFit->getHitPatternCDC().getNHits();
632  double p = tempTrackFit->getMomentum().R();
633 
634  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
635  //== Save debug TTree with detailed information if necessary.
636  m_tree_d0 = d0;
637  m_tree_z0 = z0;
638  m_tree_p = p;
639  m_charge = charge;
640  m_tree_nCDChits = nCDChits;
641 
642  if (m_saveTree) {
643  m_dbgTree_tracks->Fill();
644  }
645  //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
646 
647 
648  /* Test if loose track */
649 
650  // d0 and z0 cuts
651  if (fabs(d0) > m_looseTrkD0) {
652  continue;
653  }
654  if (fabs(z0) > m_looseTrkZ0) {
655  continue;
656  }
657  // Number of hits in the CDC
658  if (nCDChits < 1) {
659  continue;
660  }
661  nTrkLoose++;
662 
663 
664 
665  /* Test if the loose track is also a tight track */
666 
667  // Number of hits in the CDC
668  if (nCDChits < 20) {
669  continue;
670  }
671 
672 
673  // d0 and z0 cuts
674  if (fabs(d0) > m_tightTrkD0) {
675  continue;
676  }
677  if (fabs(z0) > m_tightTrkZ0) {
678  continue;
679  }
680  nTrkTight++;
681 
682  // Sorting of tight tracks. Not really required as we only want two tight tracks (at the moment) but okay.
683  //..Find the maximum p negative [0] and positive [1] tracks
684  int icharge = 0;
685  if (charge > 0) {icharge = 1;}
686  if (p > maxp[icharge]) {
687  maxp[icharge] = p;
688  maxiTrk[icharge] = iTrk;
689  }
690 
691  }
692  /* After that last section the numbers of loose and tight tracks are known as well as the
693  index of the loose tracks that have the highest p negatively charged and highest p positively
694  charged tracks as measured in the centre of mass frame */
695 
696 
697  if (nTrkTight != 2) {
698  return;
699  }
700  // There are exactly two tight tracks
701  cutIndexPassed++;
702  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
703  B2DEBUG(22, "Cutflow: Two tight tracks: index = " << cutIndexPassed);
704 
705 
706  if (nTrkLoose != 2) {
707  return;
708  }
709  // There are exactly two loose tracks as well, i.e. no additional loose tracks
710  cutIndexPassed++;
711  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
712  B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed);
713 
714  /* Determine if the two tracks have the opposite electric charge.
715  We know this because the track indices stores the max pt track in [0] for negatively charged track
716  and [1] fo the positively charged track. If both are filled then both a negatively charged
717  and positively charged track were found. */
718  bool oppositelyChargedTracksPassed = maxiTrk[0] != -1 && maxiTrk[1] != -1;
719  if (!oppositelyChargedTracksPassed) {
720  return;
721  }
722  // The two tracks have the opposite electric charges.
723  cutIndexPassed++;
724  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
725  B2DEBUG(22, "Cutflow: Oppositely charged tracks: index = " << cutIndexPassed);
726 
727 
728 
729 
730  //---------------------------------------------------------------------
731  /* Determine associated energy clusters to each of the two tracks. Sum the energies of the
732  multiple clusters to each track and find the crystal with the maximum energy within all
733  the sets of clusters associated to the tracks*/
734  double trkEClustLab[2] = {0., 0.};
735  double trkEClustCOM[2] = {0., 0.};
736  double trkpLab[2];
737  double trkpCOM[2];
738  ROOT::Math::PxPyPzEVector trkp4Lab[2];
739  ROOT::Math::PxPyPzEVector trkp4COM[2];
740 
741  // Index of the cluster and the crystal that has the highest energy crystal for the two tracks
742  int crysIDMax[2] = { -1, -1 };
743  double crysEMax[2] = { -1, -1 };
744  double crysE2Max[2] = { -1, -1 };
745  int numClustersPerTrack[2] = { 0, 0 };
746 
747  double clusterTime[2] = {0, 0};
748 
749  double E_DIV_p[2];
750 
751  vector<double> time_ECLCaldigits_bothClusters;
752  vector<int> cid_ECLCaldigits_bothClusters;
753  vector<double> E_ECLCaldigits_bothClusters;
754  vector<double> amp_ECLDigits_bothClusters;
755  vector<int> chargeID_ECLCaldigits_bothClusters;
756 
757  for (int icharge = 0; icharge < 2; icharge++) {
758  if (maxiTrk[icharge] > -1) {
759  B2DEBUG(22, "looping over the 2 max pt tracks");
760 
761  const TrackFitResult* tempTrackFit = tracks[maxiTrk[icharge]]->getTrackFitResultWithClosestMass(Const::pion);
762  if (not tempTrackFit) {continue;}
763  trkp4Lab[icharge] = tempTrackFit->get4Momentum();
764  trkp4COM[icharge] = boostrotate.rotateLabToCms() * trkp4Lab[icharge];
765  trkpLab[icharge] = trkp4Lab[icharge].P();
766  trkpCOM[icharge] = trkp4COM[icharge].P();
767 
768 
769  /* For each cluster associated to the current track, sum up the energies to get the total
770  energy of all clusters associated to the track and find which crystal has the highest
771  energy from all those clusters*/
772  auto eclClusterRelationsFromTracks = tracks[maxiTrk[icharge]]->getRelationsTo<ECLCluster>();
773  for (unsigned int clusterIdx = 0; clusterIdx < eclClusterRelationsFromTracks.size(); clusterIdx++) {
774 
775  B2DEBUG(22, "Looking at clusters. index = " << clusterIdx);
776  auto cluster = eclClusterRelationsFromTracks[clusterIdx];
777  bool goodClusterType = false;
778 
779  if (cluster->hasHypothesis(Belle2::ECLCluster::EHypothesisBit::c_nPhotons)) {
780  trkEClustLab[icharge] += cluster->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons);
781  goodClusterType = true;
782  numClustersPerTrack[icharge]++;
783  }
784 
785  if (goodClusterType) {
786 
787  clusterTime[icharge] = cluster->getTime();
788 
789  auto eclClusterRelations = cluster->getRelationsTo<ECLCalDigit>("ECLCalDigits");
790 
791  // Find the crystal that has the largest energy
792  for (unsigned int ir = 0; ir < eclClusterRelations.size(); ir++) {
793  const auto calDigit = eclClusterRelations.object(ir);
794  int tempCrysID = calDigit->getCellId() - 1;
795  double tempE = m_EperCrys[tempCrysID];
796 
797  int eclDigitIndex = m_eclDigitID[tempCrysID];
798  ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
799 
800  // for the max E crystal
801  if (tempE > crysEMax[icharge]) {
802  // Set 2nd highest E crystal to the info from the highest E crystal
803  crysE2Max[icharge] = crysEMax[icharge];
804  // Set the highest E crystal to the current crystal
805  crysEMax[icharge] = tempE;
806  crysIDMax[icharge] = tempCrysID;
807  }
808  // for the 2nd highest E crystal
809  if (tempE > crysE2Max[icharge] && tempCrysID != crysIDMax[icharge]) {
810  crysE2Max[icharge] = tempE;
811  }
812 
813  // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
814  // If we drop the information about the second highest energy crystal we could use
815  // m_eclClusterArray[ic]->getMaxECellId()
816 
817  B2DEBUG(26, "calDigit(ir" << ir << ") time = " << calDigit->getTime() << "ns , with E = " << tempE << " GeV");
818  time_ECLCaldigits_bothClusters.push_back(calDigit->getTime());
819  cid_ECLCaldigits_bothClusters.push_back(tempCrysID);
820  E_ECLCaldigits_bothClusters.push_back(tempE);
821  amp_ECLDigits_bothClusters.push_back(ecl_dig->getAmp());
822  chargeID_ECLCaldigits_bothClusters.push_back(icharge);
823 
824  }
825  }
826  }
827  trkEClustCOM[icharge] = trkEClustLab[icharge] * trkpCOM[icharge] / trkpLab[icharge];
828 
829  // Check both electrons to see if their cluster energy / track momentum is good.
830  // The Belle II physics book shows that this is the main way of separating electrons from other particles
831  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
832  E_DIV_p[icharge] = trkEClustCOM[icharge] / trkpCOM[icharge];
833 
834  }
835  }
836  /* At the end of this section the 3-momenta magnitudes and the cluster energies are known
837  for the two saved track indices for both the lab and COM frames.
838  The crystal with the maximum energy, one associated to each track, is recorded*/
839 
840 
841 
842  //=== Check each crystal in the processed event and fill histogram.
843 
844  int numCrystalsPassingCuts = 0;
845 
846  int crystalIDs[2] = { -1, -1};
847  int crateIDs[2] = { -1, -1};
848  double ts_prevCalib[2] = { -1, -1};
849  double tcrate_prevCalib[2] = { -1, -1};
850  double times_noPreviousCalibrations[2] = { -1, -1};
851  bool crystalCutsPassed[2] = {false, false};
852  double crystalEnergies[2] = { -1, -1};
853  double crystalEnergies2[2] = { -1, -1};
854 
855  for (int iCharge = 0; iCharge < 2; iCharge++) {
856  int crystal_idx = crysIDMax[iCharge];
857  int eclCalDigitIndex = m_eclCalDigitID[crystal_idx];
858  int eclDigitIndex = m_eclDigitID[crystal_idx];
859 
860  ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
861  ECLCalDigit* ecl_cal = m_eclCalDigitArray[eclCalDigitIndex];
862 
863  //== Check whether specific ECLDigits should be excluded.
864 
865  auto en = ecl_cal->getEnergy();
866  auto amplitude = ecl_dig->getAmp();
867  crystalEnergies[iCharge] = en;
868 
869  int cid = ecl_dig->getCellId();
870  double time = ecl_dig->getTimeFit() * TICKS_TO_NS - evt_t0;
871 
872  // Offset time by electronics calibration and flight time calibration.
873  time -= m_ElectronicsTime[cid - 1] * TICKS_TO_NS;
874  time -= m_FlightTime[cid - 1];
875 
876 
877  // Apply the time walk correction: time shift as a function of the amplitude corrected by the electronics calibration.
878  // The electronics calibration also accounts for crystals that have a dead pre-amp and thus half the normal amplitude.
879  double energyTimeShift = m_ECLTimeUtil->energyDependentTimeOffsetElectronic(amplitude * m_Electronics[cid - 1]) * TICKS_TO_NS;
880 
881  B2DEBUG(29, "cellid = " << cid << ", amplitude = " << amplitude << ", time before t(E) shift = " << time <<
882  ", t(E) shift = " << energyTimeShift << " ns");
883  time -= energyTimeShift;
884 
885 
886  // Cell ID should be within specified range.
887  if (cid < m_minCrystal || cid > m_maxCrystal) continue;
888 
889  // Absolute time should be in specified range condition.
890  if (fabs(time) > m_timeAbsMax) continue;
891 
892  // Fit quality flag -- choose only events with best fit quality
893  if (ecl_dig->getQuality() != 0) continue;
894 
895  //== Save time and crystal information. Fill plot after both electrons are tested
896  crystalIDs[iCharge] = cid;
897  crateIDs[iCharge] = m_crystalMapper->getCrateID(ecl_cal->getCellId());
898 
899 
900  ts_prevCalib[iCharge] = m_PreviousCrystalTime[cid - 1] * TICKS_TO_NS;
901  tcrate_prevCalib[iCharge] = m_CrateTime[cid - 1] * TICKS_TO_NS;
902  times_noPreviousCalibrations[iCharge] = time;
903 
904 
905  B2DEBUG(26, "iCharge = " << iCharge);
906  B2DEBUG(26, "crateIDs[iCharge] = " << crateIDs[iCharge]);
907  B2DEBUG(26, "times_noPreviousCalibrations[iCharge] = " << times_noPreviousCalibrations[iCharge]);
908  B2DEBUG(26, "tcrate_prevCalib[iCharge] = " << tcrate_prevCalib[iCharge]);
909  B2DEBUG(26, "ts_prevCalib[iCharge] = " << ts_prevCalib[iCharge]);
910 
911 
912  crystalCutsPassed[iCharge] = true;
913 
914 
915  // For second most energetic energy crystal
916  crystalEnergies2[iCharge] = crysE2Max[iCharge];
917 
918 
919 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
920  //== Save debug TTree with detailed information if necessary.
921  m_tree_cid = ecl_dig->getCellId();
922  m_tree_amp = ecl_dig->getAmp();
923  m_tree_en = en;
924  m_tree_E1Etot = en / trkEClustLab[iCharge];
925  m_tree_E1E2 = en / crystalEnergies2[iCharge];
926  m_tree_E1p = en / trkpLab[iCharge];
927  m_tree_timetsPreviousTimeCalibs = time - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
928  m_tree_timeF = ecl_dig->getTimeFit() * TICKS_TO_NS;
929  m_tree_time = time;
930  m_tree_quality = ecl_dig->getQuality();
931  m_tree_t0 = evt_t0;
932  m_tree_t0_unc = evt_t0_unc;
933  m_E_DIV_p = E_DIV_p[iCharge];
934  m_tree_evtNum = m_EventMetaData->getEvent();
935  m_crystalCrate = m_crystalMapper->getCrateID(ecl_cal->getCellId());
936  m_runNum = m_EventMetaData->getRun();
937 
938  if (m_saveTree) {
939  m_dbgTree_electrons->Fill();
940  }
941 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
942 
943  // Fill histogram with information about maximum energy crystal energy fraction
944  getObjectPtr<TH1F>("maxEcrsytalEnergyFraction")->Fill(en / trkEClustLab[iCharge]);
945 
946 
947  }
948 
949 
950 
951  // Check both electrons to see if their cluster energy / track momentum is good.
952  // The Belle II physics book shows that this is the main way of separating electrons from other particles
953  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
954  bool E_DIV_p_instance_passed[2] = {false, false};
955  double E_DIV_p_CUT = 0.7;
956  for (int icharge = 0; icharge < 2; icharge++) {
957  E_DIV_p_instance_passed[icharge] = E_DIV_p[icharge] > E_DIV_p_CUT;
958  }
959  if (!E_DIV_p_instance_passed[0] || !E_DIV_p_instance_passed[1]) {
960  return;
961  }
962  // E/p sufficiently large
963  cutIndexPassed++;
964  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
965  B2DEBUG(22, "Cutflow: E_i/p_i > " << E_DIV_p_CUT << ": index = " << cutIndexPassed);
966 
967 
968 
969  // Start of cuts on both the combined system of tracks and energy clusters
970 
971  double invMassTrk = (trkp4Lab[0] + trkp4Lab[1]).M();
972  double invMass_CUT = 0.9;
973  m_massInvTracks = invMassTrk; // invariant mass of the two tracks
974 
975 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
976  if (m_saveTree) {
977  m_dbgTree_event->Fill();
978  }
979 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
980 
981  bool invMassCutsPassed = invMassTrk > (invMass_CUT * boostrotate.getCMSEnergy());
982  if (!invMassCutsPassed) {
983  return;
984  }
985  // Invariable mass of the two tracks are above the minimum
986  cutIndexPassed++;
987  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
988  B2DEBUG(22, "Cutflow: m(track 1+2) > " << invMass_CUT << "*E_COM = " << invMass_CUT << " * " << boostrotate.getCMSEnergy() <<
989  " : index = " << cutIndexPassed);
990 
991 
992 
993  //== Fill output histogram.
994  for (int iCharge = 0; iCharge < 2; iCharge++) {
995  if (crystalCutsPassed[iCharge]) {
996  getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibPrevCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
997  times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
998  getObjectPtr<TH2F>("TimevsCratePrevCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
999  times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
1000  getObjectPtr<TH2F>("TimevsCrysNoCalibrations")->Fill((crystalIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
1001  getObjectPtr<TH2F>("TimevsCrateNoCalibrations")->Fill((crateIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
1002  getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibNoCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
1003  times_noPreviousCalibrations[iCharge] - tcrate_prevCalib[iCharge], 1);
1004  getObjectPtr<TH2F>("TimevsCrateNoCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
1005  times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge], 1);
1006 
1007  // Record number of crystals used from the event. Should be exactly two.
1008  numCrystalsPassingCuts++;
1009 
1010  }
1011  }
1012 
1013 
1014  // Change cutflow method for this bit ... don't call return because we used to call the hadron cluster stuff afterwards
1015  //
1016  if (crystalCutsPassed[0] || crystalCutsPassed[1]) {
1017  // At least one ECL crystal time and quality cuts passed
1018  cutIndexPassed++;
1019  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
1020  B2DEBUG(22, "Cutflow: At least one crystal time and quality cuts passed: index = " << cutIndexPassed);
1021 
1022  getObjectPtr<TH1F>("numCrystalEntriesPerEvent")->Fill(numCrystalsPassingCuts);
1023  }
1024 
1025 
1026  // Save final information to the tree after all cuts are applied
1027  for (int iCharge = 0; iCharge < 2; iCharge++) {
1028  if (crystalCutsPassed[iCharge]) {
1029  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1030  m_tree_evtNum = m_EventMetaData->getEvent();
1031  m_tree_cid = crystalIDs[iCharge];
1032  //m_tree_time = times[iCharge];
1033  m_tree_time = times_noPreviousCalibrations[iCharge];
1034  m_crystalCrate = crateIDs[iCharge];
1035  m_runNum = m_EventMetaData->getRun();
1036  m_tree_en = crystalEnergies[iCharge]; // for studies of ts as a function of energy
1037  m_tree_E1Etot = crystalEnergies[iCharge] / trkEClustLab[iCharge];
1038  m_tree_E1E2 = crystalEnergies[iCharge] / crystalEnergies2[iCharge];
1039  m_tree_E1p = crystalEnergies[iCharge] / trkpLab[iCharge];
1040  m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
1041  m_tree_t0 = evt_t0;
1042  m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1043  m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1044  m_tree_tClust = clusterTime[iCharge];
1045 
1046  m_massInvTracks = invMassTrk; // This is probably already set but I'll set it again anyways just so that it is clear
1047 
1048  if (m_saveTree) {
1049  m_dbgTree_allCuts->Fill();
1050  }
1051  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1052  }
1053  }
1054 
1055 
1056 
1057 
1058  if (crystalCutsPassed[0] && crystalCutsPassed[1] &&
1059  numClustersPerTrack[0] == 1 && numClustersPerTrack[1] == 1) {
1060  m_tree_enNeg = trkEClustLab[0];
1061  m_tree_enPlus = trkEClustLab[1];
1062  m_tree_tClustNeg = clusterTime[0];
1063  m_tree_tClustPos = clusterTime[1];
1064  m_tree_maxEcrystPosClust = times_noPreviousCalibrations[0] - ts_prevCalib[0] - tcrate_prevCalib[0];
1065  m_tree_maxEcrystNegClust = times_noPreviousCalibrations[1] - ts_prevCalib[1] - tcrate_prevCalib[1];
1066  m_tree_t0 = evt_t0;
1067  m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1068  m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1069 
1070  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1071  if (m_saveTree) {
1072  m_dbgTree_evt_allCuts->Fill();
1073  }
1074  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1075  }
1076 
1077 
1078  B2DEBUG(26, "m_tree_maxEcrystPosClust + evt_t0 = " << m_tree_maxEcrystPosClust + evt_t0);
1079  B2DEBUG(26, "m_tree_maxEcrystNegClust + evt_t0 = " << m_tree_maxEcrystNegClust + evt_t0);
1080  B2DEBUG(26, "CDC evt_t0 = " << evt_t0);
1081  B2DEBUG(26, "ECL min chi2 even t0, m_tree_t0_ECL_minChi2 = " << m_tree_t0_ECL_minChi2);
1082 
1083 
1084 
1085  for (long unsigned int digit_i = 0; digit_i < time_ECLCaldigits_bothClusters.size(); digit_i++) {
1086  m_runNum = m_EventMetaData->getRun();
1087  m_tree_evtNum = m_EventMetaData->getEvent();
1088  m_tree_ECLCalDigitTime = time_ECLCaldigits_bothClusters[digit_i];
1089  m_tree_ECLCalDigitE = E_ECLCaldigits_bothClusters[digit_i];
1090  m_tree_ECLDigitAmplitude = amp_ECLDigits_bothClusters[digit_i];
1091  m_tree_t0 = evt_t0;
1092  m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1093  m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1094  m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1095  ts_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1096  tcrate_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]];
1097  m_tree_cid = cid_ECLCaldigits_bothClusters[digit_i];
1098 
1099  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1100  if (m_saveTree) {
1101  m_dbgTree_crys_allCuts->Fill();
1102  }
1103  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1104 
1105  }
1106 
1107 
1108  B2DEBUG(26, "This was for event number = " << m_tree_evtNum);
1109 
1110 }
static const ChargedStable pion
charged pion particle
Definition: Const.h:652
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
double m_tree_d0
Track d0 for debug TTree output.
double m_tree_maxEcrystNegClust
Time of the highest energy crystal in the cluster associated to negatively charged track,...
std::vector< float > m_CrateTime
vector obtained from DB object
std::vector< int > m_eclDigitID
ECL digit id sorter.
double m_tree_timeF
ECL fitting time for debug TTree output.
double m_tree_E1Etot
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy,...
double m_tree_tClustNeg
Cluster time of cluster associated to negatively charged track, ns for debug TTree output.
DBObjPtr< ECLCrystalCalib > m_CrateTimeDB
Time offset from crate time calibration (also this calibration) from database.
StoreObjPtr< EventT0 > m_eventT0
StoreObjPtr for T0.
StoreArray< ECLDigit > m_eclDigitArray
Required input array of ECLDigits.
std::vector< float > m_FlightTime
vector obtained from DB object
double m_tree_timetsPreviousTimeCalibs
Time for Ts distribution after application of previous time calibrations for debug TTree output.
double m_looseTrkD0
Loose track d0 minimum cut.
double m_tree_E1E2
Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in ...
double m_tree_ECLDigitAmplitude
Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.
double m_tree_tClustPos
Cluster time of cluster associated to positively charged track, ns for debug TTree output.
int m_tree_quality
ECL fit quality for debug TTree output.
bool m_saveTree
If true, save TTree with more detailed event info.
double m_tree_enNeg
Energy of cluster associated to negatively charged track, GeV for debug TTree output.
DBObjPtr< ECLCrystalCalib > m_ElectronicsTimeDB
Time offset from electronics calibration from database.
double m_tree_tClust
Cluster time of a cluster, ns for debug TTree output.
double m_E_DIV_p
Energy divided by momentum, for debug TTree output.
double m_tree_en
Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.
std::vector< int > m_eclCalDigitID
ECL cal digit id sorter.
bool m_storeCalib
Boolean for whether or not to store the previous calibration calibration constants.
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
DBObjPtr< ECLReferenceCrystalPerCrateCalib > m_RefCrystalsCalibDB
Crystal IDs of the one reference crystal per crate from database.
int m_crystalCrate
Crate id for the crystal.
int m_tree_cid
ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
double m_tree_time
Time for Ts distribution for debug TTree output.
double m_massInvTracks
invariant mass of the two tracks, for debug TTree output
double m_tree_nCDChits
Number of CDC hits along the track for debug TTree output.
double m_tree_enPlus
Energy of cluster associated to positively charged track, GeV for debug TTree output.
int m_tree_evtNum
Event number for debug TTree output.
double m_tightTrkZ0
Tight track z0 minimum cut.
DBObjPtr< Belle2::ECLChannelMap > m_channelMapDB
Mapper of ecl channels to various other objects, like crates.
std::vector< short > m_RefCrystalsCalib
vector obtained from DB object
double m_tree_t0_ECL_minChi2
EventT0 (from ECL) min chi2 for debug TTree output.
double m_tree_maxEcrystPosClust
Time of the highest energy crystal in the cluster associated to positively charged track,...
std::vector< float > m_CrateTimeUnc
uncertainty vector obtained from DB object
TTree * m_dbgTree_allCuts
Debug TTree output after all cuts.
double m_tree_ECLCalDigitTime
Time of an ECLCalDigit within a cluster, ns for debug TTree output.
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
TTree * m_dbgTree_event
Debug TTree output per event.
double m_tree_z0
Track z0 for debug TTree output.
std::vector< float > m_EperCrys
ECL cal digit energy for each crystal.
bool skipTrgSel
flag to skip the trigger skim selection in the module
double m_tree_p
Track momentum for debug TTree output.
std::vector< float > m_PreviousCrystalTime
vector obtained from DB object
DBObjPtr< ECLCrystalCalib > m_PreviousCrystalTimeDB
Time offset from previous crystal time calibration (this calibration) from database.
double m_tightTrkD0
Tight track d0 minimum cut.
double m_tree_t0
EventT0 (not from ECL) for debug TTree output.
int m_tree_amp
Fitting amplitude from ECL for debug TTree output.
double m_tree_E1p
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by t...
TTree * m_dbgTree_evt_allCuts
Debug TTree output per event after all cuts.
std::vector< float > m_Electronics
vector obtained from DB object
int m_charge
particle charge, for debug TTree output
TTree * m_dbgTree_electrons
Output tree with detailed event data.
std::vector< float > m_PreviousCrystalTimeUnc
vector obtained from DB object
std::unique_ptr< Belle2::ECL::ECLTimingUtilities > m_ECLTimeUtil
ECL timing tools.
StoreArray< Track > tracks
StoreArray for tracks.
double m_tree_t0_ECLclosestCDC
EventT0 (from ECL) closest to CDC for debug TTree output.
TTree * m_dbgTree_crys_allCuts
Debug TTree output per crystal after all cuts.
DBObjPtr< ECLCrystalCalib > m_FlightTimeDB
Time offset from flight time b/w IP and crystal from database.
DBObjPtr< ECLCrystalCalib > m_ElectronicsDB
electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps
double m_tree_ECLCalDigitE
Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.
StoreObjPtr< EventMetaData > m_EventMetaData
Event metadata.
double m_tree_t0_unc
EventT0 uncertainty for debug TTree output.
std::unique_ptr< Belle2::ECL::ECLChannelMapper > m_crystalMapper
ECL object for keeping track of mapping between crystals and crates etc.
double m_hadronEventT0_TO_bhabhaEventT0_correction
correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared...
std::vector< float > m_ElectronicsTime
vector obtained from DB object
StoreObjPtr< SoftwareTriggerResult > m_TrgResult
Store array for Trigger selection.
TTree * m_dbgTree_tracks
Debug TTree output per track.
double m_looseTrkZ0
Loose track z0 minimum cut.
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:114
double getEnergy() const
Get Calibrated Energy.
Definition: ECLCalDigit.h:119
ECL cluster data.
Definition: ECLCluster.h:27
@ c_nPhotons
CR is split into n photons (N1)
Class to store ECL digitized hits (output of ECLDigi) relation to ECLHit filled in ecl/modules/eclDig...
Definition: ECLDigit.h:24
int getAmp() const
Get Fitting Amplitude.
Definition: ECLDigit.h:70
int getQuality() const
Get Fitting Quality.
Definition: ECLDigit.h:80
int getCellId() const
Get Cell ID.
Definition: ECLDigit.h:64
int getTimeFit() const
Get Fitting Time.
Definition: ECLDigit.h:75
static double getRF()
See m_rf.
Class to hold Lorentz transformations from/to CMS and boost vector.
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Values of the result of a track fit with a given particle hypothesis.
Class to store variables with their name which were sent to the logging service.
@ c_accept
Accept this event.
const int c_NCrystals
Number of crystals.
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootOutputModule, StorageRootOutputModule, and RootInputModule.

Definition at line 134 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

Member Data Documentation

◆ m_channelMapDB

DBObjPtr<Belle2::ECLChannelMap> m_channelMapDB
private

Mapper of ecl channels to various other objects, like crates.

database object

Definition at line 124 of file ECLBhabhaTCollectorModule.h.

◆ m_CrateTimeDB

DBObjPtr<ECLCrystalCalib> m_CrateTimeDB
private

Time offset from crate time calibration (also this calibration) from database.

database object

Definition at line 115 of file ECLBhabhaTCollectorModule.h.

◆ m_crystalMapper

std::unique_ptr< Belle2::ECL::ECLChannelMapper> m_crystalMapper
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLChannelMapper>()

ECL object for keeping track of mapping between crystals and crates etc.

Definition at line 81 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_electrons

TTree* m_dbgTree_electrons = nullptr
private

Output tree with detailed event data.

Debug TTree output per electron

Definition at line 130 of file ECLBhabhaTCollectorModule.h.

◆ m_ECLTimeUtil

std::unique_ptr< Belle2::ECL::ECLTimingUtilities > m_ECLTimeUtil
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLTimingUtilities>()

ECL timing tools.

Definition at line 235 of file ECLBhabhaTCollectorModule.h.

◆ m_ElectronicsDB

DBObjPtr<ECLCrystalCalib> m_ElectronicsDB
private

electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps

database object

Definition at line 98 of file ECLBhabhaTCollectorModule.h.

◆ m_ElectronicsTimeDB

DBObjPtr<ECLCrystalCalib> m_ElectronicsTimeDB
private

Time offset from electronics calibration from database.

database object

Definition at line 102 of file ECLBhabhaTCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0

Definition at line 91 of file ECLBhabhaTCollectorModule.h.

◆ m_FlightTimeDB

DBObjPtr<ECLCrystalCalib> m_FlightTimeDB
private

Time offset from flight time b/w IP and crystal from database.

database object

Definition at line 106 of file ECLBhabhaTCollectorModule.h.

◆ m_PreviousCrystalTimeDB

DBObjPtr<ECLCrystalCalib> m_PreviousCrystalTimeDB
private

Time offset from previous crystal time calibration (this calibration) from database.

database object

Definition at line 110 of file ECLBhabhaTCollectorModule.h.

◆ m_RefCrystalsCalibDB

DBObjPtr<ECLReferenceCrystalPerCrateCalib> m_RefCrystalsCalibDB
private

Crystal IDs of the one reference crystal per crate from database.

database object

Definition at line 120 of file ECLBhabhaTCollectorModule.h.


The documentation for this class was generated from the following files: