Belle II Software  release-08-01-10
Helix Class Reference

Helix parameter class. More...

#include <Helix.h>

Inheritance diagram for Helix:
Collaboration diagram for Helix:

Public Member Functions

 Helix (const HepPoint3D &pivot, const HepVector &a, const HepSymMatrix &Ea)
 Constructor with pivot, helix parameter a, and its error matrix.
 
 Helix (const HepPoint3D &pivot, const HepVector &a)
 Constructor without error matrix.
 
 Helix (const HepPoint3D &position, const Hep3Vector &momentum, double charge)
 Constructor with position, momentum, and charge.
 
virtual ~Helix ()
 Destructor.
 
const HepPoint3Dcenter (void) const
 returns position of helix center(z = 0.);
 
const HepPoint3Dpivot (void) const
 returns pivot position.
 
double radius (void) const
 returns radious of helix.
 
HepPoint3D x (double dPhi=0.) const
 returns position after rotating angle dPhi in phi direction. More...
 
double * x (double dPhi, double p[3]) const
 returns position after rotating angle dPhi in phi direction. More...
 
HepPoint3D x (double dPhi, HepSymMatrix &Ex) const
 returns position and convariance matrix(Ex) after rotation.
 
Hep3Vector direction (double dPhi=0.) const
 returns direction vector after rotating angle dPhi in phi direction.
 
Hep3Vector momentum (double dPhi=0.) const
 returns momentum vector after rotating angle dPhi in phi direction.
 
Hep3Vector momentum (double dPhi, HepSymMatrix &Em) const
 returns momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass, HepSymMatrix &Em) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
HepLorentzVector momentum (double dPhi, double mass, HepPoint3D &x, HepSymMatrix &Emx) const
 returns 4momentum vector after rotating angle dPhi in phi direction.
 
double dr (void) const
 Return helix parameter dr.
 
double phi0 (void) const
 Return helix parameter phi0.
 
double kappa (void) const
 Return helix parameter kappa.
 
double dz (void) const
 Return helix parameter dz.
 
double tanl (void) const
 Return helix parameter tangent lambda.
 
double curv (void) const
 Return curvature of helix.
 
double sinPhi0 (void) const
 Return sin phi0.
 
double cosPhi0 (void) const
 Return cos phi0.
 
const HepVector & a (void) const
 Returns helix parameters.
 
const HepSymMatrix & Ea (void) const
 Returns error matrix.
 
const HepVector & a (const HepVector &newA)
 Sets helix parameters.
 
const HepSymMatrix & Ea (const HepSymMatrix &newdA)
 Sets helix paramters and error matrix.
 
const HepPoint3Dpivot (const HepPoint3D &newPivot)
 Sets pivot position.
 
void set (const HepPoint3D &pivot, const HepVector &a, const HepSymMatrix &Ea)
 Sets helix pivot position, parameters, and error matrix.
 
void ignoreErrorMatrix (void)
 Unsets error matrix. More...
 
double bFieldZ (double bz)
 Sets/returns z componet of the magnetic field. More...
 
double bFieldZ (void) const
 Returns z componet of the magnetic field.
 
Helixoperator= (const Helix &)
 Copy operator.
 
HepMatrix delApDelA (const HepVector &ap) const
 DAp/DA.
 
HepMatrix delXDelA (double phi) const
 DX/DA.
 
HepMatrix delMDelA (double phi) const
 DM/DA.
 
HepMatrix del4MDelA (double phi, double mass) const
 DM4/DA.
 
HepMatrix del4MXDelA (double phi, double mass) const
 DMX4/DA.
 

Static Public Member Functions

static void set_limits (const HepVector &a_min, const HepVector &a_max)
 set limit for parameter "a"
 
static bool set_exception (bool)
 set exception
 
static bool set_print (bool)
 Set print option for debugging.
 

Static Public Attributes

static const double ConstantAlpha = 222.376063
 Constant alpha for uniform field.
 

Private Member Functions

void updateCache (void)
 updateCache
 
void checkValid (void)
 Check whether helix parameters is valid or not. More...
 
void debugPrint (void) const
 Print the helix parameters to stdout.
 
void debugHelix (void) const
 Debug Helix.
 

Private Attributes

bool m_matrixValid
 True: matrix valid, False: matrix not valid.
 
bool m_helixValid
 True: helix valid, False: helix not valid.
 
double m_bField
 Magnetic field, assuming uniform Bz in the unit of kG.
 
double m_alpha
 10000.0/(speed of light)/B.
 
HepPoint3D m_pivot
 Pivot.
 
HepVector m_a
 Helix parameter.
 
HepSymMatrix m_Ea
 Error of the helix parameter.
 
HepPoint3D m_center
 Cache of the center position of Helix.
 
double m_cp
 Cache of the cos phi0.
 
double m_sp
 Cache of the sin phi0.
 
double m_pt
 Cache of the pt.
 
double m_r
 Cache of the r.
 
double m_ac [5]
 Cache of the helix parameter.
 

Static Private Attributes

static HepVector ms_amin
 minimum limit of Helix parameter a
 
static HepVector ms_amax
 maxiimum limit of Helix parameter a
 
static bool ms_check_range
 Check the helix parameter's range.
 
static bool ms_print_debug
 Debug option flag.
 
static bool ms_throw_exception
 Throw exception flag.
 
static const std::string invalidhelix
 String "Invalid Helix".
 

Detailed Description

Helix parameter class.

Definition at line 48 of file Helix.h.

Member Function Documentation

◆ bFieldZ()

double bFieldZ ( double  bz)
inline

Sets/returns z componet of the magnetic field.

Parameters
[in]bzz-component of the magnetic field.
Attention
Helix param. alpha is also stored.

Definition at line 473 of file Helix.h.

◆ checkValid()

void checkValid ( void  )
private

Check whether helix parameters is valid or not.

Sets m_helixValid.

Definition at line 895 of file Helix.cc.

◆ ignoreErrorMatrix()

void ignoreErrorMatrix ( void  )

Unsets error matrix.

Error calculations will be ignored after this function call until an error matrix be set again. 0 matrix will be return as a return value for error matrix when you call functions which returns an error matrix.

Definition at line 872 of file Helix.cc.

◆ x() [1/2]

double * x ( double  dPhi,
double  p[3] 
) const

returns position after rotating angle dPhi in phi direction.

x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi)) y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi)) z = z0 + dz - (alpha / kappa) * tan(lambda) * phi

Returns
double[3]

Definition at line 216 of file Helix.cc.

◆ x() [2/2]

HepPoint3D x ( double  dPhi = 0.) const

returns position after rotating angle dPhi in phi direction.

x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi)) y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi)) z = z0 + dz - (alpha / kappa) * tan(lambda) * phi

Returns
HepPoint3D

Definition at line 197 of file Helix.cc.


The documentation for this class was generated from the following files: